[image: image9.jpg]

Modeling Software Architectures and Platform Choices
An ObjectWatch White Paper

Roger Sessions

Version 1.0
Last Modified: June 9, 2003

About ObjectWatch and Roger Sessions
ObjectWatch has been teaching Master Software Architect classes since its founding in 1995 by Roger Sessions. ObjectWatch offers training and consulting in using the Software Fortress Methodology to design large enterprise software architectures.

Roger Sessions is the developer of Software Fortress Model for enterprise architectures. He is the author of Software Fortresses; Modeling Enterprise Architectures published by Addison-Wesley, five other books, and dozens of articles. He is a frequent and popular conference speaker. Sessions writes and publishes the ObjectWatch Newsletter, a widely read, highly regarded, and often hotly debated newsletter on high-end enterprise software technologies. Past issues are available at www.objectwatch.com.

Sessions is one of the world’s leading experts in enterprise software architectures with extensive experience with both the Microsoft Windows Server Platform and J2EE. More than 50,000 people in more than 20 countries have attended Sessions’s workshops on building and designing high-end software architectures.

For more information on how ObjectWatch and Roger Sessions can help your enterprise leverage the software fortress model, contact janet@objectwatch.com.
Legal Notices
ObjectWatch® is registered trademark of ObjectWatch, Inc., Austin, Texas. Software Fortress™, Software Fortresses™, and The Software Fortress Model™ are trademarks of ObjectWatch, Inc., Austin, Texas. This white paper is copyright© 2003 by ObjectWatch. It may be freely copied as long as it is copied in its entirety and that no changes are made in any way, including changes to these legal notices.

Table of Contents
51.
Executive Summary

2.
Introduction
7
2.1.
Purpose of White Paper
7
2.2.
Disclaimer
9
2.3.
Acknowledgements
10
3.
Software Fortress Enterprise Planning Process
11
4.
The Software Fortress Model
11
4.1.
Why A New Model?
11
4.2.
Overview Of The Software Fortress Model
12
4.3.
Treaties
13
4.4.
Types of Software Fortresses
13
4.5.
Software Fortress Artifacts
14
4.6.
Software Fortresses, Components, and Objects
17
4.7.
Heterogeneity In The Software Fortress Model
18
5.
Case Study Overview
19
6.
Software Fortress Enterprise Planning Process
19
6.1.
Software Fortress Analysis
19
6.2.
Categories Analysis
22
6.3.
Requirements Analysis
24
6.4.
Configurations Analysis
29
6.4.1.
Presentation Fortress Worker System
32
6.4.2.
Web Service Fortress Worker System
35
6.4.3.
Business Application Fortress Worker System
36
6.4.4.
Legacy Fortress Worker System
38
6.4.5.
Treaty Management Fortress Worker System
39
6.4.6.
Service Fortress Worker System
40
6.4.7.
Asynchronous Messaging Backend
42
6.4.8.
Enterprise Database
43
6.5.
Enterprise Analysis
45
7.
Strengths and Weaknesses
47
7.1.
Strengths of the Microsoft and IBM platforms
47
7.2.
Cost Factors Favoring The Windows Server Platform
48
7.3.
Common Pitfalls In Choosing Technologies
49
7.3.1.
Free Means Cheap
49
7.3.2.
Expensive Means Reliable
50
7.3.3.
Portable Means Scalable
51
7.3.4.
Standards Means Customer Power
51
8.
Summary
53
Appendix 1. Glossary
55
Appendix 2. SF-EES User’s Guide
61

1. Executive Summary
This paper will help you find the most cost effective solutions to building your enterprise software systems.
This seemingly simple goal is complicated by a number of factors, perhaps foremost is that we lack a common understanding of how to build large enterprise systems. If we don’t have a common understanding of how to build enterprise systems, how can we choose from among the overwhelming number of technologies that are available as building blocks? And if we don’t know how to choose technologies, how can we know the impact of those choices on our final costs?
So this paper starts by introducing a technology neutral model for building enterprise systems. This model is called the software fortress model (SFM). The SFM views the enterprise as a collection of software fortresses. Each fortress consists of a collection of software systems, processes, and machines that serve a common purpose and work together in a trust relationship to support some major unit of enterprise functionality. The SFM can help bring intellectual manageability to your enterprise architecture.
The SFM then serves as the foundation for a process to analyze a large enterprise and for choosing from among the different technologies to build that enterprise’s systems. This process is called software fortress enterprise planning process (SF-EPP). The SF-EPP consists of five steps:

· software fortress analysis, in which the enterprise architecture is broken down into functional units called software fortresses, each assigned to one of six basic fortress types.
· categories analysis, in which the software fortress functionality is categorized into six basic software fortresses types and related infrastructure functions.
· requirements analysis, in which throughput, platform, reliability, and other requirements are determined for each of the identified categories.
· configurations analysis, in which different combinations of hardware and software technologies are proposed that can meet the identified requirements.
· enterprise analysis, in which different configuration choices are plugged into each of the enterprise software fortresses and analyzed with respect to impact on overall enterprise cost.

If you follow the SF-EPP, you will:

· Learn a great deal about the systems in your enterprise and how they are related to each other.

· Understand your specific requirements for those systems and how those requirements must govern your technology choices.
· Be able to predict with considerable accuracy how your technology choices will impact your overall enterprise software and hardware costs.

An important part of this whitepaper is the accompanying spreadsheet called the software fortress enterprise evaluation spreadsheet (SF-EES). The SF-EES will help you conduct your own software enterprise evaluation and quickly check on the impact to your organization of technology choices, price changes, or new product offerings. This spreadsheet is pre-populated with information on IBM’s WebSphere and Microsoft’s Windows Server Platform. This makes the SF-EES particularly useful to companies interested in comparing these two software platforms.
To help you better understand the SF-EPP and the SF-EES, I go through a typical analysis on a mock organization called WholeSale. I discuss the WholeSale system, go through the five steps of the SF-EPP and use the SF-EES to do a cost comparison of IBM’s WebSphere and Microsoft’s Windows Server Platform with respect to WholeSale’s architecture.

As part of the analysis of WholeSale, I identify a number of strengths in both the Microsoft Windows Server Platform and the IBM WebSphere platform. My assumption is that you will use different technologies for solving different problems and the SFM includes a specific design approach for linking heterogeneous technologies. This approach will allow you to choose not just the Windows Server Platform or WebSphere, but choose from the absolute best of both platforms.
2. Introduction
2.1. Purpose of White Paper

There are hundreds of papers comparing various technologies in regard to features, architectural approaches, cost, or performance. This paper is not one of them. Ultimately none of those papers can help you make intelligent technology decisions. Why not? Because your technical needs, your business constraints, and your architectural goals are all unique to your specific enterprise. Generic comparisons will be just that: generic. They apply equally well to nobody.
My approach is different. I am not going to compare anything. Instead, I will help you make your own comparisons. To do this, I am giving you three things: a model, a process and a tool.
The model helps you understand and describe your enterprise software architecture as a series of functional units that work together in defined relationships. The model is called the software fortress model (SFM).

The process uses this model to conduct a technology assessment that is specific to your enterprise. Because it is closely tied to the software fortress model (SFM) it is called the software fortress enterprise planning process (SF-EPP).
The tool is a spreadsheet that simplifies the comparisons that come out of the SF-EPP. It is called the software fortress enterprise evaluation spreadsheet (SF-EES). You can use the SF-EES to compare any number of different technology possibilities, and maintain those comparisons as prices and technologies change.
My technology bias for enterprise platforms is Microsoft’s Windows Server Platform (until recently known as the .NET platform) and, from among the J2EE vendors, IBM’s WebSphere. I have pre-populated the SF-EES to compare the costs of these two platforms.
While I believe IBM is the most viable of the J2EE-influenced vendors, I also consider BEA’s WebLogic an acceptable alternative. Because of space constraints, I will not consider WebLogic in this white paper or the SF-EES. The SFM, SF-EPP, and SF-EES are all easily adaptable to a WebLogic comparison, should that be a platform of interest in your enterprise.
The SF-EPP architectural philosophy includes the following tenets:

· An enterprise architectural model should be expressed in a platform neutral fashion that can be implemented using any number of different technologies.

· Every technology platform has specific strengths and weaknesses.

· To leverage the strengths of different platforms, an enterprise architecture model needs to focus on interoperability between technologies.

· To understand the strengths of each platform, an enterprise model needs to include an evaluation methodology for comparing technologies.

I have no idea how your cost comparisons will turn out, or even what technologies you will choose to compare using the SF-EPP. I am sure, however, that if you use the SF-EPP you will be ahead of where you are today. Here is some of the benefits you can expect from following this approach:
· An improved understanding of your overall enterprise architecture.

· A clear set of technology neutral documents that define the different systems that make up your enterprise, their requirements, and how they work together.

· An methodological approach to comparing those technologies that meet your requirements to determine the most cost effective way to build your enterprise.

· An easy way to predict the impact on your organization of price and product changes imposed on you by your vendors.

· A well defined architectural approach to building interoperability between different technologies.

This white paper has three specific goals: first, to show you how to use the SFM to better understand your enterprise architecture; second, to show you how to use the SF-EPP to identify different technological solutions for your problems; and third, to guide you in the use of the SF-EES to compare those potential solutions.
The SF-EPP is about predicting enterprise costs. It is worth spending a moment contrasting a SF-EPP approach to the more traditional use of benchmarks to predict overall systems cost.
One traditional benchmark is the TPC-C benchmark
, a benchmark that focuses on the middle-tier (transaction processing monitoring) and data storage (database) technologies.

According to the most recent TPC-C results, as I write this, we have nine benchmarks for WebSphere with a range of costs from $17.75 to $37.80 and an average cost of $28.38 per transaction per minute.

Also according to the most recent TPC-C results, we have 61 benchmarks for COM+ (recently renamed as “Enterprise components”) with a range of costs from $2.78 to $23.84 and an average cost of $7.30 per transaction per minute.

Suppose you want to build a system that can process 800 transactions per minute. You might assume that you could build this fortress on WebSphere for 800 transactions per minute X $28.38 per transaction per minute, or for $22,704. You might further assume that you could build this fortress on the Windows Server Platform for 800 transactions per minute X $7.30 per transaction per minute , or for $5,840.

In fact, this analysis would be flawed by a number of complicating factors. Here are just a few of the major ones:

· If you look closely at the WebSphere benchmarks, none of them were run on Linux, the platform IBM recommends for WebSphere. They were all run on AIX, an operating system IBM is phasing out.

· None of the WebSphere benchmarks used IBM’s recommended J2EE products. They used WebSphere’s Encina technology. Encina is an old-style transaction processing monitor, with applications written in C, not Java or C#.

· None of the WebSphere benchmarks used IBM’s recommended DB2 database. They used Oracle, a product made by one of IBM’s competitors in the database area.

· All of the systems benchmarked (both WebSphere and the Windows Server Platform) ran far in excess of the 1000 transactions per minute needed by a typical system. The Windows throughput ranged from 9,113 to 709,220 transactions per minute and the WebSphere throughput ranged from 57,346 to 427,760 transactions per minute. Few, if any, systems in any enterprise require transactional throughputs in this range. Using TPC-C numbers to predict your system cost is like measuring fuel consumption for a rocket and then extrapolating to a delivery truck.

· The TPC-C benchmark, like all standard benchmarks, is based on synchronous workflow. Well designed enterprise systems make extensive use of asynchronous workflow.

· The TPC-C cost numbers, like those of most benchmarks, assume a tight integration between the business logic (the traditional middle-tier) and the database (the traditional data-tier). In many real configurations, the database will be shared among a large number of fortresses, allowing its cost to be charged to the overall corporate infrastructure rather than a specific application.

Given these many issues, the TPC-C benchmark will, like most standard benchmarks, be of limited help in predicting and comparing actual WebSphere and Windows cost in a specific enterprise architecture. I take a different approach to cost analysis, one based on modeling your enterprise with your requirements and using the costs you will actually be paying for hardware and software. This is what the SF-EPP is all about.
Before I get started, a few pointers.

I will be using a lot of terms and acronyms in this paper. If you forget any of their meanings (perhaps you already have!), refer to the glossary in Appendix 1.

I will be discussing the SF-EES throughout the paper. You might want to download it before continuing. The most recent version can be found at www.objectwatch.com. For specific instructions on using and tailoring the SF-EES to your specific organization, see Appendix 2 (User’s Guide to the SF-EES).

2.2. Disclaimer
I have included in this white paper a great deal of information about products, prices, and comparable configurations. I have carefully checked and rechecked my information. However it is impossible to be sure this information is completely correct, and much of the information that was correct will have changed by the time you read this.
Other issues may influence this analysis. For example:
· Product discounts may apply in your specific case.

· New bundles may become available. For example, IBM has recently launched a version of its WebSphere Application Server called Express, with a much lower per processor price than WebSphere Application Server V5 ND, which is what I used in most of my configurations. While IBM is using the lower price point of Express to compete with Microsoft, it isn't appropriate for this analysis because it lacks key features such as a server-component model (like EJB), transactions, and failover, all of which are required in most enterprises. However, if your needs fit the features of WAS Express (or any other product that I have not used), you can change the spreadsheet to include it.
· Your workload may differ from my assumptions. The workload for your application may have unique needs and may require more or bigger machines to support it. For this reason I suggest that all workload assumptions be sanity checked in the lab.
· Though there is a rough equivalency to the Microsoft and IBM products included in this analysis, they are not “pin-replaceable”. For example, Microsoft SQL Server includes OLAP services in the base price, but for IBM DB2, OLAP is a separate cost item. Also, IBM sells adapters to connect between WebSphere Interchange Server and WebSphere MQ Integrator; but Microsoft does not sell a bridge that connects BizTalk server directly to WebSphere Interchange Server.
· There are real life cycle costs associated with maintenance and support. They are not included in this analysis. For IBM, maintenance and support is indexed to the total software license cost: You can assume a product maintenance contract will amount to about 25% of the total software license cost, every year. With Microsoft, premium support contracts are not explicitly indexed to the software license cost.
· Development-time issues are not included in this analysis. The license cost of development tools is generally small in comparison to the license cost of server runtimes for databases, message queues, and so on. However, productivity for a given organization may be significantly different with different tools. For example, if the development staff already knows Visual Basic or COBOL, using WebSphere will require Java training costs. The SF-EES is flexible enough to accommodate this data, should you choose to add it.
Therefore, it is important that you see this white paper not as a snapshot comparison of two technologies, but as an approach to making these comparisons yourself. The information contained in this paper will change. The methodology contained in this paper is timeless.
2.3. Acknowledgements

The writing of this white paper and creation of the accompanying SF-EES has been a momentous undertaking. It could not have been done some financial support. I am grateful to Microsoft for helping to defray some of the expenses. I am also grateful to Mike Owens (Dell computer), Dino Chiesa, Lynn Keele, Ken Martin, Peter Meister, and Tim Mallalieu (Microsoft), and many students in my workshop for providing technical consultation and review comments. The illustrations are mostly the work of ObjectWatch’s own Janet Van Sickler.
This white paper was written under a strict noninterference agreement that guaranteed that editorial control would rest exclusively with ObjectWatch. The opinions expressed here should be viewed as my opinions, and not those of Microsoft, Dell, or any other company. Believe me, their opinions are much less interesting than my opinions.
3. Software Fortress Enterprise Planning Process
The SF-EPP is a five step process to building an enterprise architecture. The steps involved in creating a software fortress enterprise plan are as follows:

Step 1. Software Fortress Analysis. Conduct a software fortress analysis of your proposed enterprise architecture.

Step 2. Categories Analysis. Conduct a categories analysis of each of your defined software fortresses.

Step 3. Requirements Analysis. Conduct a requirements analysis of each of your defined categories.

Step 4. Configurations Analysis. Conduct a configurations analysis of each of your defined requirements.

Step 5. Enterprise Analysis. Conduct an enterprise analysis trying out your different configurations.

Each one of these steps will be covered in depth in one of the sections of this white paper.

4. The Software Fortress Model

4.1. Why A New Model?
Microsoft includes a lot of technologies under the umbrella term Windows Server Platform, at last count, over 15. IBM includes even more technologies under the WebSphere moniker, at last count, over 70. How do you compare such a mishmash of technologies? How do you build enterprise systems with such a choice?

The key to simplifying this complex universe of technologies is having a platform independent model for how to build large enterprise systems. This model will help us identify the core technologies we really need. This core list can then be compared to specific vendor products to help us better understand which are vendor products we actually need and which vendor products are mere fringe. We can then compare those core vendor products to each other and develop benchmarks that more closely approximate the way we will be using those core products in our own systems.

It all starts with an enterprise architectural model. But which enterprise architectural model should we use?

The natural response to this question might be UML (Universal Modeling Language).
 UML, after all, has a long history of usage in documenting enterprise systems. It is the basis for most object-oriented design and analysis tools.

UML, however, offers no guidance as to how enterprise systems should be built. It is a tool for documenting design decisions, not a tool for making design decisions. For example, UML gives us no guidance in making any of these architectural decisions:

· How we will get a Microsoft system and a WebSphere system to communicate?

· How should we enable SOAP-based collaboration with a mission critical enterprise systems?

· How should we use database security with component security?

· When should we use synchronous communications? When should we use asynchronous communications?
· How should transactions flow through the enterprise systems?
This is where the SFM comes in. It gives us specific design guidance as to how to design a large enterprise system. It helps us understand which technologies to choose to solve which problems. And, from the perspective of this white paper, it helps us compare technologies that appear at the same time eerily similar and frustratingly different.

A full discussion of the SFM is beyond the scope of this white paper. I will provide a general overview here and discuss the parts of it that are relevant to comparing IBM and Microsoft systems. For more information on this model, see the definitive reference on the software fortress model.

4.2. Overview Of The Software Fortress Model
The typical large enterprise architecture, if one can call it an “architecture” at all, is an anarchical mix of overburdened browser management systems, pseudo middle-tier business applications, monolithic legacy systems, and desultory data storage technologies, all strewn over a chaotic collection of hardware platforms and operating systems with various random firewalls and other security mechanism thrown in largely as an afterthought. The polite term for such an architecture is three-tier.

The SFM takes a different architectural approach. In the SFM, a large enterprise computer grid is broken down into a series of intellectually manageable and organizationally related entities called software fortresses. A typical large enterprise might consist of dozens, or even hundreds of discrete software fortresses.

Definition: Software Fortress
A software fortress is a conglomerate of software systems consisting of potentially many processes running on potentially many machines spread out over a potentially wide geographic area that:
I. Serve a common purpose

II. Are owned by a cohesive group of individuals

III. Work together in a trust relationship.
IV. Are built on a common technology base.
Part III of the definition of a software fortress specifies that the entities within the software fortress work together within a “trust relationship”. This trust relationship is, in fact, a defining characteristic of a software fortress. In the software fortress model this is formally specified as the trust rule.

Trust Rule of the Software Fortress Model
Part I. Every entity inside a software fortress trusts every other entity inside the software fortress.

Part II. No entity inside a software fortress trusts any entity outside the software fortress.

4.3. Treaties
Fortress relationship are defined by treaties. A treaty describes the nature of the messages that will pass between fortresses, the security model that will be used, how workflow will be managed, how errors will be managed, and anything else that might be important in defining the fortress relationships.
4.4. Types of Software Fortresses

A typical large enterprise could have dozens or even hundreds of software fortresses. One fortress might be dedicated to human resources, another for on-line purchasing, another to shipping, and so on.
Because of the large number of possible enterprise functions a fortress might be called upon to provide, it is helpful to think of categories, or types, of fortresses within the enterprise. I have found that almost all software fortresses can be categorized into one of six standard types, each with very specific technology needs.

A business application fortress is one that provides transactional business functionality, such as processing credit card charges. This type of fortress loosely corresponds to a traditional middle-tier/data-tier combination. The technologies necessary to support business application fortresses are advanced programmer tools and strong component infrastructures such as Microsoft’s Enterprise Services or WebSphere’s Enterprise JavaBeans.
A web service fortress is one that accepts programmatic requests over the internet, subjects those requests to intensive security scrutiny, and finally brokers those requests onto internal enterprise fortresses, most likely business application fortresses. The technologies necessary to support web service fortresses are support for web service standards, such as SOAP, WSDL, and possibly UDDI.

A presentation fortress is one that manages browser clients. It accepts HTTP requests and creates HTML presentations. For many applications, the presentation fortress needs to interact with one or more internal enterprise fortresses, most likely business application fortresses. The technologies necessary to support presentation fortresses are advanced presentation creation tools, good web connectivity infrastructures, and loosely coupled cluster support.

A treaty management fortress is one that works within the enterprise to manage complex relationships between other fortresses. For example, it may be called upon to manage workflow, bridge incompatible communications channels, or translate between incompatible data formats. The technologies necessary to support treaty management fortresses are document translation, business process workflow, and error coordination.
A legacy fortress is one that wraps an existing legacy system with a software fortress veneer. These legacy systems are often mainframe based. The technologies necessary to support legacy fortresses are good connectivity tools, preferably with little or no footprint on the mainframe.

A service fortress is one that wraps a combination of functionality and data that is needed to coordinate the activity of other enterprise (probably business application) fortresses. Service fortresses should not be confused with shared libraries, which share functionality but not data. Examples of service fortresses are compensatory transaction managers (which are often also bundled in with treaty management technologies), security credential managers, and shared data repositories. The technologies necessary to support service fortresses are those that support various standards having to do with business flow, most of which, unfortunately, are still in rudimentary stages.
4.5. Software Fortress Artifacts

A prototypical software fortress is shown in Figure 1. Various artifacts are common to most software fortresses, regardless of their type or their role in the enterprise architecture. I’ll go through the different artifacts, and discuss each of their functions.

[image: image1.jpg]Guard

Incoming Fortress
Drawbridge ‘Specific
Tcon

wall / Envoy

Data Strongbox

Figure 1. Prototypical Software Fortress

The workers, represented by fortress type specific icons, are what accomplish the work of the fortress. That work may be processing high volume transactions, for a business application fortress, or delivering HTML browser pages, for a presentation fortress. For a line of business fortress, the workers are probably components. If this is a presentation fortress, the workers are probably either Java ServerPages or ASP.NET pages.

Different icons represent workers in different fortresses. Once one becomes familiar with the icons, it is fairly easy to get a high level overview of an enterprise by looking at a picture of the various fortresses and their connections. The worker icons I use are shown in Figure 2.

[image: image2.jpg])

== /a>‘

Presentation Web Service Business Application
Fortress Fortress Fortress

Treaty Service
Management Fortress
Fortress

Figure 2. Worker Icons by fortress type

The fortress itself should be technology opaque. It is generally not possible or desirable, from outside the fortress, to know what technology was used to build the fortress. A WebSphere fortress, from the outside, should look pretty much like a Windows Server Platform fortress.

The data strongbox is where fortress workers store their data. In the SFM, each fortress is conceptually responsible for its own data storage. If this is a line of business fortress, the data strongbox is likely a high-end, highly available, database, like SQLServer, in the Microsoft world, or DB2, in the IBM world.

The walls of the fortress are responsible for preventing messages or errant code from entering the fortress other than through approved channels. We frequently use a combination of technologies for creating fortress walls, including firewalls, database security, and component role-based security.

The drawbridges of the fortress are the approved channels for incoming message to be received into the fortress. Drawbridges connect fortresses in the enterprise. Often the fortresses are built on different technology platforms, so drawbridges need to be technology agnostic.
The guards of the fortress subject requests coming through the drawbridge to appropriate scrutiny. The guards are the last word in software fortress security. Once a guard has accepted a message from the outside world, the request is not subjected to further security checks as it passes between fortress entities. Guards may be implemented as specialized processes.

The envoys of the fortress are the outgoing counterparts to the incoming guards. The envoy owns the outgoing side of the drawbridge. Whereas the guard is accepting requests from the drawbridge, it is the envoy on the other side that is placing those requests into the drawbridge. Workers inside a fortress never make requests of outside fortresses directly. They always go through envoys. The use of the envoys protects the workers from the inevitable changes in the drawbridge connections. Envoys are often implemented as components.

The software fortress security model should not be confused with the “Castle” security model, in which security is largely passive, relegated to firewalls and intrusion detection systems. The software fortress security model is based on active exclusion from the fortress through not only firewalls, but also component role-based security, database security, and ACLs, among other techniques, as well as intentional challenges by the guard. For much more information on the software fortress security model, see my software fortresses book.

Two fortresses working together through a drawbridge can be categorized as either donor or recipient fortresses. The donor fortress is the one initiating the request. The recipient fortress is the one receiving the request.

4.6. Software Fortresses, Components, and Objects

A software fortress should not be confused with an object or a component.
 Objects are artifacts of implementation technologies (such as Java or C#). Components are artifacts of packaging and distribution technologies (such as Enterprise JavaBeans or Enterprise Components). Software fortresses typically include multiple processes running on many machines. These processes are likely communicating through distributed components. Each of these components is perhaps implemented with hundreds of objects.

Although there are superficial similarities between objects, components, and fortresses, each has its unique design approach and implementation rules. It is beyond the scope of this white paper to discuss the design and implementation rules that govern (and differentiate) objects and components, although these are covered in my last two books.
 In this paper, I will focus on the design and implementation rules only for software fortresses.

4.7. Heterogeneity In The Software Fortress Model

The fourth part of the definition of a software fortress definition tells us that the various entities inside the fortress are built on a common technology base. Two of the most important technology bases, within the corporate space, are Microsoft’s Windows Server Platform and IBM’s WebSphere.

Although the software fortress model assumes homogeneity (single platform) at the software fortress level, it assumes heterogeneity (many platforms) at the enterprise level. Homogeneity inside the fortress allows fortress entities to work in the closest possible relationship. Homogeneity at the enterprise level allows companies to mix and match platforms, leveraging the strengths of each. The software fortress model thus favors homogeneous technologies inside the fortress and heterogeneous technologies for connecting fortresses together.
Let’s consider two fortresses, an accounts receivable fortress and a shipping fortress. Both of these are business application fortresses fulfilling what we traditionally think of as middle-tier functionality. In the IBM world, such functionality would be built using Enterprise JavaBeans (EJB), part of WebSphere. In the Microsoft world, such functionality would be built using Enterprise components. Enterprise components were called, until recently, COM+ components and, not too long before that, MTS components. (Microsoft does love to change the names of its technologies!) Both EJB and Enterprise components are essentially homogeneous technologies, meaning that they work best when used within a single platform world.

Once we need to pass requests between the accounts receivable fortress and the shipping fortress, we have moved out of the cozy homogeneous world of the software fortress and into the rough and tumble heterogeneous world of the enterprise space. Enterprise components and EJB, as homogeneous technologies, are no longer useful. Now we need a technology that focuses on the heterogeneous space.

My favorite technology for heterogeneous drawbridges is asynchronous message queues. Message queue based intrafortress communications has these advantages:

· Since message queues can be shared among multiple machines, one can implement highly redundant cluster-like systems.

· Since systems that use asynchronous communications have no immediate expectation of a response, they can make highly efficient usage of system resources through workload averaging. Workflow averaging refers to the process of deferring some of the peak workload until periods of lower system demand. This “smoothes out” the peaks and valleys of system utilization typical of systems using exclusively synchronous communications.
· Since message queues are transactional resources, the sending and receiving of messages can be transactionally coordinated with work that involves other transactional resources, in particular, databases.

· Since message queues are built on reliable persistence mechanisms, asynchronous communications are never lost.

· Since message queues are built on redundant delivery channels, message delivery is guaranteed.

· Since message queues were originally designed as a communications technology, asynchronous communications is technology agnostic, giving it inherent heterogeneous support

Given the many advantages of asynchronous communications you might expect that all interprocess communications would be done asynchronously, even communication inside the software fortress. However for all the charms of asynchronous communications, it does have several disadvantages that make it unsuitable for most work inside the fortress. The disadvantages include these:

· Transactions cannot be carried over asynchronous communications channels. If entity A does some transactional work (say, updating a database) and then makes a request of entity B that also does some transactional work, the workload of the two entities cannot be coordinated within a single transaction.

· Asynchronous communications is typically at least an order of magnitude slower than the fastest synchronous communication protocols.
5. Case Study Overview
I will look at a typical (but made-up) enterprise in depth. Doing so will give you a good sense of a software fortress enterprise evaluation. This evaluation will be helpful in analyzing the strengths and weaknesses of the Windows Server Platform and WebSphere.

The sample enterprise is a wholesale food distributor that I call WholeSale. WholeSale’s customers are grocery stores, one of which, let’s say, is called FoodStore. WholeSale wants to provide its customers, such as FoodStore, with two purchasing choices. The first is to allow FoodStore’s software inventory systems to automatically place orders with the WholeSale system. The second is to allow FoodStore’s employees to manually place orders over WholeSale’s web site.

WholeSale has been around for a while. In the past, it has manually taken orders over the phone. It used an accounts receivable package that runs on an old IBM CICS mainframe that still works well.
WholeSale is a fairly high volume system for a commerce operation. It expects to receive browser based orders within a range of 1-1000 orders per minute with an average rate of 100. It expects to receive programmatic orders (SOAP/HTTP/Internet) at a similar rate, at least, someday.
6. Software Fortress Enterprise Planning Process
6.1. Software Fortress Analysis

How can WholeSale set up its enterprise architecture using software fortresses and leveraging its existing investment in its accounts receivable package? Let’s look at one possible architecture based on the software fortress model.

First, the fortresses that deal with WholeSale customers (e.g. FoodStore). WholeSale is going to take programmatic requests from FoodStore’s software systems. This implies a web service fortress, which I name Customer-Programmatic-Gateway. WholeSale will allow FoodStore’s employees to order from the web. This implies a presentation fortress, which I name Customer-Browser-Gateway.

WholeSale has an existing accounts receivable CICS system I want to leverage. I wrap this with a legacy fortress and name it Accounts-Receivable.

I need two business application fortresses, one to manage WholeSale’s inventory and one to manage the shipment of orders to FoodStore and other customers. I name these fortresses Inventory-Management and Shipping-Management.

I need a fortress to coordinate the processing of an order. This will be a treaty management fortress because it is primarily managing workflow between business application fortresses. I name this fortress Order-Management.

WholeSale will need to validate its customers before processing their orders, regardless of whether those customer are entering programmatically, through Customer-Programmatic-Gateway, or via browsers, through Customer-Browser-Gateway. I will manage and validate customer user-IDs and passwords with a service fortress, named Security
In summary, here are the software fortresses that make up WholeSale, along with each of their types:

· Customer-Programmatic-Gateway (web service fortress)

· Customer-Browser-Gateway (presentation fortress)

· Inventory-Management (business application fortress)

· Shipping-Management (business application fortress)

· Order-Management (treaty management fortress)

· Accounts-Receivable (legacy fortress)

· Security (service fortress)

The overall processing of an order requires each of these fortresses to fulfill some major piece of functionality and then allow other fortresses to take their turn. Because fortresses are very coarse grain, we do typically do not get into deep calling trees, with, say, fortress A calling on fortress B that then calls on fortress C that then calls on fortress D that then calls on..., etc. Such a calling tress would be more typical of the flow of information through object systems. A more common fortress level calling tree would appear as shown in Figure 3.

[image: image3.jpg]Internet.

Figure 3. Typical Calling Tree For A Software Fortress Architecture

In fact, the “typical” calling tree for a software fortress architecture shown in Figure 3 closely resembles the picture of the WholeSale enterprise architecture, which is shown in Figure 4.

[image: image4.jpg]Internet.

o
ey B
e o7

i

Accounts
Recivoble

Figure 4. The WholeSale Enterprise Architecture

We can get more information about workflow through the enterprise by showing the sequence of requests passing from one fortress to another. This is done with a Sequence Ally Diagram (SAD
), so-called because it shows the sequence of requests passing from fortress to fortress as fortress allies work to fulfill a common purpose.

To simplify the analysis of the rest of this white paper, I will assume that all orders are coming into WholeSale’s system through the browser interface. The analysis shown here for the browser system can be extended to the programmatic system, since the two systems are identical once the request is received into the enterprise.

The WholeSale SAD tells us a great deal about the drawbridges we need in the enterprise. A synchronous request (shown with solid full arrow heads) and return (shown with full empty arrow heads) both map to one drawbridge. A single asynchronous request (shown with half full arrow heads) also maps to one drawbridge. The SAD for WholeSale’s web-based order processing is shown in Figure 5.

[image: image5.jpg]Internet

eMal OrderAck

—P> <l— b
synchronous request synchronous refum asynchronous request

Figure 5. SAD For WholeSale Order Processing

6.2. Categories Analysis

Categories Analysis is the second stage in a software fortress enterprise plan. The purpose of this analysis is to decide which categories of systems we need to build our enterprise architecture. The categories we discover are based on the first stage in the software fortress enterprise plan, the software fortress analysis. We found that we needed seven software fortresses to build our enterprise system. To review, these fortresses are
· Customer-Browser-Gateway (presentation fortress)

· Customer-Programmatic-Gateway (web service fortress)

· Security (service fortress)

· Order-Management (treaty management fortress)

· shipping management (business application fortress)

· Inventory-Management (business application fortress)
· Accounts-Receivable (legacy fortress)
In general, a hardware/software system that is part of a fortress takes on one of two roles: worker system or data strongbox system. A worker system is one that conducts the main work of the fortress, say, delivering HTML pages for a presentation fortress. A strongbox system is one that store the data needed by the fortress to do its work. For most fortresses, strongboxes are implemented with a database.

So fortresses usually comprise systems that fulfill processing roles or data storage roles. If we consider each role (e.g. worker or strongbox) within a given type of fortress (say, presentation fortress) to be one category, then we would get twelve possible categories of systems. The would be Presentation-Worker, Presentation-Strongbox, Web Service-Worker, Web Service-Strongbox, and so on.

For many enterprises, it turns out to be economical to consolidate many or all of the data strongboxes onto a shared hardware/software database system. The reason for this is that high reliability databases are expensive to build and maintain, and, once put together, can scale economically to a level of throughput far in excess of what any one fortress might require. In this consolidated database scenario, only one data storage facility needs to be maintained, clustered, and backed up. This saves costs over the full life cycle of the system.
For the purposes of this case study, I will assume that WholeSale will have a single, consolidated data storage facility with either subsets or instances of that storage facility serving the purpose of strongboxes for the various fortresses. The data storage facility will be categorized as Infrastructure-EDB, EDB standing for enterprise database.

The other infrastructure category is the messaging backbone that we use for implementing our asynchronous drawbridges. I will categorize these systems as Infrastructure-ASB, ASB standing for asynchronous backend.
We now have eight categories of systems. For ease of reference, I will give them category codes. The eight categories, along with my assigned codes, are:

· Presentation-Worker (C-PF)
· Web Service-Worker (C-WSF)
· Service-Worker (C-SF)
· Treaty Management-Worker (C-TMF)
· Business Application-Worker (C-BAF)
· Legacy-Worker (C-LF)
· Infrastructure-DB (C-EDB)
· Infrastructure-AM (C-ASB)
These are common categories for a wide range of business systems, especially those following the consolidated DB approach. Those not following a consolidated DB approach would have a strongbox category for each of the fortress types, say, Presentation-SB. For the purposes of this analysis, I will assume these are the eight basic system types.

6.3. Requirements Analysis
From our categories analysis, we have discovered that every WholeSale system falls in one of eight categories. In the requirements analysis, we will come up with at least one requirements specification for each of these identified categories. Some categories can have multiple requirements specifications relating to throughput, availability, and so on.
For example, WholeSale has two business application fortresses: Shipping Management and Inventory Management. Based on our categories analysis, we expect both workers to be describable as business application worker systems. But these two system could have different requirements, say, for allowable downtime. Shipping Management could have an acceptable downtime of five minutes, whereas Inventory Management could have an acceptable downtime of several hours.
There are many possible approaches to creating a requirements specification. Here is the one I use in the SF-EES. You might want to open the SF-EES/Requirements worksheet to follow this discussion.

My requirements specification contains the following information, all of which I will describe in more detail shortly:

· A requirements specification code.
· A category code from one of the categories assigned in the categories analysis.
· A description of the internal workload.
· A number indicating the throughput requirements.
· Acceptable downtime.
· Scalability requirements.

· Other requirements.

The requirements specification code is a unique code that can be used to refer to this requirements specification later. I recommend that all requirements codes begin with the prefix “R-“, such as, R-BAF.
The category code is a reference back to the Categories worksheet, and specifies which category this requirement is describing. There is a 1:n relationship between categories and requirements. Each requirements specification applies to one and only one category, though there may be multiple requirements for a given category.

 I have designed my category codes to be parallel with my requirements codes, so they are easy to follow. The R-BAF is the requirement for category C-BAF. I am taking advantage of the fact that I have only one requirement for each category, although you may not be so lucky.
The internal workload is a general description of the standard unit of workload for which this requirements specification in concerned. For a business application worker system (C-BAF), the internal workload might be a database update transaction. For a presentation worker system (C-PF) the internal workload could be an HTTP request and associated HTML page delivery.
The throughput requirements describes how many units of internal workload the system will be expected to perform per minute. For a software fortress system specification, the throughput will be determined by these data points:
· The average number of drawbridge requests the fortress will receive per minute.

· The peak number of drawbridges requests the fortress will receive per minute.

· Whether those drawbridge requests are received synchronously or asynchronously.

· The number of internal units of work generated per drawbridge request.

The SAD shows us the number of drawbridge requests a given software fortress receives as an overall function of enterprise workflow. It also shows us whether those drawbridges carrying the requests are synchronous or asynchronous.
Let’s consider a business application fortress specification. We have two for WholeSale: Shipping-Management and Inventory-Management. The WholeSale SAD shows that for each browser based order, we will end up with one drawbridge request to each, and those requests will be made asynchronously.
Earlier I said that WholeSale was expecting a peak and average rate of browser based orders of 1000 and 100, respectively. A similar workload is expected for programmatic order requests (those going through the Customer-Programmatic-Gateway). The SAD is only shown for browser requests, but it would be similar for programmatic requests. Therefore we can add the two together, and get peak and average overall enterprise workload of 2000 and 200 respectively.
We also need to make a prediction about the number of internal units of workload (e.g. database update transactions) that will be generated per drawbridge message request. Let’s say this number is four.
Finally, we need to factor the synchronicity (or asynchronicity) of the drawbridge. If the drawbridge is asynchronous, then we will use the average workload. If the drawbridge is synchronous, we will use peak workload. The reason for this was discussed earlier in this paper, in the section on the Software Fortress Model. Asynchronous drawbridges provide workload averaging. Workload averaging means systems only need to be built big enough to handle average (rather than peak) workload requirements. Synchronous drawbridges do not provide workload averaging. Systems receiving their requests synchronous must be built to handle peak workload.

Using the Shipping-Management fortress as an example, its throughput requirements are as follows: 200 drawbridge requests per minute (average, not peak) X 4 internal requests/drawbridge request.
Thus both a Shipping-Management and an Inventory-Management worker (or any other C-BAF type system) need to process about 800 database update requests per minute. The SF-EES is set up to calculate these numbers automatically.
The Shipping-Management and Inventory-Management fortresses are similar in many ways. They receive a similar number of requests as a function of enterprise workload. They are similar in the synchronicity/asynchronicity of their drawbridges. They are similar in other areas of their requirements. They can therefore both be described by the single requirements specification shown as R-BAF in the SF-EES. Had one of them been radically different from the other, then I would have needed two requirements specification for the category C-BAF, one for each. Fortunately, for many enterprise architectures, fortresses of similar type have similar requirements. This simplifies the requirements analysis segment of the software fortress enterprise plan.
Determining the workload for infrastructure categories is a little different.
For the messaging asynchronous backend (category C-ASB), I will total all of the asynchronous drawbridge requests sent by any of the fortresses in the SAD. This is a matter of counting all of the half arrowheads. I get seven. These will be sent asynchronously, so I multiply this by the average number of enterprise requests per minute (200). The total of asynchronous messages the asynchronous backend needs to handle is therefore 1400 per minute.
Note that the asynchronous backend represents the shared message queues. Each fortress system will still maintain local message queues, for protection against network outages.

The enterprise database (category C-EDB) can be calculated by adding together all of the database activity in each of the fortresses, based on their requirements calculations just completed. Three of the fortresses can be identified as having significant database requirements. They are as follows:

	Fortress
	DB Activity
	Throughput

	Security
	read transactions
	16,000 / minute

	Shipping Management
	update transactions
	800 / minute

	Inventory Receivable
	update transactions
	800 / minute

This shows that the demands on the enterprise database will be under 20,000 transactions, mostly read-oriented. The fact that the transactions are read-oriented is significant, since read-oriented transactions are much less demanding that update-oriented transactions.
The next requirement to consider is acceptable downtime. This will be an important factor in overall systems cost for several of these systems.
Since all systems are “critical” to an organization, it is tempting to say that all have low acceptable thresholds of downtime. However, low thresholds of downtime are expensive. Consider a database. One for which 24 hours downtime is acceptable is about one tenth the cost as one for which only two minutes is acceptable. In order to achieve two minute downtime, you need redundant hardware, external disk drives, and high-end operating systems and databases, none of which are needed if you can live with 24 hour downtime. As a rule of thumb, downtime and cost are inversely related. The lower the downtime, the greater the cost.
I’ll go through each of the requirements specifications and describe my rationale for the downtime in each.

· R-PF - This is a requirements specification for a presentation fortress. When the presentation fortress is disabled, your customers cannot place orders and they lose confidence in your whole operation. Therefore I have assigned an acceptable downtime of five minutes.
· R-WSF - This is a requirements specification for a web service fortress. Requests to these fortresses come from programs being run by other vendors with whom you have a close relationship. I assume that if your system is disabled, their system will queue up the order and resubmit it later. You will lose neither business or goodwill. I have assigned an acceptable downtime of one hour.
· R-BAF - This is a requirements specification for a business application fortress. The fortress is accessed through asynchronous drawbridges which protect the rest of the organization from fortress outages, a topic I have already discussed. I have assigned an acceptable downtime of ten minutes.
· R-LF - This is a requirements specification for a legacy fortress. This is probably at the backend of the architecture and asynchronously accessed. I have assigned it acceptable downtime of one hour.
· R-TMF - This is a requirements specification for a treaty management fortress. Although this is accessed asynchronously (like the business application fortress), it is a major crossroad for the whole enterprise. I have assigned it acceptable downtime of five minutes, slightly less than the R-BAF.
· R-SF - This is a requirements specification for a service fortress. Service fortresses typically have the architectural misfortune of being accessed through synchronous drawbridges. Further, they are a central water hole for the enterprise where many other fortresses come to share common information. These two characteristics mean that they need to be disabled as short as possible. I have assigned it acceptable downtime of two minutes.
· R-ASB - This is a requirements specification for the asynchronous messaging system. This needs to be up and running for two reasons. First, most fortresses depend on this system to provide drawbridge support. Second, many fortresses depend on the messaging system to accept message even when the receiving fortress itself is not available to read those messages. I have assigned the messaging system an acceptable downtime of two minutes.
· R-EDB - This is a requirements specification for the enterprise database. This is where all of the enterprise data is stored. When this system goes down, everything goes down. I have assigned it acceptable downtime of thirty seconds.
The next requirement to consider is scalability. This refers to your anticipated future needs. Again, I’ll go through each of the requirement specifications, and give my reasons for assigning each.
· R-PF - Presentation fortress systems have the highest scalability demands of all. There are at least three reasons for this. First, we have no room for error. If the system can’t handle workload, we lose business. Second, presentation systems are accessed synchronously, so they must scale up to peak (as opposed to average) demands. Third, they get hit often. For every order that is actually placed, these systems may need to handle 20 or more HTTP requests.
· R-WSF - Web service fortress systems have much lower scalability requirements than their close cousins, the presentation fortress systems. There are three reasons for this. First, if they are down, we don’t lose business. Work just queues up on the sending side (as I discussed in the downtime requirements). Second, these systems get hit much less often than do the presentation systems. Third, although we have designed them for high throughput, the reality is that very little work will actually come through as programmatic requests, certainly compared to browser requests. Web Services today are all talk, little action. Overall, I rate their scalability requirements as low.
· R-BAF - Business application fortress systems have, somewhat surprisingly, low scalability requirements, for three reasons. First, these systems are effectively buffered by their asynchronous drawbridges. Second, they probably have a lot of unused capacity already, given that 800 transactions per minute is hardly a demanding workload, even for inexpensive little boxes! Third, these systems probably aren’t doing a lot of work anyway, given that much of what they do is make polite requests to the enterprise data services.
· R-LF - Legacy fortresses have low scalability requirements, for the same reason as the R-BAF systems.
· R-TMF - Treaty management fortress systems could take a scalability hit. On the negative side, these systems are difficult to build into a clustered architecture. On the positive side, they are asynchronously buffered. I will compromise by assigning low scalability concern, but throwing enough extra CPU power at these systems to buy myself plenty of time before I need to worry about them again. I will therefore rate my scalability concerns as low.
· R-SF - Service fortress systems have medium scalability requirements. These fortresses are often a bottleneck for much of the entire enterprise and are synchronously accessed. These two requirements imply high scalability requirements. However their workloads are primarily read transactions, implying low scalability demands. I’ll compromise between high and low.
· R-ASB - Asynchronous backend systems have medium scalability requirements. They are a bottleneck for the enterprise, but most of the work is received asynchronously.
· R-EDB - Enterprise database systems have medium scalability requirements. Again, a bottleneck for the organization, but, on the positive side, many of the requests are generated by asynchronous fortresses and many of the synchronous requests are read-only (light-weight, from the database perspective). We will build this system big enough so that there is plenty of unused capacity, and we shouldn’t have to worry about scalability for a while.
Finally, I have the catchall requirement of other requirements. This is where you document any other requirements the system might have that are not captured in the other fields. For example, my requirement code R-EDB for the category C-EDB (enterprise database), includes the requirement that the data stored must be highly resilient.

It is tempting to throw in all sorts of odd other requirements. Keep in mind that every requirement will constrict your options when creating configurations, your next step in this process. The more requirements a system has, the more it will cost.
6.4. Configurations Analysis
Configuration analysis is where the enterprise planning process starts to get interesting. This is where we start to build competing configurations that can meet the different requirements we have specified in the requirements analysis stage. The configuration analysis is where we can discover major cost savings opportunities for our enterprise architecture.
Configurations analysis can compare any number of technologies. It could compare hardware options, such as offerings from Dell and HP. My interest is comparing WebSphere to the Windows Server Platform, so that is how I will orient my configurations analysis.

Configurations analysis can be broken into two parts. The first part of the analysis is determining the candidate products for building configurations. The second part of the analysis is using these products to design configurations.

In the SF-EES, the Products worksheet shows all of the candidate technologies I will consider. This becomes my palate from which I can pick and choose to build comparison configurations. My configurations all use Dell equipment, since it is relatively easy for me to get the Dell product information and it supports both technologies. You could just as easily do your configuration analysis with some other hardware platform.

To start with, it is helpful to understand the WebSphere and Windows Server Platform equivalent technologies. This is much more difficult than it might seem, since IBM sells many different technologies that have tremendous overlap in their functionality, as does, to a lesser degree, Microsoft.
Consider the treaty management fortress technologies, for example. In the most recent IBM software catalog (Winter, 2003), the best treaty management technology appears to be WebSphere Business Integration, a product priced at $61,875 per capacity unit
. According to the catalog, WebSphere Business Integration “Integrates, links, and controls your processes and information flow between business systems and people.” By the time I am writing this (May, 2003) this offering may have already been discontinued and the pricing model of capacity units gone away.
Add to the technology confusion the fact that IBM (and, to a lesser extent, Microsoft) is constantly renaming, repricing, and discontinuing technologies, it becomes quite a challenge to keep up with the current recommended technologies.
The main technology equivalences are shown in the following table.
 Note that the units for pricing vary, depending on the product. Neither IBM nor Microsoft is consistent about whether the unit for the pricing is a box or a processor. These prices are current as of May 6, 2003, as best I can tell. However, by the time you read this, some of these prices may have changed. The SF-EES is set up so that you can easily update it as prices, products, and configurations change.

	Functionality
	Windows
	WebSphere

	Normal Availability OS
	Windows Server 2003 Standard Edition @ $800/box
	Red Hat WS Standard @ $299/box

	HTTP Infrastructure
	ASP.NET/IIS @ $0
	WebSphere Adv. Server V5 ND @$11,400/proc

	Component Infrastructure
	Enterprise Services (COM+) @ $0
	WebSphere Adv. Server V5 ND @11,400/proc

	Workflow Management
	BizTalk Server Enterprise Edition @ $24,999/proc
	WebSphere Interchange Server V4.1 @$123,000/proc

	Asynchronous Processing
	MSMQ @ $0
	WebSphere MQ V5 @ $5,000/processor

	Legacy Bridge
	Host Integration Server @ 2,499/proc
	CICS Transaction Gateway V5 @9,693/processor

	Database
	SQLServer Enterprise Edition @ $19,999/proc
	DB2 UDB V 8.1 Ent. Ed. for Linux @ $19,750/proc

As I write this, IBM is moving more toward Passport Advantage as the sole purchase vehicle for much of its software, including the WebSphere and DB2 products used in this analysis. This means that customers will no longer be able to purchase some of these software titles for list price; instead, customers will be required to purchase a support and maintenance contract, computed as a percentage of the per processor license fee, usually around 33%. So rather than paying $12,000 per processor for WebSphere Application Server, customers will pay $16,000 initially, and $4000 each year after the first. A similar situation will apply to common DB2 licenses as well. How long this model will last is impossible to say.
Once you have determined your candidate product/price list, you are ready to start building configurations. Remember that each configuration is designed to fulfill one of the requirements specification defined in the requirements analysis. For each candidate configuration (say, IBM and Microsoft), you will need to answer the following questions:
· Hardware: What is the appropriate hardware box to meet this configuration’s requirements? How many processors are on each of those hardware boxes? How many of those boxes will I need? What other hardware requirements do you have?
· Operating System: What is the appropriate operating system for this configuration? Do I need standard or enterprise versions?
· Other Products: What other products will I need to run on this box? Which products require standard and which require enterprise editions?
The hardware choices will be the most difficult. How do you know what size machine is required to process one thousand transactions per minute? In many cases, you will want to do some prototyping here. Microsoft maintains Technology Centers around the world. These are centers where you can work with Microsoft consultants to build prototypes for your applications and stress test hardware. This exercise will help you accurately predict the size and number of machines you will need for your specific workload and avoid unpleasant surprises at deployment time.
For each of my requirements, I have built two configurations, one using WebSphere and one using the Windows Server Platform. I’ll go through each requirement and compare the two configurations. Since these requirements are drawn directly from the software fortress analysis, you should find that these requirements and configurations correspond closely to those you will propose in your organization, assuming that you also use the SFM for architecting your enterprise and that you are trying to make choices between the same two platforms. The configurations are shown on the SF-EES Configurations worksheet. As a reminder, the eight defined categories are:
· Presentation Fortress Worker System

· Web Service Fortress Worker System

· Business Application Fortress Worker System

· Legacy Fortress Worker System

· Treaty Management Fortress Worker System

· Service Fortress Worker System

· Asynchronous Messaging Backend
· Enterprise Database

Now let’s go through these one by one.
6.4.1. Presentation Fortress Worker System

The presentation fortress worker system is category C-PF. These are the systems that accept HTTP requests from browsers, coordinate with backend business systems, and deliver HTML pages back again to browsers. The requirement specification (R-PF) lists these requirements:

1. Throughput of 20,000 HTTP requests per minute

2. Acceptable downtime less than five minutes

3. High scalability
From the WholeSale SAD, shown in Figure 5, we see also a requirement for asynchronous communications.
Both high scalability and low downtime are best achieved using a loosely coupled cluster configuration. A loosely coupled cluster configuration consists, conceptually, of three classes of machines. A router machine receives requests and sends them on to one of a number of identically configured worker machines. Worker machines actually process those requests. Any data that must be maintained across requests is stored in strongbox machines.
For presentation fortress worker systems, the router acts on IP requests through a process known as IP load balancing, shown in Figure 6. As used within a presentation fortress, an HTTP requests comes from the Internet. It is received by the IP router that chooses a worker machine. That worker machine receives the request through its software fortress guard that then passes the request onto the worker that will process the workload.
[image: image6.jpg]

Figure 6. IP Load Balancing in Presentation Fortresses

Since the presentation fortress needs to communicate with at least one other fortress asynchronously, it will need to be configured for asynchronous drawbridges. In order to protect the presentation fortress from outages in other areas, including the network, we use a local message queues on each of the worker machines. These local message queues are then connected to a remote shared message queue which can be read by allied machine. This configuration is shown in Figure 7.

[image: image7.jpg]Presentation Fortress Ally Fortress

Remote
M

Figure 7. Asynchronous Drawbridges Using High Availability Message Queues
Between the loosely coupled cluster configuration and the high availability asynchronous drawbridge configuration, the presentation fortress is protected against each of these failures:
· Presentation fortress worker machine: If a presentation fortress worker machine fails, the router no longer sends requests to that machine. New requests are sent to the remaining loosely coupled worker machines.
· Remote ally fortress: If the remote ally fortress fails, requests are kept in the asynchronous drawbridge until the ally comes back on-line.
· Network message queue failures: If the network hosting the message queue fails, messages are stored on the local message queue until the network comes back on-line.

The main remaining points of failure are these:

· The data strongbox, which is protected through enterprise data services.

· The router, which is protected by the routing algorithms (not covered here).

· Allied fortresses accessed through synchronous drawbridges. For WholeSale, this is limited to the Security fortress, which I will deal with in the Service Fortress section.

For my worker hardware platform, I have chosen a Dell 1750 two processor system.
For the Microsoft configurations, each worker machine will require the following software:

· Windows Server 2003 Web Edition. This is a special edition of Windows Sever 2003 designed for web presentation systems. It includes IP load balancing.
· ASP.NET/IIS. This provides the presentation fortress infrastructure for receiving HTTP requests and generating HTML pages. It is included with Windows Server 2003 Web Edition.

· MSMQ. This provides the local message queue. It is included with Windows Server 2003 Web Edition.

The total cost for the Microsoft presentation worker machine, including hardware, is $4,500.

For the IBM configuration, each worker machine will require the following software:
· Red Hat Linux WS Standard. Linux is the operating system that IBM is recommending, so I have used it wherever possible in my configurations.
· WebSphere Advanced Server Version 5 ND. This is the WebSphere product that provides the HTTP/HTML infrastructure and IP load balancing.

· WebSphere MQ V5. This provides the local message queue.

The total cost for the IBM presentation worker machine, including hardware, is $37,199.
I am assuming that 20,000 HTTP requests is within the capability of one Dell 1750 two processor system. (For a typical workload, this is reasonable, but you will need to verify this in a lab environment for your own presentation workload.) I have therefore configured the presentation fortress to have two such worker machines, one for handling workload and one for backup. The detailed Microsoft and IBM configurations for the presentation fortress worker machines are shown in the SF-EES Configuration worksheet as CF-PF/ms and CF-PF/ibm, respectively. The final cost for this configuration in the IBM and Microsoft technologies is:
Microsoft total cost:
2 X $4,500 = $9,000

IBM total cost:
2 X $37,199 = $74,398
6.4.2. Web Service Fortress Worker System

The major difference in the requirements for the presentation fortress and the web service fortress workers is that the former have more stringent requirements for acceptable downtime. The presentation requirement (R-PF) lists acceptable downtime as 5 minutes and the web service requirement (R-WSF) lists acceptable downtime as 60 minutes. A downtime of 60 minutes does not require the use of loosely coupled clusters. If a worker machine goes down we have time to find a backup.
For my web service worker machines I am using the same Dell 1750 two processor system as I did for my presentation fortress workers. The Microsoft and IBM software products are the same as for the presentation fortress.

I am assuming that 2,000 SOAP/HTTP requests is well within the capability of one Dell 1750 two processor system. (Again, you will need to verify this in the lab.) I have therefore configured the web service fortress to have only one such worker machines. The detailed Microsoft and IBM configurations for the web service fortress worker machines are shown in the SF-EES Configuration worksheet as CF-WSF/ms and C-WSF/ibm, respectively. The final cost for this configuration in the IBM and Microsoft technologies is:

Microsoft total cost:
1 X $4,500 = $4,500

IBM total cost:
1 X $37,199 = $37,199
6.4.3. Business Application Fortress Worker System

The business application fortress worker system is category C-BAF. These are the systems that run the transactional processing of the organization. The business logic is typically built with component technologies, either Enterprise Services, in Windows, or Enterprise JavaBeans (EJB) in WebSphere. The requirement specification (R-BAF) lists these requirements, each of which I have already discussed:
1. Throughput of 800 database update transactions per minute.

2. Acceptable downtime of less than 10 minutes.
3. Low scalability.

From the WholeSale SAD, shown in Figure 5, we see also a requirement for asynchronous communications.

A rate of 800 database update transactions per minute should be well within the capability of a single Dell 1750.
 To achieve desired downtime of less than ten minutes, I will use an asynchronously loosely coupled cluster of two machines, using the architecture shown in Figure 7 with a few twists. Think of the business application fortress as the ally fortress on the right hand side of Figure 7. The asynchronous drawbridge at its front allows it to appear to be up and running even when it is down and out.
To protect the business application fortresses from outages of their ally fortress, we will use local/remote queues, just as we did for the presentation fortresses. Again, this is shown in Figure 7, now considering the business application fortress to be the left hand side of Figure 7. Note that we are now using asynchronous drawbridges to minimize downtime and to protect us from failures in allied fortress on which we depend.
We are well within our ten minute downtime requirement. The business application is protected against each of the same failures as is a presentation fortress, for all of the same reasons.
The main remaining points of failure are these:

· The data strongbox, which is protected through enterprise data services.

· Any ally fortress accessed through synchronous drawbridges.
For the Microsoft configuration, each worker machine will require the following software:

· Windows Server 2003 Standard Edition.

· Enterprise services (COM+). This provides the component infrastructure and is included with Windows Server 2003 Standard Edition.

· MSMQ. This provides the local message queue and is included with Windows Server 2003 Standard Edition.

The total cost for the Microsoft worker machine, including hardware, is $4,900. The extra difference of $400 over the cost of a presentation fortress is because of the price difference between Windows Server 2003 Standard and Web Editions.

For the IBM configuration, each worker machine will require the following software:

· Red Hat Linux WS Standard Edition, IBM’s recommended operating system.
· WebSphere Application Server V5 ND, IBM’s recommended infrastructure for Enterprise Java Beans.

· WebSphere MQ V5, for the local message queue.

The total cost for the IBM worker machine, including hardware, is $37,199.

I am assuming that the 800 business application fortress transactions is well within the capability of one Dell 1750 two processor system, but again, you will need to verify this in the lab. I have therefore configured the presentation fortress to have two such worker machines, one for handling workload and one for backup. The detailed Microsoft and IBM configurations for the presentation fortress worker machines are shown in the SF-EES Configuration worksheet as CF-BAF/ms and CF-BAF/ibm, respectively. The final cost for this configuration in the IBM and Microsoft technologies is:

Microsoft total cost:
2 X $4,900 = $9,800

IBM total cost:
2 X $37,199 = $74,398
6.4.4. Legacy Fortress Worker System

The legacy fortress worker system is category C-LF. These are the systems that act as front-ends to existing legacy systems. The requirement specification (R-LF) lists these requirements:

4. Throughput of 400 bridge requests per minute.

5. Acceptable downtime less than sixty minutes.

6. Low scalability

From the WholeSale SAD, shown in Figure 5, we see also a requirement for asynchronous communications.

A workload of 400 bridge requests per minute is insultingly low for even low end hardware. Our downtime requirements are low enough so that clustering in any form is not needed, so we can do everything on a single box, the Dell 1750.
For the Microsoft configuration, the single worker machine will require the following software:

· Windows Server 2003 Standard Edition.
· Host Integration Services (HIS). This is Microsoft’s CICS integration product.

· MSMQ, which, once again, provides local messages queues and is included with the operating system.

The total cost for the single Microsoft worker machine, including hardware, is $9,898.

For the IBM configuration, the single worker machine will require the following software:

· Windows Server 2003 Standard Edition. I would have preferred to use Linux here, but IBM’s legacy integration technology does not run on Linux.

· CICS Transaction Gateway V5. This is IBM’s CICS integration technology.
· WebSphere MQ V5, the IBM counterpart to Microsoft’s MSMQ.

The total cost for the single IBM worker machine, including hardware, is $34,286.

The detailed Microsoft and IBM configurations for the legacy workers are shown in the SF-EES Configuration worksheet as CF-LF/ms and CF-LF/ibm, respectively. Since we only have one worker machine in this configuration, the final cost for the IBM and Microsoft technologies is:

Microsoft total cost:
1 X $9,898 = $9,898
IBM total cost:
1 X $34,286= $34,286
6.4.5. Treaty Management Fortress Worker System

The treaty management fortress worker system is category C-TMF. These are the systems that act as workflow conductors, managing various fortresses that must work together in a complex treaty relationship. The requirement specification (R-TMF) lists these requirements:
1. Throughput of 1600 workflow requests per minute

2. Acceptable downtime of less than five minutes.

3. Low scalability.

From the WholeSale SAD, shown in Figure 5, we see the ubiquitous asynchronous communications requirements.

Our acceptable downtime requirements are stringent, implying the use of a loosely coupled cluster. Unfortunately, treaty management fortress technologies, such as Microsoft’s BizTalk and IBM’s WebSphere Interchange Server, are not yet designed to leverage loosely coupled clusters. To achieve high availability of these systems today, we must use a tightly coupled cluster architecture.

In a tightly coupled cluster architecture, two or more machines work in tandem. One of these machines is in a primary mode and the other in a secondary mode. The primary machine is the one processing workload and the secondary machine is prepared to take over at a moment’s notice, should the primary machine fail. This gives us very high reliability.

Given the high cost of treaty management systems in general and the workload of 1600 workflow requests per minute, I have decided to use a bigger machine. I have thus configured this system with two higher-end Dell machines, Dell 2650s. One machine acts in the primary role and the other in the secondary role.

For the Microsoft configuration, the two worker machines will require the following software:

· Windows Server 2003 Enterprise Edition. This is the version of Windows Server 2003 that supports tightly coupled clusters.

· BizTalk Enterprise Edition.
 This is the treaty management system from Microsoft, and the version of it that supports tightly coupled clusters.

· MSMQ, the Microsoft message queue.

The total cost for the Microsoft worker machines, including hardware, is $129,956. BizTalk is the major cost contributor, costing $24,999 per processor on both the primary and secondary machine.
For the IBM configuration, the two worker machines will require the following software:

· Windows Server 2003 Enterprise Edition. As in the case for legacy fortress, I would have preferred to use Linux, but IBM’s treaty management software does not run on Linux.

· WebSphere Interchange Server V4.2. IBM has a number of products that could fall under the umbrella term treaty management software, but Interchange Server seems to be the one IBM is pushing the most. Should you decide to use another one of IBM’s products, you can update the SF-EES accordingly.

· WebSphere MQ V5, the usual asynchronous message queue.
The detailed Microsoft and IBM configurations for the treaty management workers are shown in the SF-EES Configuration worksheet as CF-TMF/ms and CF-TMF/ibm, respectively. The total cost for the IBM worker machines, including hardware, is $541,600. As in the Microsoft case, the treaty management software is the major contributor, weighing in at a hefty $123,000 per processor on both the primary and secondary machine. The more than $400,000 price differential between the IBM and Microsoft configurations is due to the much more expensive IBM software. In summary, the total cost for each configuration is:
Microsoft total cost:
2 X $64,798 = $129,596
IBM total cost:
2 X $270,800 = $541,600
6.4.6. Service Fortress Worker System

The service fortress worker system is category C-SF. These are the systems that provide backend specialized shared services for the enterprise. WholeSale has one such fortress, the Security fortress. Service fortresses typically use similar technologies to business application fortresses. The requirement specification (R-SF) lists these requirements:

· Throughput of 16,000 read transactions per minute.

· Acceptable downtime of two minutes.

· Medium scalability.

Although we are processing a lot of transactions, they are mostly read transactions and therefore not particularly difficult. This should be manageable on one Dell 1750, although, as always, you will need to do sanity checks on your own system mockups in the lab.
While the service fortress internals look a lot like a business application fortress internals, the drawbridges look different. Business application fortress drawbridges are typically asynchronous. As you can see from WholeSale’s SAD in Figure 5, the drawbridges to WholeSale’s service fortress (Security) are synchronous. Synchronous drawbridges seem to be the rule for the whole gamut of service fortress, including both security fortresses and loosely coupled transaction managers, two of the more common service fortresses.

Synchronous drawbridges are not, of course, built on top of asynchronous message queues. They must be built on top of some synchronous transport mechanism. If we want that synchronous transport to be usable between fortresses built on different technology bases (say, one on Windows and one on WebSphere), then the most likely transport is SOAP over HTTP. This is a similar technology to that used by the web service fortress that I discussed earlier, with two differences.
The first difference from the earlier usage of SOAP/HTTP is in the message delivery. In the web service fortress the SOAP/HTTP was delivered over the Internet. The SOAP/HTTP request sent to a service fortress originates from and is transported over systems that lie entirely within the enterprise.
Note that one of our requirements calls for an acceptable downtime of two minutes. This implies some type of clustering. The fact that communications are received over synchronous drawbridges based on SOAP/HTTP gives us an interesting option for loosely coupled cluster construction. We can use the same form of IP load balancing as we used to guarantee high availability for the presentation fortress. I showed this architecture in Figure 6. If you go back to Figure 6, replace the Internet by the Intranet, assume that the IP packet is now a SOAP/HTTP request rather than a browser request, and viola! You have a clustered service fortress!
It’s not much of a cluster if we only have one machine, so I will use two Dell 1750s, one for processing workload and one for backup. With this cluster in place, the only other single point of failure for the security fortress is the data strongbox, which is protected through enterprise data services. I am coming to enterprise data services very soon.
For the Microsoft configuration, each of the two clustered machines will require the following software:
· Windows Server 2003 Standard Edition. That’s it. Everything I need, including IP load balancing, is part of the operating system.

The total cost for the Microsoft worker machine, including hardware, is $4,900.
For the IBM configuration, each of the two clustered machines will require the following software:

· Red Hat Linux WS Standard, IBM’s recommended operating system.

· WebSphere Application Server V5 ND., the product that will include the IP load balancing and the necessary infrastructure for the service fortress.

The total cost for the IBM worker machine, including hardware, is $27,299.
The detailed Microsoft and IBM configurations for the service fortress worker are shown in the SF-EES Configuration worksheet as CF-SF/ms and CF-SF/ibm, respectively. The final cost for this configuration in the IBM and Microsoft technologies is:

Microsoft total cost:
2 X $4,900 = $9,800

IBM total cost:
2 X $27,199 = $54,398
6.4.7. Asynchronous Messaging Backend

The asynchronous messaging backend is the infrastructure for all of the asynchronous drawbridges in the enterprise. This is category C-ASB in the SF-EES. The requirements specification is R-ASB and lists these requirements:

· Workload of 1,400 messages per minute.

· Acceptable downtime of less than two minutes.

· Medium scalability requirements.

This seems within the capability of the Dell 1750, so this will be the hardware basis.
The low downtime requirement will require some type of a cluster. Since messages are not being delivered over HTTP (Internet or Intranet), an IP load balanced loosely coupled cluster (such as the one that protected the presentation fortress) is not an option. More bad news: messages are inserted into the message queue synchronously, even though, once inserted, they are delivered asynchronously. So asynchronously balanced loosely coupled clusters are also not an option. The only type of a cluster left is a tightly coupled cluster, the same type of cluster that I used to protect my treaty management fortress.
As I discussed in the treaty management fortress section, tightly coupled clusters require a primary machine for processing workload and a secondary machine for serving as a “hot” backup. This configuration will give us a downtime of much less than the two minutes dictated by the requirements specification.

For the Microsoft configuration, both the primary and secondary machines will require the following software:
· Windows Server 2003 Enterprise Edition, the version of Windows Server 2003 that supports tight clustering.

· MSMQ, the asynchronous engine, included with the operating system.

The total cost for each of the Microsoft worker machines, including hardware, is $7,400.

For the IBM configuration, both the primary and secondary machines will require the following software:

· Red Hat Enterprise Lunix AS Standard, the version of Linux that supports tight clustering.

· WebSphere MQ V5, the asynchronous engine.

The total cost for each of the IBM worker machines, including hardware, is $15,599.

The detailed Microsoft and IBM configurations for the asynchronous backend are shown in the SF-EES Configuration worksheet as CF-ASB/ms and CF-ASB/ibm, respectively . With two machines in the configuration (primary and secondary) the final cost for the IBM and Microsoft technologies is:

Microsoft total cost:
2 X $7,400 = $14,800
IBM total cost:
2 X $15,599 = $31,198
6.4.8. Enterprise Database

The enterprise database is the infrastructure for the various fortress strongboxes. This is category C-EDB. The requirements specification is R-EDB and lists these requirements:
· 18,400 transactions per minute.

· Downtime of less than 30 seconds.

· Medium scalability.

· High data resiliency.

Databases are very difficult to scale, so it is generally best to get a large machine from the beginning rather than plan on adding throughput later. For this reason I am using a high-end Dell machine, a Dell 6650 with 4 processors for my basic machine.

The stringent downtime requirements tell us we need a cluster. Databases do not do loosely coupled clusters, so we will use a tightly coupled cluster, the same type that was used to protect the treaty management fortress. There is one major difference now, however. The treaty management fortress was using the enterprise database to provide strongbox functionality. The enterprise database has no such luxury. It is the enterprise database.
My basic configuration for the enterprise database is shown in Figure 8. A SAN connects each of the fortresses to the enterprise database. The database consists of two identically configured machines, a primary machine to do the work and a secondary machine to provide backup. Each of these machines has a database instance for each of the fortresses. I have only shown two fortresses in the figure, however the WholeSale system, with seven fortresses, would have seven database instances running on both the primary and secondary machine. The primary and secondary machine share a single RAID protected external disk. Should either machine go down, the other can take over the database file management.
[image: image8.jpg]External
Shared
Disk

Figure 8. Configuration of Enterprise Database

The hardware costs for this configuration, using the Dell equipment, are as follows:
· Two Dell 6650 four processor systems (at $21,500) as the database machines in Figure 8.

· A Dell/EMC DS16B (at $15,000) as the SAN Interconnect linking fortresses and database machines in Figure 8.
· A Dell/EMC CX600 (at $75,000) as the external shared disk in Figure 8.

In addition to the hardware, the Microsoft configuration requires the following software:

· Windows Server 2003 Enterprise Edition, the operating system supporting tight clustering.
· SQLServer Enterprise Edition, the database version supporting tight clustering.

The licensing of SQLServer is based on a per processor model. However Microsoft does not require a license for the secondary machine if it is simply in “idle standby”. Thus we only need four SQLServer licenses, one for each of the processors of the primary 6650. The total Microsoft cost, including hardware, is $219,596.
In addition to the hardware, the IBM configuration requires the following software:

· Red Hat Linux Enterprise AS Standard, the cluster enabled Linux.

· DB2 UDB V 8.1 ESE, the cluster enabled IBM database product.

The licensing of DB2 is also based on a per processor model, but in a highly available cluster IBM requires that one of the four processors on the secondary machine also be licensed. The total IBM cost, including hardware, is $234,748.

The detailed Microsoft and IBM configurations for the enterprise database are shown in the SF-EES Configuration worksheet as CF-EDB/ms and CF-EDB/ibm, respectively. The final cost for the IBM and Microsoft technologies is:
Microsoft total cost:
1 X $219,596 = $219,596
IBM total cost:
1 X $234,748 = $234,748
6.5. Enterprise Analysis
Now that we have built each of our candidate configurations, we can start looking at the enterprise as a whole. We can cost-compare an all Microsoft solution, an all IBM solution, or mix and match whatever seems to fit our needs.

Doing the enterprise analysis is quite easy. Or, at least, it is easy now that we have done the rest of the analysis. The following table is taken from the SF-EES Enterprise worksheet. It shows each of the seven WholeSale fortresses and the two infrastructure elements. Each one is compared in the Microsoft and the IBM configuration.
The last column shows the price difference between the two. For example, the last column of the first row (the one comparing Customer Browser Gateway configurations) is 8.27. This tells us that the IBM configuration is 8.27 times more expensive than the equivalent Microsoft configuration. These numbers will automatically be updated if changes are made to configurations, prices, or product availability in previous worksheets.

	Fortress
	MS Config.
	Cost
	
	IBM Config.
	Cost
	Mult. Diff.

	
	
	
	
	
	
	

	Customer Browser Gateway
	CF-PF/ms
	$9,000
	
	CF-PF/ibm
	$74,398
	8.27

	Customer Programmatic Gateway
	CF-WSF/ms
	$4,500
	
	CF-WSF/ibm
	$37,199
	8.27

	Security
	CF-SF/ms
	$9,800
	
	CF-SF/ibm
	$54,398
	5.55

	Order Management
	CF-TMF/ms
	$129,596
	
	CF-TMF/ibm
	$541,600
	4.18

	Shipping Management
	CF-BAF/ms
	$9,800
	
	CF-BAF/ibm
	$74,398
	7.59

	Inventory Management
	CF-BAF/ms
	$9,800
	
	CF-BAF/ibm
	$74,398
	7.59

	Accounts Receivable
	CF-LF/ms
	$9,898
	
	CF-LF/ibm
	$34,286
	3.46

	Messaging
	CF-ASB/ms
	$14,800
	
	CF-ASB/ibm
	$31,198
	2.11

	Enterprise Data Services
	CF-EDB/ms
	$219,596
	
	CF-EDB/ibm
	$234,748
	1.07

	
	
	
	
	
	
	

	
	MS Total
	$416,790
	
	IBM Total
	$1,156,623
	

The final row compares the cost of the Microsoft architecture and the IBM architecture. This information is repeated at the top of the Enterprise Worksheet, which summarizes the enterprise analysis with the following critical information:
· Which architecture is the least expensive.

· How much less expensive it is.
The summary information, from the top of the worksheet, is as follows:

	Our Enterprise
	
	
	
	
	

	
	
	
	
	
	

	Summary
	
	
	
	
	

	Microsoft
	$416,790
	
	
	
	

	IBM
	$1,156,623
	
	
	
	

	
	
	
	
	
	

	Least Costly System:
	Microsoft
	
	
	
	

	Most Costly System:
	IBM
	
	
	
	

	Absolute Cost Differential
	$739,833
	
	
	
	

	Multiplicative Differential
	2.78
	
	
	
	

	
	
	
	
	
	

	IBM configuration is 2.78 times more expensive than Microsoft configuration
	

As you can see from the Enterprise worksheet, the SF-EES gives the following information, all of which is automatically calculated from previously entered information and any of which will change depending on data changes you make elsewhere in the spreadsheet:

· The total cost of creating WholeSale using Microsoft-only technologies will be $416,790.

· The total cost of creating WholeSale using IBM-only technologies will be $1,156,623.
· The least expensive architecture is built using the Microsoft technologies.

· The most expensive architecture is built using the IBM technologies.

· The IBM technologies will cost $739,833 more than the comparable Microsoft technologies.

· The IBM technologies are overall 2.78 times more expensive than the Microsoft technologies.

Keep in mind that the SF-EES doesn’t lie. It doesn’t care if you use Microsoft or IBM. It simply does the calculations based on the prices you give it and tells you the result.

7. Strengths and Weaknesses
7.1. Strengths of the Microsoft and IBM platforms
The Microsoft and IBM platforms each have specific strengths. This is why you are likely to use both in any large enterprise.

In my view, the Microsoft platform strengths are as follows:

· Good tools support. Although IBM is catching up in this area, most developers I know that are familiar with both Microsoft and IBM development tools believe that Microsoft is ahead in this area.
· Good presentation fortress support. Microsoft’s VisualStudio.NET has a much more intuitive model for programming presentation fortresses. Most interactive browser interfaces would be significantly less expensive to develop with VisualStudio.NET than with IBM’s comparable toolkit.

· Low cost. Microsoft’s Windows Server Platform technologies are across the board less expensive than the IBM counterparts. This means that a fortress built on Microsoft technologies will almost always be less expensive than one built on IBM technologies. The IBM “penalty” ranges from seven per cent (for an enterprise database) to more than eight hundred per cent (for a presentation fortress).
· Open language architecture. Microsoft bases its technologies on an open language architecture, giving you a large number of programming language options ranging from the highly traditional COBOL and Visual Basic to the ultra-modern C#.
In my view, the IBM platform strengths are as follows:

· Support for non-Windows platforms. No matter how much you like the Windows Server Platform, it is the Windows Server Platform. If you are trying to build systems that physically must run on Linux or AIX or mainframes (as opposed to, say, systems that can interact with system running on Linux or AIX or mainframes) then WebSphere is the way to go.
· Legacy databases. Many companies have huge investments in data stored in traditional databases, such as WebSphere’s DB2. There is rarely a compelling business case for porting a large enterprise database to a new vendor. Many such companies will elect to keep their databases where they are, even if they choose the Windows Server Platform for new development.

· Legacy fortresses. Most people I know who are familiar with both Microsoft and IBM legacy fortress technologies believe that IBM is technically ahead in this area. What Microsoft does, it does at a much lower cost, but IBM is functionally richer in the area of legacy integration possibilities. The rule of thumb here is try Microsoft first, and if you find yourself needing more advanced legacy integration functionality, then look at the IBM side.
· Support for Java. For those companies that are determined to use Java as the programming language, IBM has the best support.
As you can see, there is no one solution. The best approach is to methodically go through the software fortress enterprise planning process (SF-EPP). In doing so, pay particular attention to the requirements analysis. Do not allow yourself to be subjected to false requirements (see the next section for some of the most common pitfalls in this area). The SF-EPP is your best guide to finding the most cost effective solution for each specific fortress within your enterprise.
7.2. Cost Factors Favoring The Windows Server Platform

Although many people will be surprised by the large cost differential between the Windows Server Platform and WebSphere, it is likely that I have greatly underestimated how much more expensive a WebSphere solution will be. The reason for this is that there are a number of cost factors that I have not considered, all of which favor the Windows solution.

The first of these cost factors is throughput. Throughput on the Windows platform is typically higher than for the WebSphere platform. Most benchmarks show that Windows technology outperforms WebSphere on the same hardware platform by a factor of between three and nine times.
 This means that WebSphere will frequently need either more expensive machines than would Windows, a larger number of machines, or both. Any of these will dramatically increase your overall costs.

The second of these cost factors is tools. Window’s development tools are generally regarded as better than any of the comparable J2EE tools, resulting in increased development costs for J2EE systems. This is especially true on the presentation fortress. Most browser applications are far easier to create in VisualStudio.NET than in traditional J2EE systems. VisualStudio.NET uses a GUI facility for creating browser applications, similar to the use of Visual Basic for rich client interfaces. J2EE systems use a much more complex code-oriented approach known as Java Server Pages. I believe that the VisualStudio.NET approach will allow developers to build sophisticated, scalable, reliable, browser-independent applications in a fraction of the time that would be required in a traditional J2EE system.

My view on the benefits of the VisualStudio.NET approach to browser applications is echoed by the experience of 7-Eleven
. They used Electronic Data Systems (EDS) to build a vendor system that used extensive browser interfaces. After initially attempting to build this system with an unidentified J2EE vendor, EDS abandoned the approach in favor of VisualStudio.NET. Developers using the VisualStudio.NET GUI created sophisticated browser pages that required minimal code tweaking. According to Chandra Kamala Kantha, Solutions Architect, EDS, "We were able to easily override the base Web page generated by Web Forms [in VisualStudio.NET], which allowed us to create a custom report page that generated multi-page HTML reports with well exposed report events.”

Using the VisualStudio.NET GUI resulted in tremendous time savings. Again, according to Kantha, “This cut development time for creating reports from weeks to just a couple of hours and was a great success for us. It allowed us to overcome a huge limitation of J2EE."

EDS and 7-Eleven credited the use of VisualStudio.NET and .NET language tools with impressive productivity gains. According to Keith Morrow, Vice President, Information Systems, 7-Eleven, inc, “The thing about Visual Studio .NET and the .NET Framework that we’re the most pleased with is the fact that we saw our development cycle times improve drastically. For a project that previously would have taken nine weeks, we got down to just two weeks of coding and development time.”
The third of the Windows favoring cost factors is administration costs. There is a growing body of evidence that Windows is less expensive to administer than Linux/’WebSphere,
 resulting in higher ongoing costs for WebSphere.

The fourth of the cost factors is language support. The Windows support for industry standard programming languages, such as COBOL and Visual Basic, mean both lower training costs and larger pools of available talent for the WebSphere, which is limited to Java support.

7.3. Common Pitfalls In Choosing Technologies
As I have repeatedly said, both Windows and WebSphere have their strengths and there are many good reasons for choosing one platform over the other. There are also many bad reasons. Here are some of the more common traps people fall into when making platform choices.
7.3.1. Free Means Cheap
Many people assume that Linux is free. They further assume that, because Linux is free and WebSphere runs on Linux, that therefore a WebSphere solution must cost less than Windows Server Platform solution.

The briefest of glances at the SF-EES will dissuade you of this. For the WholeSale system, the SF-EES shows that every enterprise system built on WebSphere is more expensive than a comparable enterprise system built on the Windows platform. Most of them are much more expensive.
Consider, for example, a presentation fortress worker system. We can build a two machine cluster, giving both high reliability and performance, for $9,000 on the Windows platform, including hardware, operating systems, and all necessary supporting infrastructure. That same fortress on the WebSphere platform, at press-time prices, will cost $74,398, and this is on exactly the same hardware platform as the Windows solution.
Why is the WebSphere platform so much more expensive if Linux is free? There are two reasons for this.

The first reason for the cost differential is that Linux is not free. A supported version of Linux is cheaper than a similarly supported version of Windows, but it is not free. For example, the standard run-of-the-mill Linux is Red Hat Linux WS Standard, which, at press-time, costs $299 from Red Hat. The comparable Microsoft operating system Windows Server 2003 Standard Edition at $800. The high-end Linux is Red Hat Enterprise Linux AS Standard, at $1499. The comparable Microsoft operating system is Windows Server 2003 Enterprise Edition, at $3300.
The second and much more important reason for the cost differential is infrastructure. Windows Server 2003 includes much more than just an operating system. It includes an entire application server infrastructure. Comparing the cost of Windows Server 2003 to Linux is entirely missing the point. Windows Server 2003 is not in competition with Red Hat’s Linux. It is in competition with Red Hat’s Linux combined with IBM’s WebSphere.

Consider a business application fortress worker system. As documented in the SF-EES, the Microsoft version, including hardware, operating system, and infrastructure, costs $9,800. The WebSphere version costs $74,398, almost eight times the cost. In both cases, the hardware platform is exactly the same. The cost differential is due entirely to the extra infrastructure you need to buy from IBM to support the business logic. This additional infrastructure includes not only WebSphere itself ($45,600) but WebSphere MQ V5 ($23,856). The functionality of both of these products is included in the $800 cost of Windows Server Standard Edition. When you start to look at it this way, you realize that saving $500 per license by purchasing Red Hat Linux WS Standard instead of Windows Server Standard Edition is, perhaps, not all it’s cracked up to be.
7.3.2. Expensive Means Reliable
Some people assume that because WebSphere is more expensive, it is more reliable. There is no empirical evidence to support this. All industry standard benchmarks include tests for systems reliability. Windows has been extensively tested in these benchmarks and has proven itself to be a reliable platform.
Windows reliability is also favored by the nature of the Windows pricing model. For most technologies, IBM charges more per processor than does Microsoft. This makes it more expensive to build larger clusters of cheaper machines than to build smaller clusters of more expensive machines. The mathematics of reliability greatly favor increasing cluster size (the Windows approach) over increasing individual machine reliability
 (the IBM approach).
7.3.3. Portable Means Scalable
WebSphere runs on a number of different operating systems. The Windows Server Platform is limited to Windows. Many people assume that this means that one can get better scalability out of WebSphere, because one can always replace a small machine/operating system by a large one.

All available evidence suggests that the most powerful Windows hardware platforms will outperform the most powerful WebSphere hardware platforms. In the TPC-C
 benchmark, for example, the best WebSphere benchmark is 427,760 transactions per minute whereas the best Windows Server Platform benchmark is 707,102 transactions per minute
.
Not only did the Windows Server Platform have 65% higher throughput than the most powerful WebSphere system, it was more than one million dollars less expensive! Sixty-five percent more throughput for one million dollars less money.

And, I must point out, IBM specifically did not include in the benchmark its recommended middle-tier infrastructure EJB (it used Encina), its recommended database DB2 (it used Oracle), its recommended operating system Linux (it used AIX) or its recommended programming language Java (it used C). Had IBM followed the recommendations it makes to its own customers, the WebSphere benchmark would almost certainly have performed much, much worse.
The high performance of the Windows Server Platform is not a statistical abnormality. Of the top ten TPC-C benchmarks, six are held by Microsoft. Only one is held by WebSphere. And all six of the Web Server Platform benchmarks outperform the one WebSphere benchmark..
7.3.4. Standards Means Customer Power
Most customers are looking for the same thing: a vendor that can deliver the most cost effective way to build a system that meets customer needs. There are various strategies customers use to find such a vendor. One common strategy could be named the plausible threat.
Here is how the plausible threat supposedly works. A customer, say, Bob chooses the best possible vendor. But hanging over the relationship is the threat that if the vendor does not do well (either in terms of cost or functionality) then Bob can plausibly boot the vendor out and choose another vendor. Bob assumes that this plausible threat will scare the vendor into docility.

Bob will only choose a vendor for whom he believes the plausible threat is, well, plausible. If Bob does not believe he can plausibly abandon his chosen vendor, then Bob will not choose that vendor.

Bob represents a large enough group so that both Microsoft and IBM are actively recruiting him. In order to attract Bob, both Microsoft and IBM must convince him that the plausible threat does, in fact, exist, and that the vendor is, indeed, terrified that the customer might choose to exercise it.

Of course, neither Microsoft nor IBM has the slightest interest in allowing Bob to actually exercise the plausible threat. Thus we have a paradox. On the one hand, the vendor must convince Bob that the plausible threat exists. On the other hand, the vendor must make sure that the plausible threat can never be exercised. But the vendor can't let Bob know that the plausible threat can never be exercised, because if he knew that, he wouldn't consider the threat plausible anymore.

Both IBM and Microsoft are following a similar strategy to attract Bob (and his kin). Both are attempting to convince Bob that its platform is based on a standard for which other vendor implementations exist. Because other implementations exist, Bob reasons, he could switch vendors.
Both IBM and Microsoft are also following a similar strategy to make sure that Bob can never exercise the plausible threat. To do this, both IBM and Microsoft make sure that their product has so many mission critical enhancements over and above the standard on which it is supposedly based, that realistically, Bob could never possibly port his system to another vendor's implementation of that same standard.

So far, IBM is winning the battle for the Bobs of this world. This is because they have been more successful than Microsoft in convincing people that their product is based on a standard. Everybody "knows" that WebSphere is based on a standard. It is built on J2EE, after all!

Don't be fooled by IBM. IBM doesn’t care about J2EE, it cares about building a product to which Bob (and you) will become eternally entwined. For example,

· IBM has a Red Paper
 describing how to port an application from WebLogic (the primary "other" J2EE enterprise vendor) to WebSphere. The current version of this paper is 260 pages long!
· In a recent ComputerWorld article, Danny Sabbah, an IBM Vice-President, is quoted as saying. “You can do a simplistic implementation of J2EE 1.3, which we proved very early on, but our customers were asking for features around self-configuring, self-healing, self-optimization, real integrated security and failover, in combination with configuration and scalability.”
 How many ways can you spell, “entwined”?
· IBM’s Scott Hebner recently explained the standards philosophy this way: “In the on-demand applications world, J2EE alone is like having a heart without the lungs. Putting a Web services veneer on top of J2EE is just not sufficient."
 J2EE may be IBM's heart, but the WebSphere specific enhancements are IBM's lungs. Bob isn't going anyplace without the lungs.

Microsoft is no better in this space. Microsoft has also “standardized,” albeit retroactively and with less credibility than IBM. It has submitted large parts of its language infrastructure to various standards bodies and cooperated with other groups to build non-Microsoft implementations of those standards. Don't be fooled. Their standardization activity is as much marketing positioning as is IBM's use of J2EE.
The best way to achieve customer power is through customer knowledge: knowledge of the strengths and weakness of the platforms; knowledge of licensing models and how those licensing models will impact enterprise cost; and knowledge of how to achieve interoperability so that one can truly choose the best of breed technologies and make them work together.
The way to achieve this knowledge is by carefully analyzing the needs of your system, understanding which vendors can supply those needs, and then carefully calculating the cost at which they can do so. Your real threat to the vendors will not come from the vendors’ use of standards. Your real threat will come from your usage of the SF-EPP. Now that is a plausible threat!
8. Summary
In this paper, I have presented an approach to designing large enterprise systems. This approach is called the software fortress model (SFM). This model assumes a heterogeneous enterprise and gives a specific technical approach, called drawbridges, to linking together systems. The most important drawbridges are the asynchronous variety.

I have also discussed an enterprise planning process based on the software fortress model. This process is called the software fortress enterprise planning process (SF-EPP). This process consists of five steps:

· software fortress analysis

· categories analysis

· requirements analysis

· configurations analysis

· enterprise analysis

The final stage in this process, the enterprise analysis, is where you methodically compare the cost benefit of different technology solutions.

I have specifically compared IBM’s WebSphere to Microsoft’s Windows Server Platform. I have done this within the context of a software fortress enterprise plan for a mythical company’s architecture. Both platforms have strengths. The most important strength of the WebSphere platform is its support for multiple operating systems, especially Windows and Linux. The most important strength of the Windows Server Platform is its low cost, for many systems one eighth the cost of comparable WebSphere technologies.
More important, I have given you a methodology for making your own comparisons. I hope this will empower you to ask tough questions of your vendors. And I hope that it will enable you to make good technology choices that meet the very specific, individual requirements of your own enterprise systems.
And before I leave for good, may I suggest that you keep up with further developments in the world of software fortresses by getting your own free email subscription to the ObjectWatch Newsletter, the official publication of the software fortress movement. Just drop a note to sub@objectwatch.com, and we’ll do the rest.

- Roger Sessions
Austin, Texas

June 1, 2003

Appendix 1. Glossary
AIX - IBM’s proprietary UNIX, apparently being phased out in favor of Linux.
ally - A fortress that will work with another fortress to fulfill a treaty.
ASP.NET - Microsoft’s presentation fortress technology designed for delivering HTML pages.
asynchronous - An adjective describing a relationship between two units of work, say, A and B. If A is asynchronous with respect to B, then A and B are not linked in time, and neither is blocked until the other completes. In contrast to synchronous.
asynchronous backend - The messaging infrastructure that provides support for the organization’s asynchronous drawbridges.
asynchronous drawbridge - A drawbridge connecting two software fortresses asynchronously. In contrast to synchronous drawbridge.
BizTalk Server - Microsoft’s technology for treaty management fortresses.
business application fortress - A general category of software fortresses that run business logic, typically making extensive use of transactions.
C# - Microsoft’s most recent programming language, similar in many respects to Java.
categories analysis - The second of five phases of the software fortress enterprise planning process.
CICS - Customer Information Control System, an IBM product that is the granddaddy of all transaction processing monitors.
CICS Transaction Gateway - One of IBM’s legacy integration technologies.
cluster - A group of machines that are configured in such a way any one can process workload requests and so that if one fails, the remaining machine can continue uninterrupted. See tightly coupled cluster and loosely coupled cluster.
COBOL - One of the first successful business programming languages still used in many business applications.
configurations analysis - The fourth of five phases of the software fortress enterprise planning process.
COM+ - A term historically used by Microsoft to describe its middle-tier TPM-like infrastructure. This term replace Microsoft’s older term MTS (Microsoft Transaction Server) and has since been replaced by the term Enterprise component.
component - A software system that can respond to remote requests and defines the requests it accepts through an interface.
data strongbox - The conceptual repository used by the fortress workers to store fortress specific data.
database - A physical collection of data and the associated software systems used to access that data.
database instance - One of possibly several databases running on a given machine.
DB2 - IBM’s primary database product.
donor fortress - A description of a fortress that makes a request of another fortress. In contrast to recipient fortress.
downtime - The length of time it takes to bring back on-line a fortress that has suffered a catastrophic failure.
drawbridge - A conceptual description of a communications channel used to connect two fortresses. See asynchronous drawbridge and synchronous drawbridge.
EJB - See Enterprise JavaBeans.
Encina - Another transaction processing monitor system from IBM similar to CICS in functionality.
Enterprise component - Microsoft’s replacement term for COM+. This refers to a component that has been designed in such a way that it can participate in infrastructural capabilities such as automatic transaction boundary management and role-based security.
Enterprise JavaBeans - The J2EE subspecification that provides similar capabilities for J2EE as does Enterprise components for the Windows Server Platform.
envoy - The part of the fortress that prepares requests to be placed on drawbridges for allied fortresses.
firewall - A hardware or software system designed to form a protective barrier, typically between the Internet and an Enterprise system.
fortress - See software fortress.
guard - The part of the fortress that receives a request from a drawbridge, subjects it to extensive security analysis, and finally transforms the request into a format suitable for internal consumption by those residing in the inner sanctum of the fortress.
heterogeneous - An adjective describing two or more systems running on dissimilar platforms, such as one on the Windows Server Platform and one on WebSphere. In contrast to homogeneous.
HIS - See Host Integration Server.
homogeneous - An adjective describing two or more systems running on similar platforms, such as both on the Windows Server Platform. In contrast to heterogeneous.
Host Integration Server - Microsoft’s legacy integration technology.
HTML - HyperText Markup Language, the language of most documents on the Web.
HTTP - HyperText Transfer Protocol, a protocol used between web browsers and web servers.
IIS - Internet Information Server, Microsoft’s infrastructure for both presentation and web service fortresses.
infrastructure - A description of the technical milieu inside a fortress.
IP load balancing - A description of loosely coupled cluster routing mechanism in which the unit of routing is IP requests.
J2EE - Java 2 Platform Enterprise Edition, a collection of protocols defining the set of Java enterprise APIs.
Java - The programming language of choice within the WebSphere and other J2EE-influenced technologies.
Java Server Pages - The subspecification of J2EE that deals with presentation fortress HTML generation issues.
legacy fortress - A type of software fortress that acts as a front-end to a legacy system, often a mainframe system.
Linux - An open-source operating system favored by IBM.
loosely coupled cluster - A cluster of machines managed in such a way that, should a given machine go down, the workload in process by that machine may be lost, but future workload can be processed by remaining machines. In contrast to tightly coupled cluster.
message queue - A communications system in which messages are placed into and received from named pipes, and in which the transport of those messages is done asynchronously.
MSMQ - Microsoft’s message queue technology that is included as part of the Windows Server 2003 operating system.
object - A term used in object-oriented technology, usually to refer to a blob of data that can respond to certain behavioral requests.
OLAP - On-line Analytical Processing, generic description of a collection of tools that provide advanced analysis of data.
.NET platform - A discontinued umbrella term describing Microsoft’s enterprise technologies. The correct term is now Windows Server Platform.
.NET - A description of Microsoft’s language technologies. This is usually considered to be a subset of the Windows Server Platform
peak workload - The time of maximum system usage over a given period of time, often twenty-four hours.
presentation fortress - A type of software fortress that interacts with browsers.
primary machine - A reference to the machine in the tightly coupled cluster that is actually performing work. In contrast to secondary machine.
RAID - Acronym for Redundant Array of Inexpensive Disks. A technology that stores data redundantly so that data is not lost in the event of a disk failure.
recipient fortress - A description of a fortress that receives a request from another fortress. In contrast to donor fortress.
requirements analysis - The third of five phases of the software fortress enterprise planning process.
role-based security - An approach to reinforcing the walls of a business application fortress in which access to fortress components is denied to anybody outside the fortress. This leverages capabilities of Enterprise components (in the Microsoft platform) and EJB (in the WebSphere platform).
router - A hardware or software system that routes requests to one of a number of machines in a loosely coupled cluster.
SAD - See sequence ally diagram.
scalability - The ability to add throughput to a fortress while keeping cost per unit of work constant.
secondary machine - A reference to the machine in the tightly coupled cluster that is in standby mode, prepared to take over the workload in the event of a failure of the primary machine. In contrast to primary machine.
sequence ally diagram - A diagram that shows the sequences of messages passing between fortresses.
service fortress - A general type of software fortress that provides services for fortresses across the enterprise.
SF-EPP - See software fortress enterprise planning process.
SF-EES - See software fortress enterprise evaluation spreadsheet.
SFM - See software fortress model.
simple treaty - A treaty that can be handled through explicit relationships
SOAP - Simple Object Access Protocol, the method stringification protocol used to access web services. In the SFM, this is used for synchronous heterogeneous drawbridges.
software fortress - A collection of software systems, hardware, and people that work together in a trust relationship to fulfill some significant piece of functionality within an enterprise software architecture.

software fortress analysis - The first of five phases of the software fortress enterprise planning process.
software fortress enterprise planning process (SF-EPP) - The five step process for conducting an overall software fortress technology evaluation.
software fortress enterprise evaluation spreadsheet (SF-EES) - The spreadsheet tool that accompanies this white paper for use in conducting a software fortress enterprise evaluation.
software fortress model - A model that treats an enterprise architecture as a collection of software fortresses, each playing its own role and all working together through well defined treaty relationships.

SQL Server - Microsoft’s primary database product.
strongbox - See data strongbox.

synchronous - an adjective describing a relationship between two units of work, say, A and B. If A is synchronous with respect to B, then A and B are linked in time, and one is blocked until the other completes. In contrast to asynchronous.
synchronous drawbridge - A drawbridge connecting two software fortresses synchronously. In contrast to asynchronous drawbridge.
TPC-C - A benchmark designed to measure transactions flowing to a database. The TPC-C benchmark is owned by the Transaction Processing Council (www.tpc.org).
throughput - The number of units of work that are processed in a given unit of time (usually, one minute).
tightly coupled cluster - A cluster of machines managed in such a way that, should a given machine go down, the workload in process by that machine will be immediately taken over by another machine so that work in process is not lost. In contrast to loosely coupled cluster.
TPM - Transaction per minute, a common measure of throughput for a business application fortress.
transaction - A collection of work that is processed or not processed en masse.
treaty - A defined relationship between two or more fortresses. See also simple treaty and complex treaty.

treaty management fortress - A software fortress type that acts as a treaty coordinator.
UML - Universal Modeling Language, a common technique for documenting object-oriented systems.
Visual Basic - A popular programming language in the Microsoft space.
walls - The part of the fortress that prevents foreign requests from entering into the fortress except through a drawbridge.
web service fortress - A software fortress type that acts as a security no-man’s land for programmatic requests coming into the enterprise over the Internet.
WebSphere - IBM’s umbrella term for most of its enterprise technologies.
WebSphere Application Server V5 ND - IBM’s product that provides infrastructure support for many of the fortress types.
WebSphere Interchange Server - IBM’s workflow management product, used in the treaty management fortress.
WebSphere MQ - IBM’s message queue technology.
WebSphere MQ Integrator - IBM’s legacy front-end technology.
Windows Server 2003 Enterprise Edition - Microsoft’s high-end operating system, with support for tightly coupled clusters.
Windows Server 2003 Standard Edition - Microsoft’s mid-end operating system, without support for tightly coupled clusters.
Windows Server Platform - The umbrella term describing Microsoft’s enterprise technologies.
worker system - A generic term describing the systems within a fortress that are responsible for processing workload.
workload averaging - A process in which some of the workload during peak system usage is deferred until periods of lower system utilization.
Appendix 2. SF-EES User’s Guide
The software fortress enterprise evaluation spreadsheet (SF-EES) is designed to be used in conjunction with this white paper. The SF-EES will guide you in going through the SF-EPP in your organization and in simplifying the resulting product comparisons. It is pre-populated with data from the WholeSale analysis but is designed to be easy to modify with your own information and to keep up to date as product information evolves.

This is the User’s Guide to the SF-EES spreadsheet. It will explain how to use the SF-EES for your own ongoing enterprise analysis. This User’s Guide assume that you have already read through this white paper and are familiar with the concepts and terms of the software fortress model (SFM) and the five phases of the software fortress enterprise planning process (SF-EPP). It also assumes that you are generally familiar with Excel.
Finding The Latest Version of the SF-EES
The first thing you should do is make sure that you are using the latest version of the spreadsheet. The version number on the spreadsheet matches the version number of this document, listed on the title page. To get the most recent version of both, go to ObjectWatch web site, www.objectwatch.com
Touring The Worksheets

The SF-EES consists of eight worksheets. Their purposes are as follows:
· Title - Gives the title of the spreadsheet and the version number.

· TableOfContents - Describes each worksheet and its purpose (much like what you are reading now!)

· Products - Lists the products used in the various configurations

· Categories - Lists the categories identified in the categories analysis.

· Requirements - Lists the requirements identified in the requirements analysis.

· Configurations - Lists the configuration alternatives identified in the configurations analysis, along with the product choices in each. In this worksheet, you construct hypothetical builds of your Microsoft and IBM configurations.
· ConfigSummary - Gives a side by side comparison of each of the configuration choices, showing the exact cost differential of choices between Microsoft and IBM technologies on a system by system basis.
· Enterprise - Compares the cost to the enterprise of making different configuration choices. This worksheet allows you to plug in Microsoft and IBM technologies into each of your fortresses, allowing you to model the overall impact to your overall enterprise cost of a total Microsoft solution, a total IBM solution, or any kind of mixed solution.
The rest of this User’s Guide will explain how to modify the SF-EES worksheets to model your enterprise systems.
Title Worksheet

There is nothing on this worksheet that you will need to modify.
TableOfContents Worksheet

There is nothing on this worksheet that you will need to modify.
Products Worksheet
The products worksheet lists every product (both hardware and software) that you may use in one of your configurations. I have created three sections, one for Dell products, one for Microsoft products, and one for IBM products. You can change this.

Here is part of the worksheet:
	
	Microsoft Prices
	
	
	

	Prod Code
	Functionality
	Product
	Price
	Per

	P-M001
	web front-end OS
	Windows Server 2003 Web Ed.
	$400
	box

	P-M002
	normal availability OS
	Windows Server 2003 Std Ed.
	$800
	box

	P-M003
	high availability OS
	Windows Server 2003 Ent. Ed.
	$3,300
	box

	P-M004
	component infrastructure
	Enterprise Services
	$0
	box

Each row, excluding headings, represents one potential product. You can list products that you do not end up using, but you cannot use a product later in a configuration that is not listed on this worksheet. Therefore it is better to err on the side on including products.
The columns have the following meanings:

· Prod Code - A unique number that that identifies a product in the SF-EES.
· Functionality - A short description of the purpose of the product.

· Product - The official name of the product.

· Price - Your cost of the product (if any).

· Per - The unit of costing for the product, usually either per box or per processor.
You will need to modify this worksheet for any of these reasons:

· You have negotiated special pricing with either Microsoft and/or IBM.

· You want to use products that are not already listed in the SF-EES, possibly from some other vendor.
· Either Microsoft and/or IBM has released new products that are better suited for what you want to do.

Here are specific directions for changes you will need to make to this worksheet.
Changing product information
The most likely product changes would be to either price (fourth column) or unit pricing (fifth column) . You can update either of these columns by changing the information in the appropriate column for that product.
Adding a product for use in a configuration
If you want to use a product in a configuration that I have not listed, you will need to add it to the Products worksheet. To do this,

1. Insert a new row at the product location.

2. Assign a unique product code. Make sure this number is unique, because it will be used later to look up product information.
3. Fill in the product information (including the unique product code) following an existing row as a guide.
Categories Worksheet
The Categories worksheet lists each of the categories identified in the categories analysis. These categories have been discussed in this white paper. The categories from the WholeSale analysis are these:
	Category Code
	Category Name

	C-PF
	Presentation Fortress Worker

	C-WSF
	Web Service Fortress Worker

	C-BAF
	Business Application Fortress

	C-LF
	Legacy Fortress

	C-TMF
	Treaty Management Fortress

	C-SF
	Service Fortress

	C-ASB
	Asynchronous Backend

	C-EDB
	Enterprise Database

Each line represents one category. The line starting with C-PF, for example, is the category I identified as a presentation fortress worker system. The columns have the following meanings:

Category Code - A unique category code to identify categories in the SF-EES.

Category Name - A description of the category.
You will need to update the Categories worksheet if you identify, in your categories analysis, categories that I have not already defined. Since my categories are fairly generic, you should not need to make many changes here. If you do need to add a categories code,

1. Insert a new row at the appropriate category location, or use the next free row.

2. Assign a unique category code. Be sure this code is unique. It will be used later to look up information on the category.
3. Fill in the category information (including the unique category code) following an existing row as a guide.

Requirements Worksheet
The requirements worksheet lists all of the requirements identified in the requirements analysis. Each requirements specification corresponds to one row on this worksheet.

The requirements worksheet is split into two sections. The first section contains information on the expected number of enterprise requests per minute, both average and peak. This section is as follows:
	Average Enterprise Requests Per Minute:
	200

	Peak Enterprise Requests Per Minute:
	2,000

An enterprise request refers to whatever is coming into the enterprise that is driving the system. For WholeSale, an enterprise request corresponds to an outside order being placed, either through a browser or programmatically, over the Internet. You can change either of the numbers in the first section to reflect your own throughput expectations.

The second section of the Requirements worksheet contains the actual requirement specifications, each line (except the headers) representing one requirement specification. This section is too wide to fit on this page, so I have split it into two halves. The left half of this section is as follows:
	Req Code
	Category Code
	Messages Per Enterprise Request
	Internal Workload
	S(ync) or A(sync)
	Internal Units of Work Per Message
	Workload Per Minute

	
	
	
	
	
	
	

	R-PF
	C-PF
	0.50
	HTTP requests
	s
	20
	20,000

	R-WSF
	C-WSF
	0.50
	SOAP/HTTP
	s
	2
	2,000

	R-BAF
	C-BAF
	1.00
	update transactions
	a
	4
	800

	R-LF
	C-LF
	1.00
	bridge requests
	a
	2
	400

	R-TMF
	C-TMF
	4.00
	workflow requests
	a
	2
	1,600

	R-SF
	C-SF
	2.00
	read transactions
	s
	4
	16,000

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	R-ASB
	C-ASB
	na
	messages
	na
	na
	1,400

	R-EDB
	C-EDB
	na
	DB transaction
	na
	na
	18,400

The second half of the worksheet (the half that didn’t fit on this page), is as follows, with the Req Code repeated, so that you can line up the rows:

	Req Code
	Acceptable Downtime
	Scalability Requirements
	Other Requirements

	
	
	
	

	R-PF
	5 min
	high
	

	R-WSF
	60 min
	low
	

	R-BAF
	10 min
	low
	

	R-LF
	60 min
	low
	

	R-TMF
	5 min
	low
	

	R-SF
	2 min
	medium
	

	
	
	
	

	
	
	
	

	R-ASB
	2 min
	medium
	

	R-EDB
	30 seconds
	medium
	High data resiliency

The columns in this part of the worksheet have the following meanings:

· Req Code - This is a unique code that refers to this requirement specification

· Category Code - This is the Category Code that was assigned in the Categories worksheet. The third row (with Req Code R-PF) has category code C-PF, meaning it is a requirement specification for the category whose code is C-PF (which happens to be a presentation fortress worker system, as you can see from the Categories worksheet.
· Messages Per Enterprise Request - This number refers to the number of requests this fortress will receive for every enterprise request. This number can be determined from the SAD, discussed earlier in the white paper.
· Internal Workload - This gives a general description of the internal workload for the fortress.

· S(ync) or A(sync) - This tells whether the requests to this fortress are synchronous or asynchronous. If synchronous, workload will be calculated based on peak workload, and if asynchronous, workload will be calculated based on average workload. The reasons for this are discussed earlier in the white paper.
· Internal Units of Work Per Message - This is the number of units of work (as described in Internal Workload) that will be processed for every message received by the fortress. For example, a request to process an order may result in five internal database update transactions.

· Workload per Minute - This is the number of units of work this fortress will need to process per minute. This number is calculated. It is calculated differently for fortresses than for infrastructural elements. For fortresses, this number is based on previous information entered for this requirement specification. For the enterprise database, this number is the addition of the workloads of the fortresses with database intensive workloads. For the messaging infrastructure, it is calculated by adding together the asynchronous messages in the SAD and multiply by the average number of enterprise requests. You may come up with your own heuristics for determining workload per minute. Don’t worry too much about getting this number perfect. Just try to get something that is reasonably accurate.
· Acceptable Downtime - This is the amount of time your organization is willing to live with having this fortress or infrastructure element as a whole unavailable. This does not mean the amount of time that any individual machine is unavailable, since we frequently use cluster arrangements and other technological approaches to ensure that the fortress continues working (or, at least, appears to be working) even when an individual machine in the fortress is down.

· Scalability Requirements - This is a place to note your concerns about future scalability. I have discussed this previously in this white paper.
· Other Requirements - This is where we document any other requirements, also discussed previously in this white paper.

You will need to update this worksheet if you either need to modify one of the pre-built SF-EES requirements or if you need to add a new requirement.
Most columns are filled in, but one (column G) is calculated. Column G is the predicted throughput number for a given requirements specification, and, for the standard software fortress types, it is calculated based on the numbers in the other columns. If you are adding or modifying a requirement, column G will require special attention.
To modify a requirement, change any of the data except column G.
To add a new requirement specification, do not simply insert another row. Doing so will not copy over the generated G column. Instead, do the following:
1) Copy an entire row of an existing requirements specification.

2) Insert that copy into an appropriate place in the worksheet.

3) Modify that copy as appropriate, letting column G recalculate itself (as it wants to!).
4) Check out the calculations in the infrastructure areas, and see if your new requirement needs to be incorporated.

What can go wrong?
If column G in one of your fortress rows is not recalculating, then you have trashed the formula in column G. Copy if from one of the working fortress rows and paste it in the offending cell.
If column G in the database infrastructure rows is not incorporating data from a newly added row, then you need to look at the formula in the database’s column G and modify it. The formula is “=G13+G15+G16”, since row 13, 15, and 16 refer to requirements specification that do database updates. You should add a “+Gx” where x is your new row, so that your newly added requirement is incorporated. Alternatively, you may decide that this formula is more trouble than it is worth, in which case you can hardcode a number based on an eyeball analysis of the various requirements specification.
If column G in the asynchronous messaging infrastructure rows is not incorporating data from a newly added row, then you need to look at the formula in the messaging’s column G and modify it. The formula is “=(C15+C14+C13+C12+C11)*D4”, since row 15, 14, 13, 12, and 11 all refer to requirements specification that receive asynchronous requests and column C refers to the number of requests they will receive for every enterprise request. D4 is the average number of enterprise requests expected per minute.

If you add a new requirement specification that receives requests asynchronously, you should add a “+Cx” where x is your new row, so that your newly added requirement is incorporated. Alternatively, you may decide that this formula is more trouble than it is worth, in which case you can hardcode a number based on an eyeball analysis of the various requirements specification.
Configurations Worksheet
The Configurations worksheet documents various possible product configurations identified in the configurations analysis. Each configuration is a section in the worksheet. Each section consists of a header region and a series of line items. This worksheet is where we do hypothetical builds of different configurations, allowing us to predict the impact of product choices on enterprise cost.
In the SF-EES Configurations worksheet, I have a Microsoft and an IBM configuration for each requirement. Here, for example, is my Microsoft build of a configuration to satisfy requirement R-PF (the requirements specification for my presentation fortress worker system):
	Config. Code
	Req. Code
	Total Cost
	Notes
	
	
	

	CF-PF/ms
	R-PF
	$9,000
	MS Presentation Fortress
	

	
	
	
	
	
	
	

	Item #
	Functionality
	Product
	Price
	Unit
	Total Units
	Extended Price

	P-D001
	small hardware box
	Dell 1750/2 Proc
	$4,100
	box
	2
	$8,200

	P-M001
	web front-end OS
	Windows Server 2003 Web Ed.
	$400
	box
	2
	$800

	P-M005
	HTTP infrastructure
	ASP.NET/IIS
	$0
	box
	2
	$0

	P-M008
	message queue
	MSMQ
	$0
	box
	2
	$0

	
	
	
	
	
	
	

	
	
	
	
	
	Total
	$9,000

Although it looks like you must fill in a great deal of information to create a configuration, most of the fields are calculated based on work you have already done. The only information you need to enter is the following:

· The Configuration Code (CF-PF/ms, above).
· The Requirements Code (R-PF, above).

· Any notes (MS Presentation Fortress, above).

· The product code for each line item (e.g. P-D001, above)

· The number of units of each product you need to meet the requirements (e.g., 2, for P-D001).
Everything else in this section is either looked up (e.g. the name of the product) or calculated (e.g. the extended price). Any changes you make to a configuration will immediately change the calculated total cost and the overall enterprise analysis.
You should not change any items on this worksheet other than those listed above. Any changes to the product information (e.g. price) must be made in the Products worksheet, not in this worksheet. This ensures that those changes are reflected in every configuration in which they appear.

I place different configurations of the same requirements specification together. This simplifies side by side comparisons. The IBM configuration that corresponds to the requirements specification R-PF and is therefore comparable to the Microsoft configuration shown above, is this:

	Config. Code
	Req. Code
	Total Cost
	Notes
	
	
	

	CF-PF/ibm
	R-PF
	$74,398
	IBM Presentation Fortress
	

	
	
	
	
	
	
	

	Prod Code
	Functionality
	Product
	Price
	Unit
	Total Units
	Extended Price

	P-D001
	small hardware box
	Dell 1750/2 Proc
	$4,100
	box
	2
	$8,200

	P-R002
	normal availability OS
	Red Hat Linux WS Standard
	$299
	box
	2
	$598

	P-I002
	HTTP infrastructure
	WebSphere Adv. Server V5 ND
	$11,400
	proc
	4
	$45,600

	P-I004
	message queue
	WebSphere MQ
	$5,000
	proc
	4
	$20,000

	
	
	
	
	
	
	

	
	
	
	
	
	Total
	$74,398

You will probably need to make modifications to this worksheet to reflect constraints in your enterprise or to reflect changes imposed on you by IBM and/or Microsoft. Here are some of the most likely changes you will need to make, with directions for each.
Changing the number of products used in a configuration
As you do your lab prototypes, you may find that you need more products in a given configuration than I have allowed. For example, you may find that your presentation fortress configuration requires three clustered machines rather than the two I have configured. To do this, find the appropriate configuration and update the F (total units) column for the relevant product. Don’t forget that changes in the number of hardware units often require changes in the number of software licenses and that some of these licenses are based on processors and some on boxes.
Changing a product used in a configuration
If you aren’t happy with one of the products I have used in a configuration, you can change it. First, make sure that your new product is listed in the Products worksheet. I discussed adding a new product to that worksheet earlier. To change a product used, find the row describing the product you want to change. Replace the old product code with your new product code. Change the number of units, if necessary. The remaining columns will all automatically update themselves and the cost of the new product will automatically be used to update the rest of the enterprise analysis.
Adding a product to a configuration
You can add a product to a configuration. Make sure the product is entered in the Products worksheet. In the Configurations worksheet, find the appropriate configuration. DO NOT INSERT A NEW ROW. Inserting a new row will not copy over the necessary cell formulas. Instead, follow these steps:

1. Copy an existing row.

2. Insert the copied row into an appropriate place in the configuration.

3. In the copied row, change the product code to the new product and the number of units as appropriate.

This update will then be used in the rest of the enterprise analysis.
Removing a product from a configuration
To permanently remove a product from a configuration, delete the row from the configuration. To temporarily remove a product, change the number of units for that product to 0. Either change will be used to update the enterprise analysis.
Creating a new configuration
I have included a configuration template at the end of the Configurations worksheet complete with dummy products. It looks like this:

	Configuration Template
	
	
	
	
	

	Config. Code
	Req. Code
	Total Cost
	Notes
	
	
	

	CF-test
	R-001
	$160
	This is a configuration template
	

	
	
	
	
	
	
	

	Prod Code
	Functionality
	Product
	Price
	Unit
	Total Units
	Extended Price

	P-test
	test functionality
	test product
	$20
	testbox
	1
	$20

	P-test
	test functionality
	test product
	$20
	testbox
	1
	$20

	P-test
	test functionality
	test product
	$20
	testbox
	1
	$20

	
	
	
	
	
	
	

	
	
	
	
	
	Total
	$160

To add a new configuration, copy this whole section and insert the copied rows to form the basis for your new configuration. Change the Config. Code from CF-test to your new unique configuration ID. Update the product codes (column A) from P-test to product codes that you have on your Products worksheet. Change the unit numbers (column F) from 1 to the number of units of each product you need. Do not change any columns other than these. Delete unused product rows from the new configuration.
If your new configuration is similar to an existing configuration, you can alternatively copy that configuration instead of the template to use as the basis for your new configuration. Follow the remaining steps in the previous paragraph.

What can go wrong?

If you see “#N/A” in any of the column then you have entered a product code that does not have a corresponding entry in the Products worksheet. Either the product code in the configuration or the product code in the Products worksheet (or both!) have been entered incorrectly.

If you enter or change a product code and don’t get an appropriate automatic entry update in any of columns B, C, D, E, or G, then you have trashed the formula in the offending cell. Copy a working cell from the same column and then paste that into the non-working cell. BE SURE TO USE THE SAME COLUMN. In other words, If B156 is not working, you can copy B155 (or any of the working Bs) and paste it into B156. You cannot fix B156 by copying C155 and pasting it into B156. Similarly, to fix C156, copy C155 (or any of the working Cs) and paste it into C156.
ConfigSummary Worksheet

The Configurations worksheet (just discussed) contains every detail on every configuration. It can be hard to use this to get an overview of the price differentials in alternative configurations. The ConfigSummary worksheet can give you this quick overview. Here, for example, is a segment of this worksheet giving you a bird’s-eye view of the price differential between Microsoft and IBM on both the presentation fortress worker system and the web service fortress worker system:

	Config Code
	Description
	Cost

	CF-PF/ms
	MS Presentation Fortress
	$9,000

	CF-PF/ibm
	IBM Presentation Fortress
	$74,398

	
	
	

	CF-WSF/ms
	MS Web Service Fortress
	$4,500

	CF-WSF/ibm
	IBM Web Service Fortress
	$37,199

The information shown in this worksheet is all calculated, with the exception of the Configuration Codes. The prices shown are based on product information you have entered in the Products worksheet and configurations of those products in the Configurations worksheet.

If you have added a new configuration to the Configurations worksheet, you may want to add that same configuration to the ConfigSummary worksheet. To do this, copy an existing ConfigSummary row, insert the copied row, and change the configuration ID of the copied row. The remaining rows will auto-update.

What can go wrong?

If you see “#N/A” in any of the columns, the you have entered a configuration code that does not have a corresponding entry in the Configurations worksheet. Either the configuration code in column A or the configuration code in the Configurations worksheet (or both!) have been entered incorrectly.

If you enter or change a configuration code and don’t get an appropriate automatic entry update in any of columns B or C then you have trashed the formula in the offending cell. Copy a working cell from the same column and then paste that into the non-working cell.

Enterprise Worksheet

The Enterprise worksheet is where you analyze the impact on your organization cost of making different configurations choices. In previous worksheets, you have created all of your alternative configurations. Now is where you will choose which you will actually use.
This worksheet is in two sections. The first is an enterprise summary. The second is a fortress by fortress comparison. You will make most of your changes to the second section. The first section will automatically update itself to reflect those changes.

In the second section, you will list every fortress and infrastructure system you have identified for your organization. Here is my version for the WholeSale system:

	Fortress
	MS Config.
	Cost
	
	IBM Config.
	Cost
	Mult. Diff.

	
	
	
	
	
	
	

	Customer Browser Gateway
	CF-PF/ms
	$9,000
	
	CF-PF/ibm
	$74,398
	8.27

	Customer Programmatic Gateway
	CF-WSF/ms
	$4,500
	
	CF-WSF/ibm
	$37,199
	8.27

	Security
	CF-SF/ms
	$9,800
	
	CF-SF/ibm
	$54,398
	5.55

	Order Management
	CF-TMF/ms
	$129,596
	
	CF-TMF/ibm
	$541,600
	4.18

	Shipping Management
	CF-BAF/ms
	$9,800
	
	CF-BAF/ibm
	$74,398
	7.59

	Inventory Management
	CF-BAF/ms
	$9,800
	
	CF-BAF/ibm
	$74,398
	7.59

	Accounts Receivable
	CF-LF/ms
	$9,898
	
	CF-LF/ibm
	$34,286
	3.46

	Messaging
	CF-ASB/ms
	$14,800
	
	CF-ASB/ibm
	$31,198
	2.11

	Enterprise Data Services
	CF-EDB/ms
	$219,596
	
	CF-EDB/ibm
	$234,748
	1.07

	
	
	
	
	
	
	

	
	MS Total
	$416,790
	
	IBM Total
	$1,156,623
	

The columns have the following meanings:
· Fortress - The name of the fortress or infrastructure system. You will enter this.

· MS Config - The configuration code of the Microsoft configuration of this fortress/infrastructure system. You enter this.

· Cost - This is the cost of the Microsoft configuration. This is calculated from the Configurations worksheet.

· IBM Config - The configuration code of the IBM configuration of this fortress/infrastructure system. You enter this.

· Cost - This is the cost of the IBM configuration. This is calculated from the Configurations worksheet.

· Mult Diff. - This is the cost differential between the two configurations. This is calculated. A value of 2.5 would indicate that the more expensive of the two configurations is 2.5 times as expensive as the lesser expensive of the two configurations.
The summary at the top of the worksheet is entirely calculated. The WholeSale version looks like this:

	Our Enterprise
	
	
	
	
	

	
	
	
	
	
	

	Summary
	
	
	
	
	

	Microsoft
	$416,790
	
	
	
	

	IBM
	$1,156,623
	
	
	
	

	
	
	
	
	
	

	Least Costly System:
	Microsoft
	
	
	
	

	Most Costly System:
	IBM
	
	
	
	

	Absolute Cost Differential
	$739,833
	
	
	
	

	Multiplicative Differential
	2.78
	
	
	
	

	
	
	
	
	
	

	IBM configuration is 2.78 times more expensive than Microsoft configuration

The values in the summary are interpreted as follows:

· Microsoft cost - Total cost of an all Microsoft solution.

· IBM cost - Total cost of an all IBM solution.

· Least Costly System - The lesser expensive of the two systems.

· Most Costly System - The more expensive of the two systems.

· Absolute Cost Differential - The cost difference between the more expensive and the lesser expensive of the two systems in dollars.

· Multiplicative Differential - The number of times more expensive the more expensive system is relative to the lesser expensive system.

· The final line summarizes by telling you which system the SF-EES calculated is more expensive and by how many times. Like all of the information in the summary, this is calculated. Had the Microsoft configurations turned out to be more expensive than the IBM configurations, the worksheet would have so indicated.
You will need to modify this worksheet to list the fortresses you have identified for your organization in the software fortress analysis phase of the SF-EPP.

If you have nine or fewer fortresses, you can just use my rows, changing the name of the fortress to your name (column A) and the configuration IDs (columns B and E) to those you have created/modified in the Configurations worksheet. Let the rest of the columns auto-calculate. The overview at the top of the spread sheet should require no changes, unless you want to change the summary descriptions in A5 and A6 to more accurately reflect your comparison analysis.

If you have more than nine systems, copy one of my rows (say, row 19). Then insert the copied row into a new location. Be sure to insert it before row 28 (the blank row before the row showing the totals). Then change the description of the system and the configuration IDs as above. You can duplicate this as often as necessary until you account for every system in your enterprise.

What can go wrong?

If one of the details columns that should auto-update doesn’t, you have probably trashed a cell formula. Copy a working cell from the same column into the misbehaving cell.

If one of your systems is not being included in the totals, you have probably inserted a new row after row 28 instead of before. Modify the formulas in both of the “totals” cells changing the SUM function accordingly. The second column number should identify the blank row following the last system entry. For example, if you inserted three rows, you might need to change “SUM(C19:C28)” to “SUM(C19:C31)”. If you don’t understand what I’m talking about then show this paragraph to your local Excel expert and she or he will be able to help you.

If one of the cells in the summary at the top of the worksheet is not auto-updating, then you have really screwed something up. Download a new version of the SF-EES, copy the formula from the corresponding cell in the downloaded version, and paste that into your misbehaving cell. Hopefully that will work.
SF-EES Wrap-up
Keep in mind that the SF-EES is a tool, not an answer. Every organization is different. That is why I have not written a white paper to tell you what technologies will work best for you. I have given you a process and a tool for making that decision for yourself.
I have only covered a small part of the SFM in this white paper and SF-EES User’s Guide. For more information, go to the definitive source: Software Fortresses; Modeling Enterprise Architectures, by Roger Sessions, published by Addison-Wesley (2003) 277 pages.
As we all learn new approaches of using software fortresses, the SF-EPP and the SF-EES will likely evolve. If you would like to keep up with those evolutions, be sure to subscribe to the ObjectWatch Newsletter. Just send email to sub@objectwatch.com and we will add you to the subscription list. We use that list only for the newsletter and our own communications, we never rent it out.
And, of course, ObjectWatch and Roger Sessions are always available to help your organization. We offer training courses in the SFM and the SF-EPP and we are happy to consult on conducting SF-EPPs and on modifying the SF-EES to meet your needs.
� Information about the TPC-C benchmark, including reported results, is available at www.tpc.org.

� For a good introduction to UML, see UML Distilled (second edition) by Martin Fowler with Kendall Scott, published by Addison-Wesley (2000) 185 pages ISBN: 0-201-65783-X

� Software Fortresses; Modeling Enterprise Architectures, by Roger Sessions, published by Addison-Wesley (2003) 277 pages. ISBN: 0-321-16608-6

� Software Fortresses; Modeling Enterprise Architectures by Roger Sessions.

� For a discussion on a related topic, the difference between objects and components, see Objects and Components, Differentiating These Two Technologies by Roger Sessions in The ObjectWatch Newsletter #28 (http://www.objectwatch.com/issue_28.htm).

� Software Fortresses; Modeling Enterprise Architectures by Roger Sessions and COM+ and the Battle for the Middle-tier by Roger Sessions, published by John Wiley and Sons (2000) 442 pages ISBN: 0-471-31717-9

� The concept of a SAD is adapted from the Class Sequence Diagrams of UML.

� IBM Enterprise Software Catalog, Winter, 2003, page 43.

� The prices for these products are published street prices. You may be able to get special discounting. You can adjust these prices accordingly in the SF-EES.

� Although we do not have benchmarks for this system as of press time, a less expensive Dell 2500 with only one processor was benchmarked at more than 42,000 transactions per minute on the TPC-C benchmark. No current Dell system is benchmarking at any less than 40,000 transactions per minute. It is therefore inconceivable to me that the 1750, when benchmarked, will not handle far in excess of 800 transactions per minute.

� As of press time, the service pack for BizTalk Server that allows it to work with Windows Server 2003 has not been released, but it should be shortly.

� The Middleware Company’s J2EE and .NET Application Server and Web Services Benchmark (October, 2002), for example, strongly implied that the Windows Server Platform would outperform WebSphere in a presentation fortress application by more than nine times and in a web service fortress application by more than three times. The Doculab’s Bench Web Services Performance Benchmark Study (April, 2003) strongly implied that Windows Server Platform would outperform WebSphere in a web service fortress application by more than four times. All of these benchmarks are cloaked in some degree of mystery, since, while Microsoft allowed its performance results to be made public, IBM did not.

� Moving from J2EE to .NET Presents 7-Eleven with New Business Opportunities and Increased Profitability , Published: November 2002 http://www.microsoft.com/resources/casestudies/CaseStudy.asp?CaseStudyID=13620.

� The Middleware Company’s J2EE and .NET Application Server and Web Services Benchmark (October, 2002), for example, implied that application tuning tasks took five times longer for WebSphere as did similar tasks on the Windows Server Platform.

� For a non-technical introduction to the mathematics of reliability, see Why I Don't Have A Lamborghini by Roger Sessions in The ObjectWatch Newsletter #23 (www.objectwatch.com/Issue_23.htm).

� http://www.tpc.org/tpcc/results/tpcc_perf_results.asp?resulttype=all. These results are as of May 23, 2003

� There is one Windows Server Platform benchmark that performed slightly higher than 707,102 transactions per minute, but it used partitioned databases and I don’t consider partitioned databases a viable option for most organizations.

� Migrating WebLogic Applications to WebSphere V5 by Bill Moore and Leigh Power, available at � HYPERLINK "http://www.redbooks.ibm.com/" ��http://www.redbooks.ibm.com/� (search for WebLogic).

� http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,76917,00.html

� http://www.computerworld.com/developmenttopics/development/story/0,10801,77965,00.html

Modeling Architectures and Choices

Page 73

