April 2002

Microsoft
SQL Server 2000 Driver for
JDBC

User’s Guide and Reference

© 2002 Microsoft. All rights reserved. Printed in the U.S.A.

Table of Contents

Preface e 7
Using ThisBook e 7
Typographical Conventions. 8
About SQL Server 2000 Driver for JDBC Documentation 9
1 QuickStart.ciiii ittt 11
ConnectingtoaDatabase.o i, 11
1.Settingthe Classpath. 12
2. Registeringthe Driver............ 12
3. Passing the Connection URL 13
2 Using the SQL Server 2000 Driver for JDBC. 15
About the SQL Server 2000 Driver for JDBC 15
Connecting Through the JDBC Driver Manager 16
URLExamples. e 16
Connecting Through Data Sources. 17
How SQL Server 2000 Driver for JDBC Data Sources Are
Implemented 17
Calling a Data Source in an Application. 18
Using Connection Pooling. 18
Specifying Connection Properties. 20
Using the SQL Server 2000 Driver for JDBC on a
Java2 Platform 21

SQL Server 2000 Driver for JDBC User’s Guide and Reference

4

Table of Contents

ErrorHandling
SQL Server 2000 Driver for JDBCErrors.

Database Errors

SQL Server 2000 Driver for JDBC Directory Structure.

SQL Server 2000 DriverforJDBC

Data Source and Driver Classescoiuiu...
Connection String Properties.
Data Types. . - -
SQL Escape Sequencesttt e
Isolation Levels. i
Using Scrollable Cursors.

Installing Stored Procedures for JTA.

JDBCSupport.t e

JDBC Compatibility.o
Supported Functionality,

SQL Server 2000 Driver for JDBC GetTypeinfo

Designing JDBC Applications for Performance
Optimization

Using Database Metadata Methods
Minimizing the Use of Database Metadata Methods . ..

Avoiding Search Patterns.
Using a Test Query to Determine Table Characteristics . .

Retrieving Data.o

RetrievinglLongData...........
Reducing the Size of Data Retrieved.

Choosing the Right Data Type.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Table of Contents

Selecting JDBC Objects and Methods. 83
Using Parameter Markers as Arguments to Stored
Procedures 83
Using the Statement Object Instead of the
PreparedStatement Object 85
Choosing the Right Cursor 85

Designing JDBC Applications 86
Managing Connections 86
Managing Commits in Transactions 87
Choosing the Right Transaction Model 88

UpdatingData......... ..o e 88
Using updateXXX Methods. 88
Using getBestRowIndentifier() 89

CoNClUSION ..ot e e 91

SQL Escape Sequences for JDBC................ 93

Date, Time, and Timestamp Escape Sequences 94

Scalar Functions. e 94

Outer Join Escape Sequences, 96

Procedure Call Escape Sequences.c.ouuu... 97

Indexo e e 99

SQL Server 2000 Driver for JDBC User’s Guide and Reference

5

6 Table of Contents

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Preface

The SQL Server 2000 Driver for JDBC is a Type 4 driver that
supports the JDBC specification.

Using This Book

This book assumes that you are familiar with your operating
system and its commands, the definition of directories, and
accessing a database through an end-user application.

This book contains the following information:

Chapter 1 “Quick Start” on page 11 provides information
about connecting with your SQL Server 2000 Driver for JDBC.

Chapter 2 “Using the SQL Server 2000 Driver for JDBC” on
page 15 provides information about using JDBC applications
with the SQL Server 2000 Driver for JDBC.

Chapter 3 “SQL Server 2000 Driver for JDBC” on page 25
provides detailed information specific to the driver.

Appendix A “JDBC Support” on page 33 provides
information about developing JDBC applications for SQL
Server 2000 Driver for JDBC environments.

Appendix B “SQL Server 2000 Driver for JDBC GetTypeinfo”
on page 65 provides results returned from the method
DataBaseMetaData.getTypeinfo for the SQL Server 2000
Driver for JDBC.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

8 Preface

m Appendix C “Designing JDBC Applications for Performance
Optimization” on page 77 provides information about
enhancing the performance of your application by optimizing
its code.

m Appendix D “SQL Escape Sequences for JDBC"” on page 93
describes the scalar functions supported for the SQL Server
2000 Driver for JDBC. Your data store may not support all of
these functions.

Typographical Conventions

This book uses the following typographical conventions:

Convention Explanation

italics Introduces new terms that you may not be familiar
with, and is used occasionally for emphasis.

bold Emphasizes important information. Also indicates
button, menu, and icon names on which you can
act. For example, click Next.

UPPERCASE Indicates the name of a file. For operating
environments that use case-sensitive file names,
the correct capitalization is used in information
specific to those environments.

Also indicates keys or key combinations that you
can use. For example, press the ENTER key.

monospace Indicates syntax examples, values that you specify,
or results that you receive.

monospaced Indicates names that are placeholders for values

italics you specify; for example, filename.

forward slash / Separates menus and their associated commands.
For example, Select File / Copy means to select
Copy from the File menu.

vertical rule | Indicates an OR separator to delineate items.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

About SQL Server 2000 Driver for JDBC Documentation

Convention Explanation

brackets [] Indicates optional items. For example, in the
following statement: SELECT [DISTINCT], DISTINCT
is an optional keyword.

braces{} Indicates that you must select one item. For
example, {yes | no} means you must specify either
yes or no.

ellipsis . . . Indicates that the immediately preceding item can

be repeated any number of times in succession. An
ellipsis following a closing bracket indicates that
all information in that unit can be repeated.

About SQL Server 2000 Driver for JDBC
Documentation

The SQL Server 2000 Driver for JDBC library consists of the
following books:

B SQL Server 2000 Driver for JDBC Installation Guide details
requirements and procedures for installing the SQL Server
2000 Driver for JDBC.

B SQL Server 2000 Driver for JDBC User’s Guide and Reference
provides both general and driver-specific information about
using the SQL Server 2000 Driver for JDBC, as well as about
enhancing driver performance.

The SQL Server 2000 Driver for JDBC online documentation is
provided in PDF format, which allows you to view it online or
print it. You can view the online documentation using Adobe
Acrobat Reader, 3.x or greater. Using Acrobat Reader 3.x or
greater with Search allows you to take advantage of full-text
search across both the SQL Server 2000 Driver for JDBC online
books.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

10

Preface

See the Connect JDBC Installation Guide for complete
information about installing the online documents.

HTML-based online help is placed on your system during normal
installation of SQL Server 2000 Driver for JDBC. It is installed in a
directory named Help beneath the product installation directory.

To access help from a Windows environment, you must have
Internet Explorer 5.x or higher, or Netscape 4.x or higher
installed. Open the program group for SQL Server 2000 Driver for
JDBC and click the help icon.

To access help from a UNIX environment, you must have
Netscape 4.x or higher installed. At a command prompt, enter:

netscape_exe install_dir/help/wwhelp/js/html/frames.htm

where netscape_exe is the name of the Netscape executable and
install_dir is the path to the directory in which the SQL Server
2000 Driver for JDBC is installed.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

1 Quick Start

The following basic information enables you to connect with
your SQL Server 2000 Driver for JDBC immediately after
installation. To take full advantage of the features of the driver,
however, you should read Chapter 2 “Using the SQL Server 2000
Driver for JDBC"” and Chapter 3 “SQL Server 2000 Driver for
JDBC” for details.

NOTE: For installation instructions for SQL Server 2000 Driver for
JDBC, see the SQL Server 2000 Driver for JDBC Installation Guide.

Connecting to a Database

Once the driver is installed, you can connect from your
application to your database in two ways: with a connection URL
through the JDBC driver manager, or with a JNDI data source.
This quick start explains how to establish your database
connection using a connection URL. See Chapter 2 “Using the
SQL Server 2000 Driver for JDBC" for details on using data
sources.

You can connect through the JDBC driver manager with the
method DriverManager.getConnection. This method uses a
string containing a URL. Use the following steps to load the
driver from your JDBC application.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

12 Chapter 1 Quick Start

1. Setting the Classpath

The SQL Server 2000 Driver for JDBC needs to be defined in your
CLASSPATH variable. The CLASSPATH is the search string that your
Java Virtual Machine (JVM) uses to locate the JDBC drivers on
your computer. If the drivers are not on your CLASSPATH, you
receive the error "class not found" when trying to load the driver.
Set your system CLASSPATH to include the following entries,
where install_dir is the path to your SQL Server 2000 Driver for
JDBC installation directory:

install_dir/lib/msbase.jar
install dir/lib/msutil.jar
install dir/lib/mssqglserver.jar

Windows Example

CLASSPATH=.;c:\Microsoft SQL Server 2000 Driver for
JDBC\1lib\msbase.jar;c:\Microsoft SQL Server 2000 Driver for
JDBC\1lib\msutil.jar;c:\Microsoft SQL Server 2000 Driver for JDBC
\lib\mssqglserver.jar

UNIX Example

CLASSPATH=. ; /home/userl/mssglserver2000jdbc/lib/msbase. jar; /home/userl/
mssglserver2000jdbc/lib/msutil. jar; /home/userl/mssglserver2000jdbc/1ib/
mssglserver. jar

2. Registering the Driver

Registering the driver tells the JDBC driver manager which driver
to load. When loading a driver using class.forName(), you must
specify the name of the driver:

com.microsoft.jdbc.sqlserver.SQLServerDriver

For example:

Class.forName ("com.microsoft.jdbc.sglserver.SQLServerDriver") ;

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Connecting to a Database

3. Passing the Connection URL

After registering the driver, you must pass your database
connection information in the form of a connection URL. The
following is a template URL for the SQL Server 2000 Driver for
JDBC. Substitute the values specific to your database.

jdbc:microsoft:sqglserver://server name:1433

For example, to specify a connection URL that includes the user
ID "username" and the password "secret":

Connection conn = DriverManager.getConnection
("jdbc:microsoft:sqglserver://serverl:1433", "username", "secret");

NOTE:

The server_name is an IP address or a host name, assuming that
your network resolves host names to IP addresses. You can test
this by using the ping command to access the host name and
verifying that you receive a reply with the correct IP address.

The numeric value after the server name is the port number on
which the database is listening. The values listed here are sample
defaults. You should determine the port number that your
database is using and substitute that value.

You can find the complete list of Connection URL parameters in
“Connection String Properties” on page 26 of this book.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

14 Chapter 1 Quick Start

SQL Server 2000 Driver for JDBC User’s Guide and Reference

15

2 Using the SQL Server 2000
Driver for JDBC

The Type 4 SQL Server 2000 Driver for JDBC provides JDBC access
through any Java-enabled applet, application, or application
server. It delivers high-performance point-to-point and n-tier
access to Microsoft SQL Server across the Internet and intranets.
The driver is optimized for the Java environment, allowing you
to incorporate Java technology and extend the functionality and
performance of your existing system.

About the SQL Server 2000 Driver for JDBC

The SQL Server 2000 Driver for JDBC supports the JDBC 2.0
specification. The driver also supports a subset of the JDBC 2.0
Optional Package, which provides the following functionality:

m Java Naming Directory Interface (JNDI) for naming data
sources

m Connection Pooling

SQL Server 2000 Driver for JDBC User’s Guide and Reference

16 Chapter 2 Using the SQL Server 2000 Driver for JDBC

Connecting Through the JDBC Driver Manager

One way of connecting to a database is through the JDBC driver
manager using the method DriverManager.getConnection. This
method uses a string containing a URL. The following is an
example of using the JDBC driver manager to connect to
Microsoft SQL Server 2000 while passing the user name and
password:

Class.forName ("com.microsoft.jdbc.sglserver.SQLServerDriver") ;
Connection conn = DriverManager.getConnection
("jdbc:microsoft:sqglserver://serverl:1433;User=test; Password=secret") ;

URL Examples

The complete connection URL format used with the driver
manager is:

jdbc:microsoft:sglserver://hostname:port|;property=

value...]

where:

hostname is the TCP/IP address or TCP/IP host name of
the server to which you are connecting.
NOTE: Untrusted applets cannot open a
socket to a machine other than the
originating host.

port is the number of the TCP/IP port.

property=value specifies connection properties. See

"Connection String Properties” on page 26
for a list of connection properties and their
values.

The following example shows a typical connection URL:

jdbc:microsoft:sglserver://serverl:1433;user=test;password=secret

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Connecting Through Data Sources 17

Connecting Through Data Sources

A SQL Server 2000 Driver for JDBC data source is a DataSource
object that provides the connection information needed to
connect to an underlying database. The main advantage of
using a data source is that it works with the Java Naming
Directory Interface (JNDI) naming service, and it is created and
managed outside of the applications that use it. Because the
connection information is outside of applications, the time it
takes to reconfigure your infrastructure when a change is made
is minimal. For example, if the underlying database is moved to
another server and uses another port number, the administrator
must change only the relevant properties of the SQL Server 2000
Driver for JDBC data source (a DataSource object). The
applications using the underlying database do not need to
change because they only refer to the logical name of the SQL
Server 2000 Driver for JDBC data source.

How SQL Server 2000 Driver for JDBC
Data Sources Are Implemented

Microsoft ships a data source class for the SQL Server 2000 Driver
for JDBC. See Chapter 3 “SQL Server 2000 Driver for JDBC"” on
page 25 for the name of the class.

The SQL Server 2000 Driver for JDBC data source class provided
implements the following interfaces defined in the JDBC 2.0
Optional Package:

B javax.sql.DataSource
m javax.sgl.ConnectionPoolDataSource, which enables you to
implement connection pooling

NOTE: You must include the javax.sgl.* and javax.naming.*
classes to create and use SQL Server 2000 Driver for JDBC data
sources. The SQL Server 2000 Driver for JDBC provides all the

SQL Server 2000 Driver for JDBC User’s Guide and Reference

18 Chapter 2 Using the SQL Server 2000 Driver for JDBC

necessary JAR files that contain the required classes and
interfaces.

Calling a Data Source in an Application

Applications can call a SQL Server 2000 Driver for JDBC data
source using a logical name to retrieve the javax.sql.DataSource
object. This object loads the SQL Server 2000 Driver for JDBC and
can be used to establish a connection to the underlying database.

Once a SQL Server 2000 Driver for JDBC data source has been
registered with JNDI, it can be used by your JDBC application as
shown in the following example:

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup(“jdbc/EmployeeDB”) ;
Connection con = ds.getConnection(“matt”, “wwf”);

In this example, the JNDI environment is first initialized. Next, the
initial naming context is used to find the logical name of the SQL
Server 2000 Driver for JDBC data source (EmployeeDB). The
Context.lookup() method returns a reference to a Java object,
which is narrowed to a javax.sql.DataSource object. Finally, the
DataSource.getConnection() method is called to establish a
connection with the underlying database.

Using Connection Pooling

Connection pooling allows you to reuse connections rather than
create a new one every time the SQL Server 2000 Driver for JDBC
needs to establish a connection to the underlying database.
Connection pooling manages connection sharing across different
user requests to maintain performance and reduce the number of
new connections that must be created. For example, compare the
following transaction sequences.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Connecting Through Data Sources

Example A: Without Connection Pooling

1 The client application creates a connection.

2 The client application sends a data access query.

3 The client application obtains the result set of the query.

4 The client application displays the result set to the end user.
5 The client application ends the connection.

Example B: With Connection Pooling

1 The client checks the connection pool for an unused
connection.

2 If an unused connection exists, it is returned by the pool
implementation; otherwise, it creates a new connection.

The client application sends a data access query.
The client application obtains the result set of the query.

The client application displays the result set to the end user.

A v A~ W

The client application returns the connection to the pool.

NOTE: The client application still calls "close()", but the
connection remains open and the pool is notified of the close
request.

The pool implementation creates "real" database connections
using the getPooledConnection() method of
ConnectionPoolDataSource. Then, the pool implementation
registers itself as a listener to the PooledConnection. When a
client application requests a connection, the pool
implementation (Pool Manager) assigns one of its available
connections. If there is no connection available, the Pool
Manager establishes a new connection and assigns it to that
application. When the client application closes the connection,
the Pool Manager is notified by the driver through the
ConnectionEventListener interface that the connection is free

SQL Server 2000 Driver for JDBC User’s Guide and Reference

19

20 Chapter 2 Using the SQL Server 2000 Driver for JDBC

and available for reuse. The pool implementation is also notified
by the ConnectionEventListener interface when the client
somehow corrupts the database connection, so that the pool
implementation can remove that connection from the pool.

Once a SQL Server 2000 Driver for JDBC data source has been
registered with JNDI, it can be used by your JDBC application as
shown in the following example, typically through a third-party
connection pool tool:

Context ctx = new InitialContext();

ConnectionPoolDataSource ds =
(ConnectionPoolDataSource)ctx.lookup (“jdbc/EmployeeDB”) ;
pooledConnection pcon = ds.getPooledConnection(“matt”, “wwf”);

In this example, the JNDI environment is first initialized. Next, the
initial naming context is used to find the logical name of the
JDBC data source (EmployeeDB). The Context.lookup() method
returns a reference to a Java object, which is narrowed to a
javax.sql.ConnectionPoolDataSource object. Finally, the
ConnectionPoolDataSource.getPooledConnection() method is
called to establish a connection with the underlying database.

NOTE: JDBC drivers do not manage connection pooling. You must
use an external connection pool manager.

Specifying Connection Properties

You can specify connection properties using the JDBC driver
manager or SQL Server 2000 Driver for JDBC data sources. See
“URL Examples” on page 16 for information about specifying
properties through the driver manager. See “Connecting
Through Data Sources” on page 17 for information about data
sources.

See “Connection String Properties” on page 26 for the list of the
connection properties specific to the driver.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Using the SQL Server 2000 Driver for JDBC on a Java 2 Platform

Using the SQL Server 2000 Driver for JDBC on
a Java 2 Platform

When using the SQL Server 2000 Driver for JDBC on a Java 2
Platform with the standard security manager enabled, you must
give the driver some additional permissions. Refer to your Java 2
Platform documentation for more information about the Java 2
Platform security model and permissions.

You can run an application on a Java 2 Platform with the
standard security manager using:

"java -Djava.security.manager application class_name"

where application_class_name is the class name of the
application.

Web browser applets running in the Java 2 plug-in are always
running in a Java Virtual Machine with the standard security
manager enabled. To enable the necessary permissions, you must
add them to the security policy file of the Java 2 Platform. This
security policy file can be found in the jre/lib/security
subdirectory of the Java 2 Platform installation directory.

To use JDBC data sources, all code bases must have the following
permissions:

// permissions granted to all domains

grant {

// DataSource access

permission java.util.PropertyPermission "java.naming.*", "read,write";

// Adjust the server host specification for your environment

permission java.net.SocketPermission "*.microsoft.com:0-65535", "connect";

}i

To use insensitive scrollable cursors, and perform client-side
sorting of some DatabaseMetaData ResultSets, all code bases
must have access to temporary files.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

22 Chapter 2 Using the SQL Server 2000 Driver for JDBC

For JDK 1.1 environments, access to "current working directory”
must be granted.

For Java 2 environments, access to the temporary directory
specified by the VM configuration must be granted.

The following is an example of permissions being granted for the
CA\TEMP directory:

// permissions granted to all domains

grant {

// Permission to create and delete temporary files.

// Adjust the temporary directory for your environment.

permission java.io.FilePermission "C:\\TEMP\\-", "read,write,delete";

}i

Error Handling

The SQL Server 2000 Driver for JDBC reports errors to the calling
application by throwing SQLExceptions. Each SQLException
contains the following information:

m Description of the probable cause of the error, prefixed by the
component that generated the error

m Native error code (if applicable)

B String containing the XOPEN SQLstate

SQL Server 2000 Driver for JDBC Errors

An error generated by the SQL Server 2000 Driver for JDBC has
the following format:

[Microsoft] [SQL Server 2000 Driver for JDBC]message

SQL Server 2000 Driver for JDBC User’s Guide and Reference

SQL Server 2000 Driver for JDBC Directory Structure

For example:

[Microsoft] [SQL Server 2000 Driver for JDBC]Timeout
expired.

You may, at times, need to check the last JDBC call your
application made and refer to the JDBC specification for the
recommended action.

Database Errors

An error generated by the database has the following format:

[Microsoft] [SQL Server 2000 Driver for JDBC] [SQL Server]
message

For example:

[Microsoft] [SQL Server 2000 Driver for JDBC] [SQL Server]
Invalid Object Name.

Use the native error code to look up details about the possible
cause of the error. For these details, refer to your database
documentation.

SQL Server 2000 Driver for JDBC Directory

Structure

Table 2-1 shows the SQL Server 2000 Driver for JDBC directory
structure and provides a description of files and directories. All
of the following files and directories are located in the SQL
Server 2000 Driver for JDBC installation directory.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

23

24

Chapter 2 Using the SQL Server 2000 Driver for JDBC

Table 2-1. SQL Server 2000 Driver for JDBC Directory and Files

Directories and Files

Description

uninstall.class

Executable that uninstalls the SQL Server 2000 Driver
for JDBC (Windows only).

/books/

Directory that contains all of the SQL Server 2000 Driver
for JDBC online documentation.

/Help/

Directory that contains the SQL Server 2000 Driver for
JDBC online help.

/lib/mssqlserver.jar

Jar file containing the SQL Server 2000 Driver for JDBC
and data source classes, specifically:

com.microsoft.jdbc.sqlserver.SQLServerDriver
and
com.microsoft.jdbcx.sqlserver.SQLServerDataSource

as well as other SQL Server driver-specific classes. This
Jar file must be on your CLASSPATH to use the SQL
Server 2000 Driver for JDBC.

/lib/msbase.jar

Jar file containing classes that are used by the SQL
Server 2000 Driver for JDBC. This Jar file must be on
your CLASSPATH to use the SQL Server 2000 Driver for
JDBC.

/lib/msutil.jar

Jar file containing classes that are used by the SQL
Server 2000 Driver for JDBC. This Jar file must be on
your CLASSPATH to use the SQL Server 2000 Driver for
JDBC.

/SQLServer JTA/instjdbc.sql
/SQLServer JTA/sqljdbc.dll

Files used for installing JTA stored procedures for SQL
Server 2000.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

3 SQL Server 2000 Driver for JDBC

The SQL Server 2000 Driver for JDBC (the "SQL Server driver")
supports the SQL Server 2000 database system available from
Microsoft.

To use JDBC distributed transactions through JTA, you must
install stored procedures for SQL Server. See “Installing Stored
Procedures for JTA"” on page 30 for details.

NOTE: Although the SQL Server driver supports JTA, JTA support
is not available when the connection method SelectMethod is
set to direct. See “SelectMethod” on page 26 for details.

Data Source and Driver Classes

The data source class for the SQL Server driver is:
com.microsoft.jdbcx.sqlserver.SQLServerDataSource

For information on SQL Server 2000 Driver for JDBC data sources,
see “Connecting Through Data Sources” on page 17.

The driver class for the SQL Server driver is:

com.microsoft.jdbc.sqlserver.SQLServerDriver

SQL Server 2000 Driver for JDBC User’s Guide and Reference

26 Chapter 3 SQL Server 2000 Driver for JDBC

Connection String Properties

You can use the following connection properties with the JDBC
driver manager or SQL Server 2000 Driver for JDBC data sources.

Table 3-1 lists the JDBC connection properties supported by the
SQL Server driver, and describes each property. The properties
have the form:

property=value

NOTE: All connection string property names are case-insensitive.
For example, PortNumber is the same as portnumber.

Table 3-1. SQL Server Connection String Properties

Property

DatabaseName
OPTIONAL

HostProcess
OPTIONAL

NetAddress
OPTIONAL

Password

PortNumber
OPTIONAL

ProgramName
OPTIONAL

SelectMethod

Description

The name of the SQL Server database to which you want to
connect.

The process ID of the application connecting to SQL Server 2000.
The supplied value appears in the "hostprocess" column of the
sysprocesses table.

The MAC address of the network interface card of the application
connecting to SQL Server 2000. The supplied value appears in the
"net_address" column of the sysprocesses table.

The case-insensitive password used to connect to your SQL Server
database.

The TCP port (use for DataSource connections only). The default is
1433.

The name of the application connecting to SQL Server 2000. The
supplied value appears in the "program_name" column of the
sysprocesses table.

SelectMethod={cursor | direct}. Determines whether database
cursors are used for Select statements. Performance and behavior
of the driver are affected by the SelectMethod setting.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Connection String Properties

Table 3-1. SQL Server Connection String Properties (cont.)

Property
SelectMethod (cont.)

Description

Direct—The direct method sends the complete result set in one
request to the driver. It is useful for queries that only produce a
small amount of data that you fetch completely. You should avoid
using direct when executing queries that produce a large amount
of data, as the result set is cached completely on the client and
constrains memory. In this mode, each statement requires its own
connection to the database. This is accomplished by "cloning"
connections. Cloned connections use the same connection
properties as the original connection; however, because
transactions must occur on a single connection, auto commit
mode is required. Due to this, JTA is not supported in direct mode.
In addition, some operations, such as updating an insensitive
result set, are not supported in direct mode because the driver
must create a second statement internally. Exceptions generated
due to the creation of cloned statements usually return an error
message similar to “Cannot start a cloned connection while in
manual transaction mode.”

Cursor—When the SelectMethod is set to cursor, a server-side
cursor is generated. The rows are fetched from the server in
blocks. The JDBC Statement method setFetchSize can be used to
control the number of rows that are fetched per request. The
cursor method is useful for queries that produce a large amount
of data, data that is too large to cache on the client. Performance
tests show that the value of setFetchSize has a serious impact on
performance when SelectMethod is set to cursor. There is no
simple rule for determining the value that you should use. You
should experiment with different setFetchSize values to find out
which value gives the best performance for your application.

The default is direct.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

27

Chapter 3 SQL Server 2000 Driver for JDBC

Table 3-1. SQL Server Connection String Properties (cont.)

Property Description

SendStringParameters SendStringParametersAsUnicode={true | false}. Determines

AsUnicode whether string parameters are sent to the SQL Server database in
Unicode or in the default character encoding of the database.
True means that string parameters are sent to SQL Server in
Unicode. False means that they are sent in the default encoding,
which can improve performance because the server does not need
to convert Unicode characters to the default encoding. You
should, however, use default encoding only if the parameter
string data that you specify is consistent with the default
encoding of the database.

The default is true.

ServerName The IP address (use for DataSource connections only).
User The case-insensitive user name used to connect to your SQL Server
database.

Data Types

Table 3-2 lists the data types supported by the SQL Server driver
and how they are mapped to the JDBC data types.

Table 3-2. SQL Server 2000 Data Types

SQL Server Data Type JDBC Data Type
bigint BIGINT

bigint identity BIGINT

binary BINARY

bit BIT

char CHAR

datetime TIMESTAMP

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Data Types

Table 3-2. SQL Server 2000 Data Types (cont.)

SQL Server Data Type
decimal

decimal() identity
float

image

int

int identity
money

nchar

ntext

numeric
numeric() identity
nvarchar

real
smalldatetime
smallint

smallint identity
smallmoney
sql_variant
sysname

text

timestamp
tinyint

tinyint identity
uniqueidentifier
varbinary
varchar

JDBC Data Type
DECIMAL
DECIMAL
FLOAT
LONGVARBINARY
INTEGER
INTEGER
DECIMAL

CHAR
LONGVARCHAR
NUMERIC
NUMERIC
VARCHAR

REAL
TIMESTAMP
SMALLINT
SMALLINT
DECIMAL
VARCHAR
VARCHAR
LONGVARCHAR
BINARY
TINYINT
TINYINT

CHAR
VARBINARY
VARCHAR

SQL Server 2000 Driver for JDBC User’s Guide and Reference

29

30 Chapter 3 SQL Server 2000 Driver for JDBC

SQL Escape Sequences

See Appendix D “SQL Escape Sequences for JDBC” on page 93 for
information about the SQL escape sequences supported by the
SQL Server driver.

Isolation Levels

SQL Server supports isolation levels Read Committed, Read
Uncommitted, Repeatable Read, and Serializable. The default is
Read Committed.

Using Scrollable Cursors

The SQL Server driver supports scroll-insensitive result sets and
updatable result sets.

NOTE: When the SQL Server driver cannot support the requested
result set type or concurrency, it automatically downgrades the
cursor and generates one or more SQLWarnings with detailed
information.

Installing Stored Procedures for JTA

To use JDBC distributed transactions through JTA, the system
administrator should use the following procedure to install SQL
Server JDBC XA procedures. This must be repeated for each SQL

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Installing Stored Procedures for JTA

Server installation that will be involved in a distributed
transaction.

1

Copy the file sqljdbc.dll from the SQL Server 2000 Driver for
JDBC installation directory to the SQL_Server_Root/binn
directory of the database server for SQL Server.

From the server, use the ISQL utility to run the instjdbc.sql
script. The system administrator should back up the master
database before running instjdbc.sql.

At a command prompt, use the following syntax to run
instjdbc.sql:

ISQL -Usa -Psa_password -Sserver_name -ilocation\instjdbc.sqgl

where:
sa_password is the password of the system administrator.

server_name is the name of the server on which SQL Server
resides.

location is the full path to instjdbc.sqgl. This script is located in
the SQL Server 2000 Driver for JDBC installation directory.

The instjdbc.sql script generates many messages. In general,
these messages can be ignored; however, you should scan the
output for any messages that indicate an execution error. The
last message should indicate that instjdbc.sql ran successfully.
The script fails when there is not enough space available in
master database to store the JDBC XA procedures or to log
changes to existing procedures.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

31

32 Chapter 3 SQL Server 2000 Driver for JDBC

SQL Server 2000 Driver for JDBC User’s Guide and Reference

A JDBC Support

33

This appendix provides information about JDBC compatibility
and developing JDBC applications for the SQL Server 2000 Driver
for JDBC environments.

JDBC Compatibility

Table A-1 shows compatibility between the JDBC application
versions, Java Virtual Machines, and the SQL Server 2000 Driver

for JDBC.

Table A-1. JDBC Compatibility

JDBC Version Used*
1.22

1.22
1.22
2.0

2.0

2.0
2.0

JRE/JDK

1.0.2

1.1.8
1.2
1.0.2

1.1.x

1.2
1.3

Supported?
No

Yes
Yes
No

No

Yes
Yes

Comments

The SQL Server 2000 Driver for JDBC
does not support Java Virtual Machine
1.0.2.

The SQL Server 2000 Driver for JDBC
does not support Java Virtual Machine
1.0.2.

A JDBC 2.0 application requires the
JDBC 2.0 classes.

*Refers to whether the application is using JDBC 1.22 or JDBC 2.0 features.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

34 Appendix A JDBC Support

Supported Functionality

The following tables list functionality supported for each JDBC

object.

Array Object Version

Methods Introduced Supported Comments

(all) 2.0 Core No Array objects are neither
exposed, nor taken as input.

Blob Object Version

Methods Introduced Supported Comments

(all) 2.0 Core No Blob objects are neither
exposed, nor taken as input.

Clob Object Version

Methods Introduced Supported Comments

(all) 2.0 Core No Clob objects are neither
exposed, nor taken as input.

CallableStatement

Object Version

Methods Introduced Supported Comments

void addBatch () 2.0 Core Yes

void addBatch (String) 2.0 Core No Throws “invalid method call”
exception.

void cancel () 1.0 Yes

void clearBatch () 2.0 Core Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

CallableStatement

Object (cont) Version

Methods Introduced Supported Comments

void clearParameters () 1.0 Yes

void clearWarnings () 1.0 Yes

void close () 1.0 Yes

boolean execute () 1.0 Yes

boolean execute (String) 1.0 No Throws “invalid method call”
exception.

int [] executeBatch () 2.0 Core Yes

ResultSet executeQuery () 1.0 Yes

ResultSet executeQuery 1.0 No Throws “invalid method call”

(String) exception.

int executeUpdate () 1.0 Yes

int executeUpdate (String) 1.0 No Throws “invalid method call”
exception.

Array getArray (int) 2.0 Core No Throws “unsupported
method” exception.

BigDecimal getBigDecimal 2.0 Core Yes

(int)

BigDecimal getBigDecimal 1.0 Yes

(int, int)

Blob getBlob (int) 2.0 Core No Throws “unsupported
method” exception.

boolean getBoolean (int) 1.0 Yes

byte getByte (int) 1.0 Yes

byte [] getBytes (int) 1.0 Yes

Clob getClob (int) 2.0 Core No Throws "unsupported
method” exception.

Connection getConnection () 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

35

36 Appendix A JDBC Support

CallableStatement

Object (cont.) Version

Methods Introduced Supported Comments

Date getDate (int) 1.0 Yes

Date getDate (int, Calendar) 2.0 Core Yes

double getDouble (int) 1.0 Yes

int getFetchDirection () 2.0 Core Yes

int getFetchSize () 2.0 Core Yes

float getFloat (int) 1.0 Yes

int getint (int) 1.0 Yes

long getLong (int) 1.0 Yes

int getMaxFieldSize () 1.0 Yes

int getMaxRows () 1.0 Yes

ResultSetMetaData 2.0 Core Yes

getMetaData ()

boolean getMoreResults () 1.0 Yes

Object getObject (int) 1.0 Yes

Object getObject (int, Map) 2.0 Core Yes Map ignored.

int getQueryTimeout () 1.0 Yes Always returns 0.

Ref getRef (int) 2.0 Core No Throws "unsupported
method” exception.

ResultSet getResultSet () 1.0 Yes

int getResultSetConcurrency () 2.0 Core Yes

int getResultSetType () 2.0 Core Yes

short getShort (int) 1.0 Yes

String getString (int) 1.0 Yes

Time getTime (int) 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

CallableStatement

Object (cont) Version

Methods Introduced Supported Comments

Time getTime (int, Calendar) 2.0 Core No Throws “unsupported
method” exception.

Timestamp getTimestamp (int) 1.0 Yes

Timestamp getTimestamp (int, 2.0 Core Yes

Calendar)

int getUpdateCount () 1.0 Yes

SQLWarning getWarnings () 1.0 Yes

void registerOutParameter 1.0 Yes

(int, int)

void registerOutParameter 2.0 Core Yes String/typename ignored.

(int, int, String)

void registerOutParameter 1.0 Yes

(int, int, int)

void setArray (int, Array) 2.0 Core No Throws “unsupported
method” exception.

void setAsciiStream (int, 1.0 Yes

InputStream, int)

void setBigDecimal (int, 1.0 Yes

BigDecimal)

void setBinaryStream (int, 1.0 Yes

InputStream, int)

void setBlob (int, Blob) 2.0 Core No Throws “unsupported
method” exception.

void setBoolean (int, boolean) 1.0 Yes

void setByte (int, byte) 1.0 Yes

void setBytes (int, byte []) 1.0 Yes

void setCharacterStream (int, 2.0 Core Yes

Reader, int)

SQL Server 2000 Driver for JDBC User’s Guide and Reference

37

38 Appendix A JDBC Support

CallableStatement

Object (cont.) Version

Methods Introduced Supported Comments

void setClob (int, Clob) 2.0 Core No Throws "unsupported
method” exception.

void setCursorName (String) 1.0 No

void setDate (int, Date) 1.0 Yes

void setDate (int, Date, 2.0 Core Yes

Calendar)

void setDouble (int, double) 1.0 Yes

void setEscapeProcessing 1.0 Yes Ignored.

(boolean)

void setFetchDirection (int) 2.0 Core Yes

void setFetchSize (int) 2.0 Core Yes

void setFloat (int, float) 1.0 Yes

void setint (int, int) 1.0 Yes

void setLong (int, long) 1.0 Yes

void setMaxFieldSize (int) 1.0 Yes

void setMaxRows (int) 1.0 Yes

void setNull (int, int) 1.0 Yes

void setNull (int, int, String) 2.0 Core Yes

void setObject (int, Object) 1.0 Yes

void setObject (int, Object, 1.0 Yes

int)

void setObject (int, Object, int, 1.0 Yes

int)

void setQueryTimeout (int) 1.0 No Throws "unsupported
method” exception.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

CallableStatement

Object (cont) Version

Methods Introduced Supported Comments

void setRef (int, Ref) 2.0 Core No Throws "unsupported
method” exception.

void setShort (int, short) 1.0 Yes

void setString (int, String) 1.0 Yes

void setTime (int, Time) 1.0 Yes

void setTime (int, Time, 2.0 Core Yes

Calendar)

void setTimestamp (int, 1.0 Yes

Timestamp)

void setTimestamp (int, 2.0 Core Yes

Timestamp, Calendar)

void setUnicodeStream (int, 1.0 No Throws “unsupported

InputStream, int) method” exception.

boolean wasNull () 1.0 Yes

Connection Object Version

Methods Introduced Supported Comments

void close () 1.0 Yes When a connection is closed
while there is an active
transaction, that transaction is
rolled-back.

void commit () 1.0 Yes

Statement createStatement () 1.0 Yes

Statement createStatement 2.0 Core Yes ResultSet.TYPE_SCROLL_SENSITIVE

(int, int) downgraded to
TYPE_SCROLL_INSENSITIVE

boolean getAutoCommit () 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

39

40

Appendix A JDBC Support

Connection Object (cont) Version

Methods Introduced Supported Comments

String getCatalog () 1.0 Yes Support is driver-specific.

DatabaseMetaData 1.0 Yes

getMetaData ()

int getTransactionlsolation () 1.0 Yes

Map getTypeMap () 2.0 Core Yes Always returns empty
java.util.HashMap.

SQLWarning getWarnings () 1.0 Yes

boolean isClosed () 1.0 Yes

boolean isReadOnly () 1.0 Yes

String nativeSQL (String) 1.0 Yes Always returns same String as
passed in.

CallableStatement prepareCall 1.0 Yes

(String)

CallableStatement prepareCall 2.0 Core Yes ResultSet. TYPE_SCROLL_SENSITIVE

(String, int, int) downgraded to
TYPE_SCROLL_INSENSITIVE

PreparedStatement 1.0 Yes

prepareStatement (String)

PreparedStatement 2.0 Core Yes ResultSet.TYPE_SCROLL_SENSITIVE

prepareStatement (String, int, downgraded to

int) TYPE_SCROLL_INSENSITIVE

void rollback () 1.0 Yes

void setAutoCommit (boolean) 1.0 Yes

void setCatalog (String) 1.0 Yes Support is driver-specific.

void setReadOnly (boolean) 1.0 Yes

void setTransactionlsolation 1.0 Yes

(int)

void setTypeMap (Map) 2.0 Core Yes Ignored.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

ConnectionPoolData

Source Object Version
Methods Introduced Supported Comments
PrintWriter getLogWriter () 2.0 No

Optional
int getLoginTimeout () 2.0 Yes

Optional
PooledConnection 2.0 Yes
getPooledConnection () Optional
PooledConnection 2.0 Yes
getPooledConnection (String, Optional
String)
void setLogWriter 2.0 No
(PrintWriter) Optional
void setLoginTimeout (int) 2.0 Yes

Optional
DatabaseMetaData Object Version
Methods Introduced Supported Comments
boolean allProceduresAreCallable () 1.0 Yes
boolean allTablesAreSelectable () 1.0 Yes
boolean dataDefinitionCausesTransaction 1.0 Yes
Commit ()
boolean 1.0 Yes
dataDefinitionlgnoredinTransactions ()
boolean deletesAreDetected (int) 2.0 Core Yes
boolean doesMaxRowsSizelncludeBlobs () 1.0 Yes
ResultSet getBestRowldentifier (String, 1.0 Yes
String, String, int, boolean)
String getCatalogSeparator () 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

41

42

Appendix A JDBC Support

DatabaseMetaData Object (cont.)
Methods

Version
Introduced Supported Comments

String getCatalogTerm () 1.0 Yes
ResultSet getCatalogs () 1.0 Yes
ResultSet getColumnPrivileges (String, 1.0 Yes
String, String, String)

ResultSet getColumns (String, String, String, 1.0 Yes

String)

Connection getConnection ()

2.0 Core Yes

ResultSet getCrossReference (String, String, 1.0 Yes
String, String, String, String)

String getDatabaseProductName () 1.0 Yes
String getDatabaseProductVersion () 1.0 Yes
int getDefaultTransactionlsolation () 1.0 Yes
int getDriverMajorVersion () 1.0 Yes
int getDriverMinorVersion () 1.0 Yes
String getDriverName () 1.0 Yes
String getDriverVersion () 1.0 Yes
ResultSet getExportedKeys (String, String, 1.0 Yes
String)

String getExtraNameCharacters () 1.0 Yes
String getldentifierQuoteString () 1.0 Yes
ResultSet getimportedKeys (String, String, 1.0 Yes
String)

ResultSet getindexinfo (String, String, 1.0 Yes
String, boolean, boolean)

int getMaxBinaryLiteralLength () 1.0 Yes
int getMaxCatalogNamelLength () 1.0 Yes
int getMaxCharLiteralLength () 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

DatabaseMetaData Object (cont.) Version
Methods Introduced Supported Comments
int getMaxColumnNameLength () 1.0 Yes
int getMaxColumnsinGroupBy () 1.0 Yes
int getMaxColumnsinindex () 1.0 Yes
int getMaxColumnsIinOrderBy () 1.0 Yes
int getMaxColumnsinSelect () 1.0 Yes
int getMaxColumnsinTable () 1.0 Yes
int getMaxConnections () 1.0 Yes
int getMaxCursorNameLength () 1.0 Yes
int getMaxIndexLength () 1.0 Yes
int getMaxProcedureNameLength () 1.0 Yes
int getMaxRowsSize () 1.0 Yes
int getMaxSchemaNamelLength () 1.0 Yes
int getMaxStatementLength () 1.0 Yes
int getMaxStatements () 1.0 Yes
int getMaxTableNameLength () 1.0 Yes
int getMaxTablesInSelect () 1.0 Yes
int getMaxUserNameLength () 1.0 Yes
String getNumericFunctions () 1.0 Yes
ResultSet getPrimaryKeys (String, String, 1.0 Yes
String)

ResultSet getProcedureColumns (String, 1.0 Yes
String, String, String)

String getProcedureTerm () 1.0 Yes
ResultSet getProcedures (String, String, 1.0 Yes

String)

SQL Server 2000 Driver for JDBC User’s Guide and Reference

43

44 Appendix A JDBC Support

DatabaseMetaData Object (cont) Version

Methods Introduced Supported Comments
String getSQLKeywords () 1.0 Yes

String getSchemaTerm () 1.0 Yes

ResultSet getSchemas () 1.0 Yes

String getSearchStringEscape () 1.0 Yes

String getStringFunctions () 1.0 Yes

String getSystemFunctions () 1.0 Yes

ResultSet getTablePrivileges (String, String, 1.0 Yes

String)

ResultSet getTableTypes () 1.0 Yes

ResultSet getTables (String, String, String, 1.0 Yes

String [])

String getTimeDateFunctions () 1.0 Yes

ResultSet getTypelnfo () 1.0 Yes

ResultSet getUDTs (String, String, String, 2.0 Core No Always returns
int 1) empty ResultSet.
String getURL () 1.0 Yes

String getUserName () 1.0 Yes

ResultSet getVersionColumns (String, 1.0 Yes

String, String)

boolean insertsAreDetected (int) 2.0 Core Yes

boolean isCatalogAtStart () 1.0 Yes

boolean isReadOnly () 1.0 Yes

boolean nullPlusNonNulllsNull () 1.0 Yes

boolean nullsAreSortedAtEnd () 1.0 Yes

boolean nullsAreSortedAtStart () 1.0 Yes

boolean nullsAreSortedHigh () 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

DatabaseMetaData Object (cont.) Version
Methods Introduced Supported Comments
boolean nullsAreSortedLow () 1.0 Yes
boolean othersDeletesAreVisible (int) 2.0 Core Yes
boolean othersinsertsAreVisible (int) 2.0 Core Yes
boolean othersUpdatesAreVisible (int) 2.0 Core Yes
boolean ownDeletesAreVisible (int) 2.0 Core Yes
boolean ownlnsertsAreVisible (int) 2.0 Core Yes
boolean ownUpdatesAreVisible (int) 2.0 Core Yes
boolean storesLowerCaseldentifiers () 1.0 Yes
boolean storesLowerCaseQuoted 1.0 Yes
Identifiers ()

boolean storesMixedCaseldentifiers () 1.0 Yes
boolean storesMixedCaseQuoted 1.0 Yes
Identifiers ()

boolean storesUpperCaseldentifiers () 1.0 Yes
boolean storesUpperCaseQuoted 1.0 Yes
Identifiers ()

boolean supportsANSI92EntryLevelSQL () 1.0 Yes
boolean supportsANSI92FullSQL () 1.0 Yes
boolean supportsANSI92Intermediate 1.0 Yes
SQL ()

boolean supportsAlterTableWith 1.0 Yes
AddColumn ()

boolean supportsAlterTableWith 1.0 Yes
DropColumn ()

boolean supportsBatchUpdates () 2.0 Core Yes
boolean supportsCatalogsinData 1.0 Yes

Manipulation ()

SQL Server 2000 Driver for JDBC User’s Guide and Reference

45

46 Appendix A JDBC Support

DatabaseMetaData Object (cont.) Version
Methods Introduced Supported Comments
boolean supportsCatalogsinindex 1.0 Yes

Definitions ()

boolean supportsCatalogsinPrivilege 1.0 Yes
Definitions ()

boolean supportsCatalogsinProcedure 1.0 Yes
Calls ()

boolean supportsCatalogsinTable 1.0 Yes
Definitions ()

boolean supportsColumnAliasing () 1.0 Yes
boolean supportsConvert () 1.0 Yes
boolean supportsConvert (int, int) 1.0 Yes
boolean supportsCoreSQLGrammar () 1.0 Yes
boolean supportsCorrelatedSubqueries () 1.0 Yes
boolean supportsDataDefinitionAndData 1.0 Yes

ManipulationTransactions ()

boolean supportsDataManipulation 1.0 Yes
TransactionsOnly ()

boolean supportsDifferentTableCorrelation 1.0 Yes
Names ()

boolean supportsExpressionsin 1.0 Yes
OrderBy ()

boolean supportsExtendedSQLGrammar () 1.0 Yes
boolean supportsFullOuterJoins () 1.0 Yes
boolean supportsGroupBy () 1.0 Yes
boolean supportsGroupByBeyondSelect () 1.0 Yes
boolean supportsGroupByUnrelated () 1.0 Yes
boolean supportsintegrityEnhancement 1.0 Yes
Facility ()

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

DatabaseMetaData Object (cont.) Version
Methods Introduced Supported Comments
boolean supportsLikeEscapeClause () 1.0 Yes
boolean supportsLimitedOuterJoins () 1.0 Yes
boolean supportsMinimumSQLGrammar () 1.0 Yes
boolean supportsMixedCaseldentifiers () 1.0 Yes
boolean supportsMixedCaseQuoted 1.0 Yes
Identifiers ()

boolean supportsMultipleResultSets () 1.0 Yes
boolean supportsMultipleTransactions () 1.0 Yes
boolean supportsNonNullableColumns () 1.0 Yes
boolean supportsOpenCursorsAcross 1.0 Yes
Commit ()

boolean supportsOpenCursorsAcross 1.0 Yes
Rollback ()

boolean supportsOpenStatementsAcross 1.0 Yes
Commit ()

boolean supportsOpenStatementsAcross 1.0 Yes
Rollback ()

boolean supportsOrderByUnrelated () 1.0 Yes
boolean supportsOuterJoins () 1.0 Yes
boolean supportsPositionedDelete () 1.0 Yes
boolean supportsPositionedUpdate () 1.0 Yes
boolean supportsResultSetConcurrency (int, 2.0 Core Yes
int)

boolean supportsResultSetType (int) 2.0 Core Yes
boolean supportsSchemasinData 1.0 Yes

Manipulation ()

SQL Server 2000 Driver for JDBC User’s Guide and Reference

47

48 Appendix A JDBC Support

DatabaseMetaData Object (cont.) Version
Methods Introduced Supported Comments
boolean supportsSchemasinindex 1.0 Yes

Definitions ()

boolean supportsSchemasin 1.0 Yes
PrivilegeDefinitions ()

boolean supportsSchemasinProcedure 1.0 Yes
Calls ()
boolean supportsSchemasinTable 1.0 Yes

Definitions ()

boolean supportsSelectForUpdate () 1.0 Yes
boolean supportsStoredProcedures () 1.0 Yes
boolean supportsSubqueriesin 1.0 Yes

Comparisons ()

boolean supportsSubqueriesinExists () 1.0 Yes
boolean supportsSubqueriesinins () 1.0 Yes
boolean supportsSubqueriesin 1.0 Yes

Quantifieds ()

boolean supportsTableCorrelationNames () 1.0 Yes
boolean supportsTransactionlsolationLevel 1.0 Yes
(int)

boolean supportsTransactions () 1.0 Yes
boolean supportsUnion () 1.0 Yes
boolean supportsUnionAll () 1.0 Yes
boolean updatesAreDetected (int) 2.0 Core Yes
boolean usesLocalFilePerTable () 1.0 Yes
boolean usesLocalFiles () 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

DataSource Object Version
Methods Introduced Supported Comments
Connection getConnection () 2.0 Optional Yes
Connection getConnection 2.0 Optional Yes
(String, String)
PrintWriter getLogWriter () 2.0 Optional No
int getLoginTimeout () 2.0 Optional Yes
void setLogWriter 2.0 Optional No
(PrintWriter)
void setLoginTimeout (int) 2.0 Optional Yes
Driver Object Version
Methods Introduced Supported Comments
boolean acceptsURL (String) 1.0 Yes
Connection connect (String, 1.0 Yes
Properties)
int getMajorVersion () 1.0 Yes
int getMinorVersion () 1.0 Yes
DriverPropertylnfo [] 1.0 Yes
getPropertylnfo (String,
Properties)
boolean jdbcCompliant () 1.0 Yes
PooledConnection Object
Version
Methods Introduced Supported Comments
void 2.0 Optional Yes

addConnectionEventListener
(ConnectionEventListener)

SQL Server 2000 Driver for JDBC User’s Guide and Reference

49

50

Appendix A JDBC Support

PooledConnection Object

(cont.) Version
Methods Introduced Supported Comments
void close() 2.0 Optional Yes

Connection getConnection()

2.0 Optional Yes A particular
PooledConnection object
can have only one
Connection object open,
and that is the one most
recently created. The
purpose of allowing the
server (PoolManager
implementation) to invoke
the method getConnection
a second time is to give that
application server a way to
take a connection away
from an application and
give it to someone else. This
is rare, but the capability is
there. The driver does not
support this “reclaiming”
of connections and will
throw a SQLException
“Reclaim of open
connection is not
supported.”

void removeConnectionEvent
Listener
(ConnectionEventListener)

2.0 Optional Yes

PreparedStatement
Object
Methods

Version
Introduced Supported Comments

void addBatch ()

2.0 Core Yes

void addBatch (String)

Ill

2.0 Core No Throws “invalid method cal
exception.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

PreparedStatement

Object (cont) Version

Methods Introduced Supported Comments

void cancel () 1.0 Yes

void clearBatch () 2.0 Core Yes

void clearParameters () 1.0 Yes

void clearWarnings () 1.0 Yes

void close () 1.0 Yes

boolean execute () 1.0 Yes

boolean execute (String) 1.0 No Throws “invalid method call”
exception.

int [] executeBatch () 2.0 Core Yes

ResultSet executeQuery () 1.0 Yes

ResultSet executeQuery 1.0 No Throws “invalid method call”

(String) exception.

int executeUpdate () 1.0 Yes

int executeUpdate (String) 1.0 No Throws “invalid method call”
exception.

Connection getConnection () 1.0 Yes

int getFetchDirection () 2.0 Core Yes

int getFetchSize () 2.0 Core Yes

int getMaxFieldSize () 1.0 Yes

int getMaxRows () 1.0 Yes

ResultSetMetaData 2.0 Core Yes

getMetaData ()

boolean getMoreResults () 1.0 Yes

int getQueryTimeout () 1.0 Yes Always returns 0.

ResultSet getResultSet () 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

51

52 Appendix A JDBC Support

PreparedStatement
Object (cont.) Version
Methods Introduced Supported Comments

int getResultSetConcurrency () 2.0 Core Yes

int getResultSetType () 2.0 Core Yes

int getUpdateCount () 1.0 Yes

SQLWarning getWarnings () 1.0 Yes

void setArray (int, Array) 2.0 Core No Throws “unsupported
method” exception.

void setAsciiStream (int, 1.0 Yes

InputStream, int)

void setBigDecimal (int, 1.0 Yes

BigDecimal)

void setBinaryStream (int, 1.0 Yes

InputStream, int)

void setBlob (int, Blob) 2.0 Core No Throws “unsupported
method” exception.

void setBoolean (int, boolean) 1.0 Yes

void setByte (int, byte) 1.0 Yes

void setBytes (int, byte []) 1.0 Yes

void setCharacterStream (int, 2.0 Core Yes

Reader, int)

void setClob (int, Clob) 2.0 Core No

void setCursorName (String) 1.0 No Throws “unsupported
method” exception.

void setDate (int, Date) 1.0 Yes

void setDate (int, Date, 2.0 Core Yes

Calendar)

void setDouble (int, double) 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

PreparedStatement

Object (cont) Version

Methods Introduced Supported Comments

void setEscapeProcessing 1.0 Yes Ignored.

(boolean)

void setFetchDirection (int) 2.0 Core Yes

void setFetchSize (int) 2.0 Core Yes

void setFloat (int, float) 1.0 Yes

void setint (int, int) 1.0 Yes

void setLong (int, long) 1.0 Yes

void setMaxFieldSize (int) 1.0 Yes

void setMaxRows (int) 1.0 Yes

void setNull (int, int) 1.0 Yes

void setNull (int, int, String) 2.0 Core Yes

void setObject (int, Object) 1.0 Yes

void setObject (int, Object, int) 1.0 Yes

void setObject (int, Object, int, 1.0 Yes

int)

void setQueryTimeout (int) 1.0 No Throws “unsupported
method” exception.

void setRef (int, Ref) 2.0 Core No Throws “unsupported
method” exception.

void setShort (int, short) 1.0 Yes

void setString (int, String) 1.0 Yes

void setTime (int, Time) 1.0 Yes

void setTime (int, Time, 2.0 Core Yes

Calendar)

void setTimestamp (int, 1.0 Yes

Timestamp)

SQL Server 2000 Driver for JDBC User’s Guide and Reference

53

54 Appendix A JDBC Support

PreparedStatement
Object (cont.) Version
Methods Introduced Supported Comments
void setTimestamp (int, 2.0 Core Yes
Timestamp, Calendar)
void setUnicodeStream (int, 1.0 No Throws “unsupported
InputStream, int) method” exception.
Ref Object Version
Methods Introduced Supported Comments
(all) 2.0 Core No
Referenceable Object JDBC
Version
Methods Introduced Supported Comments
Reference getReference() javax.naming Yes Implemented by DataSource
classes.
ResultSet Object Version
Methods Introduced Supported Comments
boolean absolute (int) 2.0 Core Yes
void afterLast () 2.0 Core Yes
void beforeFirst () 2.0 Core Yes
void cancelRowUpdates () 2.0 Core Yes
void clearWarnings () 1.0 Yes
void close () 1.0 Yes
void deleteRow () 2.0 Core Yes
int findColumn (String) 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

ResultSet Object (cont.) Version

Methods Introduced Supported Comments

boolean first () 2.0 Core Yes

Array getArray (String) 2.0 Core No Throws “unsupported
method” exception.

Array getArray (int) 2.0 Core No Throws “unsupported
method” exception.

InputStream getAsciiStream 1.0 Yes

(String)

InputStream getAsciiStream 1.0 Yes

(int)

BigDecimal getBigDecimal 2.0 Core Yes

(String)

BigDecimal getBigDecimal 2.0 Core Yes

(int)

BigDecimal getBigDecimal 1.0 Yes

(String, int)

BigDecimal getBigDecimal 1.0 Yes

(int, int)

InputStream getBinaryStream 1.0 Yes

(int)

InputStream getBinaryStream 1.0 Yes

(String)

Blob getBlob (int) 2.0 Core No Throws “unsupported
method” exception.

Blob getBlob (String) 2.0 Core No Throws “unsupported
method” exception.

boolean getBoolean (String) 1.0 Yes

boolean getBoolean (int) 1.0 Yes

byte getByte (int) 1.0 Yes

byte getByte (String) 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

55

56 Appendix A JDBC Support

ResultSet Object (cont.) Version

Methods Introduced Supported Comments

byte [] getBytes (String) 1.0 Yes

byte [] getBytes (int) 1.0 Yes

Reader getCharacterStream 2.0 Core Yes

(int)

Reader getCharacterStream 2.0 Core Yes

(String)

Clob getClob (String) 2.0 Core No Throws “unsupported
method” exception.

Clob getClob (int) 2.0 Core No Throws “unsupported
method” exception.

int getConcurrency () 2.0 Core Yes

String getCursorName () 1.0 No Throws “unsupported
method” exception.

Date getDate (int) 1.0 Yes

Date getDate (String) 1.0 Yes

Date getDate (String, 2.0 Core No Throws “unsupported

Calendar) method” exception.

Date getDate (int, Calendar) 2.0 Core Yes

double getDouble (String) 1.0 Yes
double getDouble (int) 1.0 Yes
int getFetchDirection () 2.0 Core Yes
int getFetchSize () 2.0 Core Yes
float getFloat (int) 1.0 Yes
float getFloat (String) 1.0 Yes
int getint (int) 1.0 Yes
int getint (String) 1.0 Yes
long getLong (int) 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

ResultSet Object (cont.) Version

Methods Introduced Supported Comments

long getLong (String) 1.0 Yes

ResultSetMetaData 1.0 Yes

getMetaData ()

Object getObject (int) 1.0 Yes

Object getObject (String) 1.0 Yes

Object getObject (int, Map) 2.0 Core Yes Map ignored.

Object getObject (String, 2.0 Core Yes Map ignored.

Map)

Ref getRef (int) 2.0 Core No Throws “unsupported
method” exception.

Ref getRef (String) 2.0 Core No Throws “unsupported
method” exception.

int getRow () 2.0 Core Yes

short getShort (String) 1.0 Yes

short getShort (int) 1.0 Yes

Statement getStatement () 2.0 Core Yes

String getString (int) 1.0 Yes

String getString (String) 1.0 Yes

Time getTime (int) 1.0 Yes

Time getTime (String) 1.0 Yes

Time getTime (String, 2.0 Core Yes

Calendar)

Time getTime (int, Calendar) 2.0 Core Yes

Timestamp getTimestamp 1.0 Yes

(int)

Timestamp getTimestamp 1.0 Yes

(String)

SQL Server 2000 Driver for JDBC User’s Guide and Reference

57

58

Appendix A JDBC Support

ResultSet Object (cont.) Version

Methods Introduced Supported Comments
Timestamp getTimestamp 2.0 Core Yes

(String, Calendar)

Timestamp getTimestamp (int, 2.0 Core Yes

Calendar)

int getType () 2.0 Core Yes

InputStream 1.0 No Throws “unsupported
getUnicodeStream (int) method” exception.
InputStream 1.0 No Throws “unsupported
getUnicodeStream (String) method” exception.
SQLWarning getWarnings () 1.0 Yes

void insertRow () 2.0 Core Yes

boolean isAfterLast () 2.0 Core Yes

boolean isBeforeFirst () 2.0 Core Yes

boolean isFirst () 2.0 Core Yes

boolean isLast () 2.0 Core Yes

boolean last () 2.0 Core Yes

void moveToCurrentRow () 2.0 Core Yes

void moveTolnsertRow () 2.0 Core Yes

boolean next () 1.0 Yes

boolean previous () 2.0 Core Yes

void refreshRow () 2.0 Core Yes

boolean relative (int) 2.0 Core Yes

boolean rowDeleted () 2.0 Core Yes

boolean rowlInserted () 2.0 Core Yes

boolean rowUpdated () 2.0 Core Yes

void setFetchDirection (int) 2.0 Core Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

ResultSet Object (cont.) Version
Methods Introduced Supported Comments
void setFetchSize (int) 2.0 Core Yes
void updateAsciiStream 2.0 Core Yes
(String, InputStream, int)

void updateAsciiStream (int, 2.0 Core Yes
InputStream, int)

void updateBigDecimal (int, 2.0 Core Yes
BigDecimal)

void updateBigDecimal 2.0 Core Yes
(String, BigDecimal)

void updateBinaryStream 2.0 Core Yes
(String, InputStream, int)

void updateBinaryStream (int, 2.0 Core Yes
InputStream, int)

void updateBoolean (int, 2.0 Core Yes
boolean)

void updateBoolean (String, 2.0 Core Yes
boolean)

void updateByte (String, byte) 2.0 Core Yes
void updateByte (int, byte) 2.0 Core Yes
void updateBytes (String, 2.0 Core Yes
byte [])

void updateBytes (int, byte [I) 2.0 Core Yes
void updateCharacterStream 2.0 Core Yes
(String, Reader, int)

void updateCharacterStream 2.0 Core Yes
(int, Reader, int)

void updateDate (int, Date) 2.0 Core Yes
void updateDate (String, 2.0 Core Yes

Date)

SQL Server 2000 Driver for JDBC User’s Guide and Reference

59

60

Appendix A JDBC Support

ResultSet Object (cont.) Version
Methods Introduced Supported Comments
void updateDouble (String, 2.0 Core Yes
double)

void updateDouble (int, 2.0 Core Yes
double)

void updateFloat (int, float) 2.0 Core Yes
void updateFloat (String, 2.0 Core Yes
float)

void updatelnt (int, int) 2.0 Core Yes
void updatelnt (String, int) 2.0 Core Yes
void updateLong (String, 2.0 Core Yes
long)

void updatelLong (int, long) 2.0 Core Yes
void updateNull (String) 2.0 Core Yes
void updateNull (int) 2.0 Core Yes
void updateObject (String, 2.0 Core Yes
Object)

void updateObiject (int, 2.0 Core Yes
Object)

void updateObject (String, 2.0 Core Yes
Object, int)

void updateObject (int, 2.0 Core Yes
Object, int)

void updateRow () 2.0 Core Yes
void updateShort (int, short) 2.0 Core Yes
void updateShort (String, 2.0 Core Yes
short)

void updateString (String, 2.0 Core Yes

String)

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality 61

ResultSet Object (cont.) Version
Methods Introduced Supported Comments

void updateString (int, String) 2.0 Core Yes

void updateTime (int, Time) 2.0 Core Yes

void updateTime (String, 2.0 Core Yes
Time)

void updateTimestamp 2.0 Core Yes
(String, Timestamp)

void updateTimestamp (int, 2.0 Core Yes
Timestamp)

boolean wasNull () 1.0 Yes

ResultSetMetaData

Object Version

Methods Introduced Supported Comments
String getCatalogName (int) 1.0 Yes
String getColumnClassName 2.0 Core Yes
(int)

int getColumnCount () 1.0 Yes
int getColumnDisplaySize (int) 1.0 Yes
String getColumnLabel (int) 1.0 Yes
String getColumnName (int) 1.0 Yes
int getColumnType (int) 1.0 Yes
String getColumnTypeName 1.0 Yes
(int)

int getPrecision (int) 1.0 Yes
int getScale (int) 1.0 Yes
String getSchemaName (int) 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

62 Appendix A JDBC Support

ResultSetMetaData
Object (cont.) Version
Methods Introduced Supported Comments
String getTableName (int) 1.0 Yes
boolean isAutolncrement (int) 1.0 Yes
boolean isCaseSensitive (int) 1.0 Yes
boolean isCurrency (int) 1.0 Yes
boolean isDefinitelyWritable 1.0 Yes
(int)
int isNullable (int) 1.0 Yes
boolean isReadOnly (int) 1.0 Yes
boolean isSearchable (int) 1.0 Yes
boolean isSigned (int) 1.0 Yes
boolean isWritable (int) 1.0 Yes
RowSet Object Version
Methods Introduced Supported Comments
(all) 2.0 No
Optional
Serializable Object Version
Methods Introduced Supported Comments
(N/A) java.io Yes Implemented by
DataSource classes.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Supported Functionality

Struct Object Version

Methods Introduced Supported Comments
(all) 2.0 No
Statement Object Version

Methods Introduced Supported Comments
void addBatch (String) 2.0 Core Yes
void cancel () 1.0 Yes
void clearBatch () 2.0 Core Yes
void clearWarnings () 1.0 Yes
void close () 1.0 Yes
boolean execute (String) 1.0 Yes
int [] executeBatch () 2.0 Core Yes
ResultSet executeQuery (String) 1.0 Yes
int executeUpdate (String) 1.0 Yes
Connection getConnection () 2.0 Core Yes
int getFetchDirection () 2.0 Core Yes
int getFetchSize () 2.0 Core Yes
int getMaxFieldSize () 1.0 Yes
int getMaxRows () 1.0 Yes
boolean getMoreResults () 1.0 Yes
int getQueryTimeout () 1.0 Yes
ResultSet getResultSet () 1.0 Yes
int getResultSetConcurrency () 2.0 Core Yes
int getResultSetType () 2.0 Core Yes
int getUpdateCount () 1.0 Yes

SQL Server 2000 Driver for JDBC User’s Guide and Reference

63

64 Appendix A JDBC Support

Statement Object (cont) Version
Methods Introduced Supported Comments
SQLWarning getWarnings () 1.0 Yes
void setCursorName (String) 1.0 No Throws “unsupported
method” exception.
void setEscapeProcessing 1.0 Yes Ignored.
(boolean)
void setFetchDirection (int) 2.0 Core Yes
void setFetchSize (int) 2.0 Core Yes
void setMaxFieldSize (int) 1.0 Yes
void setMaxRows (int) 1.0 Yes
void setQueryTimeout (int) 1.0 No Throws “unsupported
method” exception.
XAConnection Object Version
Methods Introduced Supported Comments
(all) 2.0 Yes
Optional
XADataSource Object Version
Methods Introduced Supported Comments
(all) 2.0 Yes
Optional

SQL Server 2000 Driver for JDBC User’s Guide and Reference

65

B SQL Server 2000 Driver for
JDBC GetTypeinfo

The following table provides results returned from the method
DataBaseMetaData.getTypeinfo for the SQL Server 2000 Driver
for JDBC. The table is alphabetical first by TYPE_NAME, and then

by parameter.

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC

TYPE_NAME = bigint

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -5 (BIGINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = bigint
MAXIMUM_SCALE =0

TYPE_NAME = bigint identity

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -5 (BIGINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = bigint identity
MAXIMUM_SCALE =0

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX =10
PRECISION =19

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX =10
PRECISION = 19

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

SQL Server 2000 Driver for JDBC User’s Guide and Reference

66

Appendix B SQL Server 2000 Driver for JDBC GetTypeinfo

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = binary

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = length
DATA_TYPE = -2 (BINARY)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = 0x
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = binary
MAXIMUM_SCALE = NULL

TYPE_NAME = bit

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -7 (BIT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = bit
MAXIMUM_SCALE =0

TYPE_NAME = char

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = length
DATA_TYPE = 1 (CHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX =’
LITERAL_SUFFIX =’
LOCAL_TYPE_NAME = char
MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 8000
SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION =1

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 8000
SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

SQL Server 2000 Driver for JDBC User’s Guide and Reference

67

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = datetime

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 93 (TIMESTAMP)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="'
LITERAL_SUFFIX ="'
LOCAL_TYPE_NAME = datetime
MAXIMUM_SCALE =3

TYPE_NAME = decimal

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = precision,scale
DATA_TYPE = 3 (DECIMAL)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = decimal
MAXIMUM_SCALE = 38

TYPE_NAME = decimal() identity

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = precision
DATA_TYPE = 3 (DECIMAL)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = decimal() identity
MAXIMUM_SCALE =0

MINIMUM_SCALE =3
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 23

SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX =10
PRECISION = 38

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX =10
PRECISION =38

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

SQL Server 2000 Driver for JDBC User’s Guide and Reference

68

Appendix B SQL Server 2000 Driver for JDBC GetTypeinfo

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = float

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 6 (FLOAT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = float
MAXIMUM_SCALE = NULL

TYPE_NAME = image

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -4 (LONGVARBINARY)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = Ox
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = image
MAXIMUM_SCALE = NULL

TYPE_NAME = int

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 4 (INTEGER)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = int
MAXIMUM_SCALE =0

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = 2
PRECISION =53

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 2147483647
SEARCHABLE =0
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX =10
PRECISION = 10

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

SQL Server 2000 Driver for JDBC User’s Guide and Reference

69

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = int identity

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 4 (INTEGER)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = int identity
MAXIMUM_SCALE =0

TYPE_NAME = money

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 3 (DECIMAL)
FIXED_PREC_SCALE = true
LITERAL_PREFIX = $
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = money
MAXIMUM_SCALE =4

TYPE_NAME = nchar

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = length
DATA_TYPE = 1 (CHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N’
LITERAL_SUFFIX ="'
LOCAL_TYPE_NAME = nchar
MAXIMUM_SCALE = NULL

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX =10
PRECISION =10

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

MINIMUM_SCALE = 4
NULLABLE =1
NUM_PREC_RADIX =10
PRECISION = 19

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 4000
SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

SQL Server 2000 Driver for JDBC User’s Guide and Reference

70

Appendix B SQL Server 2000 Driver for JDBC GetTypeinfo

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = ntext

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -1 (LONGVARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N’
LITERAL_SUFFIX =’
LOCAL_TYPE_NAME = ntext
MAXIMUM_SCALE = NULL

TYPE_NAME = numeric

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = precision,scale
DATA_TYPE = 2 (NUMERIC)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = numeric
MAXIMUM_SCALE = 38

TYPE_NAME = numeric() identity

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = precision
DATA_TYPE = 2 (NUMERIC)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = numeric() identity
MAXIMUM_SCALE =0

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 1073741823
SEARCHABLE =1
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX =10
PRECISION =38

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX =10
PRECISION = 38

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

SQL Server 2000 Driver for JDBC User’s Guide and Reference

71

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = nvarchar

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = max length
DATA_TYPE = 12 (VARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N’
LITERAL_SUFFIX ="’
LOCAL_TYPE_NAME = nvarchar
MAXIMUM_SCALE = NULL

TYPE_NAME = real

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 7 (REAL)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = real
MAXIMUM_SCALE = NULL

TYPE_NAME = smalldatetime

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 93 (TIMESTAMP)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="'

LITERAL_SUFFIX ="'
LOCAL_TYPE_NAME = smalldatetime
MAXIMUM_SCALE =0

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 4000
SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = 2
PRECISION = 24

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 16

SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

SQL Server 2000 Driver for JDBC User’s Guide and Reference

72

Appendix B SQL Server 2000 Driver for JDBC GetTypeinfo

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = smallint

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 5 (SMALLINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = smallint
MAXIMUM_SCALE =0

TYPE_NAME = smallint identity

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = NULL

DATA_TYPE =5 (SMALLINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = smallint identity
MAXIMUM_SCALE =0

TYPE_NAME = smallmoney

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 3 (DECIMAL)
FIXED_PREC_SCALE = true
LITERAL_PREFIX = $
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = smallmoney
MAXIMUM_SCALE = 4

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX =10
PRECISION =5

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX =10
PRECISION =5

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

MINIMUM_SCALE = 4
NULLABLE =1
NUM_PREC_RADIX =10
PRECISION = 10

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = false

SQL Server 2000 Driver for JDBC User’s Guide and Reference

73

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = sql_variant

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 12 (VARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = sql_variant
MAXIMUM_SCALE =0

TYPE_NAME = sysname

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = 12 (VARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = N’
LITERAL_SUFFIX =’
LOCAL_TYPE_NAME = sysname
MAXIMUM_SCALE = NULL

TYPE_NAME = text

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -1 (LONGVARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="'
LITERAL_SUFFIX ="'
LOCAL_TYPE_NAME = text
MAXIMUM_SCALE = NULL

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX =10
PRECISION = 8000
SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE = NULL
NULLABLE =0
NUM_PREC_RADIX = NULL
PRECISION = 128

SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 2147483647
SEARCHABLE =1
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

SQL Server 2000 Driver for JDBC User’s Guide and Reference

74

Appendix B SQL Server 2000 Driver for JDBC GetTypeinfo

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -2 (BINARY)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = Ox
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = timestamp
MAXIMUM_SCALE = NULL

TYPE_NAME = tinyint

AUTO_INCREMENT = false
CASE_SENSITIVE = false
CREATE_PARAMS = NULL
DATA_TYPE = -6 (TINYINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = tinyint
MAXIMUM_SCALE =0

TYPE_NAME = tinyint identity

AUTO_INCREMENT = true
CASE_SENSITIVE = false
CREATE_PARAMS = NULL

DATA_TYPE = -6 (TINYINT)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = NULL
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = tinyint identity
MAXIMUM_SCALE =0

MINIMUM_SCALE = NULL
NULLABLE =0
NUM_PREC_RADIX = NULL
PRECISION =8

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE =0
NULLABLE =1
NUM_PREC_RADIX =10
PRECISION =3

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = true

MINIMUM_SCALE =0
NULLABLE =0
NUM_PREC_RADIX =10
PRECISION =3

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = true

SQL Server 2000 Driver for JDBC User’s Guide and Reference

75

Table B-1. GetTypeinfo for the SQL Server 2000 Driver for JDBC (cont.)

TYPE_NAME = uniqueidentifier

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = NULL

DATA_TYPE = 1(CHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX =’

LITERAL_SUFFIX =’
LOCAL_TYPE_NAME = uniqueidentifier
MAXIMUM_SCALE = NULL

TYPE_NAME = varbinary

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = max length
DATA_TYPE = -3 (VARBINARY)
FIXED_PREC_SCALE = false
LITERAL_PREFIX = 0x
LITERAL_SUFFIX = NULL
LOCAL_TYPE_NAME = varbinary
MAXIMUM_SCALE = NULL

TYPE_NAME = varchar

AUTO_INCREMENT = NULL
CASE_SENSITIVE = false
CREATE_PARAMS = max length
DATA_TYPE = 12 (VARCHAR)
FIXED_PREC_SCALE = false
LITERAL_PREFIX ="'
LITERAL_SUFFIX =’
LOCAL_TYPE_NAME = varchar
MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 36

SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 8000
SEARCHABLE =2
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

MINIMUM_SCALE = NULL
NULLABLE =1
NUM_PREC_RADIX = NULL
PRECISION = 8000
SEARCHABLE =3
SQL_DATA_TYPE = NULL
SQL_DATETIME_SUB = NULL
UNSIGNED_ATTRIBUTE = NULL

SQL Server 2000 Driver for JDBC User’s Guide and Reference

76 Appendix B SQL Server 2000 Driver for JDBC GetTypeinfo

SQL Server 2000 Driver for JDBC User’s Guide and Reference

C Designing JDBC Applications
for Performance Optimization

Developing performance-oriented JDBC applications is not easy.
JDBC drivers do not throw exceptions to say that your code is
running too slow.

These guidelines were compiled by examining the JDBC
implementations of numerous shipping JDBC applications. The
guidelines discuss using database metadata materials, retrieving
data, selecting JDBC objects and methods, designing JDBC

applications, and updating data.

The following table summarizes some common JDBC system
performance problems and suggests some possible solutions.

Problem

Solution

See guidelines in...

Network communication is
slow

Reduce network traffic

“Using Database Metadata
Methods” on page 78

Evaluation of complex SQL
queries on the database
server is slow and might
reduce concurrency

Simplify queries

“Using Database Metadata
Methods” on page 78

“Selecting JDBC Objects and
Methods” on page 83

Excessive calls from the
application to the driver
decrease performance

Optimize
application-to-driver
interaction

“Retrieving Data” on page 81

“Selecting JDBC Objects and
Methods” on page 83

Disk input/output is slow

Limit disk input/output

“Designing JDBC
Applications” on page 86

SQL Server 2000 Driver for JDBC User’s Guide and Reference

77

78 Appendix C Designing JDBC Applications for Performance Optimization

Using Database Metadata Methods

Because database metadata methods that generate Resultset
objects are slow compared to other JDBC methods, their frequent
use can impair system performance. The guidelines in this section
will help you to optimize system performance when selecting and
using database metadata.

Minimizing the Use of Database
Metadata Methods

Compared to other JDBC methods, database metadata methods
that generate Resultset objects are relatively slow. Applications
should cache information returned from result sets that generate
database metadata methods so that multiple executions are not
needed.

While almost no JDBC application can be written without
database metadata methods, you can improve system
performance by minimizing their use. To return all result column
information mandated by the JDBC specification, a JDBC driver
may have to perform complex queries or multiple queries to
return the necessary result set for a single call to a database
metadata method. These particular elements of the SQL
language are performance-expensive.

Applications should cache information from database metadata
methods. For example, call getTypelnfo once in the application
and cache away the elements of the result set that your
application depends on. It is unlikely that any application uses all
elements of the result set generated by a database metadata
method, so the cache of information should not be difficult to
maintain.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

ResultSet WSrs

ResultSet WSrs

Using Database Metadata Methods

Avoiding Search Patterns

Using null arguments or search patterns in database metadata
methods results in generating time-consuming queries. In
addition, network traffic potentially increases due to unwanted
results. Always supply as many non-null arguments to result sets
that generate database metadata methods as possible.

Because database metadata methods are slow, applications
should invoke them as efficiently as possible. Many applications
pass the fewest non-null arguments necessary for the function to
return success.

For example:

WSc.getTables (null, null, "WSTable", null);

should be:

WSc.getTables ("catl", "johng", "WSTable", "TABLE");

Sometimes, little information is known about the object for
which you are requesting information. Any information that the
application can send the driver when calling database metadata
methods can result in improved performance and reliability.

Using a Test Query to Determine Table
Characteristics

Avoid using getColumns to determine characteristics about a
table. Instead, use a test query with getMetadata.

Consider an application that allows the user to choose the
columns that will be selected. Should the application use
getColumns to return information about the columns to the user
or instead prepare a test query and call getMetadata?

SQL Server 2000 Driver for JDBC User’s Guide and Reference

79

80

Appendix C Designing JDBC Applications for Performance Optimization

Case 1: GetColumns Method

ResultSet WSrc = WSc.getColumns (... "UnknownTable" ...);
// This call to getColumns will generate a query to

// the system catalogs... possibly a join

// which must be prepared, executed, and produce

// a result set

WSrc.next () ;
string Cname = getString(4);

// user must retrieve N rows from the server
// N = # result columns of UnknownTable
// result column information has now been obtained

Case 2: GetMetadata Method

// prepare test query
PreparedStatement WSps = WSc.prepareStatement
(... "SELECT * from UnknownTable WHERE 1 = 0" ...);
// query is never executed on the server -
// only prepared
ResultSetMetaData WSsmd=wsps.getMetaDatal() ;
int numcols = WSrsmd.getColumnCount () ;

int ctype = WSrsmd.getColumnType (n)

// result column information has now been obtained
// Note we also know the column ordering within the
// table! This information cannot be

// assumed from the getColumns example.

In both cases, a query is sent to the server, but in Case 1 the query
must be evaluated and form a result set that must be sent to the
client. Clearly, Case 2 is the better performing model.

To somewhat complicate this discussion, let us consider a DBMS
server that does not natively support preparing a SQL statement.
The performance of Case 1 does not change but Case 2 increases
minutely because the test query must be evaluated instead of

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Retrieving Data

only prepared. Because the Where clause of the query always
evaluates to FALSE, the query generates no result rows and
should execute without accessing table data. For this situation,
method 2 still outperforms method 1.

Retrieving Data

To retrieve data efficiently, return only the data that you need,
and choose the most efficient method of doing so. The
guidelines in this section will help you to optimize system
performance when retrieving data with JDBC applications.

Retrieving Long Data

Unless it is necessary, applications should not request long data
because retrieving long data across a network is slow and
resource-intensive.

Most users don’t want to see long data. If the user does want to
see these result items, then the application can query the
database again, specifying only the long columns in the select
list. This method allows the average user to retrieve the result
set without having to pay a high performance penalty for
network traffic.

Although the best method is to exclude long data from the
select list, some applications do not formulate the select list
before sending the query to the JDBC driver (that is, some
applications select * from <table name> ...). If the select list
contains long data, then some drivers must retrieve that data at
fetch time even if the application does not bind the long data in
the result set. When possible, the designer should attempt to

SQL Server 2000 Driver for JDBC User’s Guide and Reference

82 Appendix C Designing JDBC Applications for Performance Optimization

implement a method that does not retrieve all columns of the
table.

Additionally, although the getClob and getBlob methods allow
the application to control how long data is retrieved in the
application, the designer must realize that in many cases, the
JDBC driver emulates these methods due to the lack of true
locator support in the DBMS. In such cases, the driver must
retrieve all of the long data across the network before exposing
the getClob and getBlob methods.

Sometimes long data must be retrieved. When this is the case,
remember that most users do not want to see 100 KB, or more, of
text on the screen.

Reducing the Size of Data Retrieved

To reduce network traffic and improve performance, you can
reduce the size of any data being retrieved to some manageable
limit by calling setMaxRows, setMaxFieldSize, and the
driver-specific SetFetchSize. Another method of reducing the size
of the data being retrieved is to decrease the column size. If the
driver allows you to define the packet size, use the smallest
packet size that will meet your needs.

In addition, be careful to return only the rows you need. If you
return five columns when you only need two columns,
performance is decreased, especially if the unnecessary rows
include long data.

Choosing the Right Data Type

Retrieving and sending certain data types can be expensive.
When you design a schema, select the data type that can be
processed most efficiently. For example, integer data is processed
faster than floating-point data. Floating-point data is defined

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Selecting JDBC Objects and Methods

according to internal database-specific formats, usually in a
compressed format. The data must be decompressed and
converted into a different format so that it can be processed by
the wire protocol.

Processing time is shortest for character strings, followed by
integers, which usually require some conversion or byte
ordering. Processing floating-point data and timestamps is at
least twice as slow as integers.

Selecting JDBC Objects and Methods

The guidelines in this section will help you to optimize system
performance when selecting and using JDBC objects and
methods.

Using Parameter Markers as
Arguments to Stored Procedures

When calling stored procedures, always use parameter markers
for the argument markers instead of using literal arguments.
JDBC drivers can call stored procedures on the database server
either by executing the procedure as any other SQL query, or by
optimizing the execution by invoking a Remote Procedure Call
(RPC) directly into the database server. Executing the stored
procedure as a SQL query results in the database server parsing
the statement, validating the argument types, and converting
the arguments into the correct data types. Remember that SQL is
always sent to the database server as a character string, for
example, “{call getCustName (12345)}". In this case, even though
the application programmer might assume that the only
argument to getCustName is an integer, the argument is actually
passed inside a character string to the server. The database server

SQL Server 2000 Driver for JDBC User’s Guide and Reference

83

84 Appendix C Designing JDBC Applications for Performance Optimization

would parse the SQL query, isolate the single argument value
12345, then convert the string ‘12345’ into an integer value.

By invoking an RPC inside the database server, the overhead of
using a SQL character string is avoided. Instead, the procedure is
called only by name with the argument values already encoded
into their native data types.

Case 1

Stored Procedure cannot be optimized to use a server-side RPC.
The database server must parse the statement, validate the
argument types, and convert the arguments into the correct data

types.

CallableStatement cstmt = conn.prepareCall (“call getCustName (12345)");
ResultSet rs = cstmt.executeQuery ();

Case 2

Stored Procedure can be optimized to use a server-side RPC.
Because the application calls the procedure by name and the
argument values are already encoded, the load on the database
server is less.

CallableStatement cstmt = conn.prepareCall (“Call getCustName (?)”);
cstmt.setLong (1,12345);
ResultSet rs = cstmt.executeQuery();

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Selecting JDBC Objects and Methods

Using the Statement Object Instead of
the PreparedStatement Object

JDBC drivers are optimized based on the perceived use of the
functions that are being executed. Choose between the
PreparedStatement object and the Statement object depending
on the planned use. The Statement object is optimized for a
single execution of a SQL statement. In contrast, the
PreparedStatement object is optimized for SQL statements that
will be executed two or more times.

The overhead for the initial execution of a PreparedStatement
object is high. The advantage comes with subsequent executions
of the SQL statement.

Choosing the Right Cursor

Choosing the appropriate type of cursor allows maximum
application flexibility. This section summarizes the performance
issues of three types of cursors.

A forward-only cursor provides excellent performance for
sequential reads of all of the rows in a table. However, it cannot
be used when the rows to be returned are not sequential.

Insensitive cursors used by JDBC drivers are ideal for applications
that require high levels of concurrency on the database server
and require the ability to scroll forwards and backwards through
result sets. The first request to an insensitive cursor fetches all of
the rows and stores them on the client. Thus, the first request is
very slow, especially when long data is retrieved. Subsequent
requests do not require any network traffic and are processed
quickly. Because the first request is processed slowly, insensitive
cursors should not be used for a single request of one row.
Designers should also avoid using insensitive cursors when long
data is returned, because memory can be exhausted. Some

SQL Server 2000 Driver for JDBC User’s Guide and Reference

85

86 Appendix C Designing JDBC Applications for Performance Optimization

insensitive cursor implementations cache the data in a temporary
table on the database server and avoid the performance issue.

Sensitive cursors, sometimes called keyset-driven cursors, use
identifiers, such as a ROWID, that already exist in your database.
When you scroll through the result set, the data for the
identifiers is retrieved. Because each request generates network
traffic, performance can be very slow. However, returning
nonsequential rows does not further affect performance.
Sensitive cursors are the preferred scrollable cursor model for
dynamic situations, when the application cannot afford to buffer
the data from an insensitive cursor.

Designing

JDBC Applications

The guidelines in this section will help you to optimize system
performance when designing JDBC applications.

Managing Connections

Connection management is important to application
performance. Optimize your application by connecting once and
using multiple statement objects, instead of performing multiple
connections. Avoid connecting to a data source after establishing
an initial connection.

Although gathering driver information at connect time is a good
practice, it is often more efficient to gather it in one step rather
than two steps. For example, some applications establish a
connection and then call a method in a separate component that
reattaches and gathers information about the driver.
Applications that are designed as separate entities should pass
the established connection object to the data collection routine
instead of establishing a second connection.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Designing JDBC Applications

Another bad practice is to connect and disconnect several times
throughout your application to perform SQL statements.
Connection objects can have multiple statement objects
associated with them. Statement objects, which are defined to
be memory storage for information about SQL statements, can
manage multiple SQL statements.

You can improve performance significantly with connection
pooling, especially for applications that connect over a network
or through the World Wide Web. Connection pooling lets you
reuse connections. Closing connections does not close the
physical connection to the database. When an application
requests a connection, an active connection is reused, thus
avoiding the network I/O needed to create a new connection.

Connection and statement handling should be addressed before
implementation. Spending time and thoughtfully handling
connection management improves application performance and
maintainability.

Managing Commits in Transactions

Committing transactions is extremely disk I/O intensive and slow.
Always turn off autocommit by using the following setting:
WSConnection.setAutoCommit (false).

What does a commit actually involve? The database server must
flush back to disk every data page that contains updated or new
data. This is not a sequential write but a searched write to
replace existing data in the table. By default, Autocommit is on
when connecting to a data source, and Autocommit mode
usually impairs performance because of the significant amount
of disk 1/0 needed to commit every operation.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

87

88 Appendix C Designing JDBC Applications for Performance Optimization

Although using transactions can help application performance,
do not take this tip too far. Leaving transactions active can reduce
throughput by holding locks on rows for long times, preventing
other users from accessing the rows. Commit transactions in
intervals that allow maximum concurrency.

Choosing the Right Transaction Model

Many systems support distributed transactions; that is,
transactions that span multiple connections. Distributed
transactions are at least four times slower than normal
transactions due to the logging and network I/O necessary to
communicate between all the components involved in the
distributed transaction. Unless distributed transactions are
required, avoid using them. Instead, use local transactions
whenever possible.

For the best system performance, design the application to run
under a single Connection object.

Updating Data

This section provides general guidelines to help you to optimize
system performance when updating data in databases.

Using updateXXX Methods

Although programmatic updates do not apply to all types of
applications, developers should attempt to use programmatic
updates and deletes. Using the updateXXX methods of the
ResultSet object allows the developer to update data without
building a complex SQL statement. Instead, the developer simply
supplies the column in the result set that is to be updated and the

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Updating Data

data that is to be changed. Then, before moving the cursor from
the row in the result set, the updateRow method must be called
to update the database as well.

In the following code fragment, the value of the Age column of
the Resultset object rs is retrieved using the method getint, and
the method updatelnt is used to update the column with an int
value of 25. The method updateRow is called to update the row
in the database that contains the modified value.

int n = rs.getInt("Age");
// n contains value of Age column in the resultset rs

rs.updateInt ("Age", 25);

rs.updateRow () ;

In addition to making the application more easily maintainable,
programmatic updates usually result in improved performance.
Because the database server is already positioned on the row for
the Select statement in process, performance-expensive
operations to locate the row to be changed are not needed. If
the row must be located, the server usually has an internal
pointer to the row available (for example, ROWID).

Using getBestRowindentifier()

Use getBestRowlIndentifier() to determine the optimal set of
columns to use in the Where clause for updating data.
Pseudo-columns often provide the fastest access to the data, and
these columns can only be determined by using
getBestRowlndentifier().

Some applications cannot be designed to take advantage of
positional updates and deletes. Some applications might
formulate the Where clause by using all searchable result
columns by calling getPrimaryKeys(), or by calling getindexinfo()
to find columns that might be part of a unique index. These
methods usually work, but might result in fairly complex queries.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

89

Appendix C Designing JDBC Applications for Performance Optimization

Consider the following example:

ResultSet WSrs = WSs.executeQuery
("SELECT first_name, last_name, ssn, address, city, state, zip
FROM emp") ;
// fetchdata
WSs.executeQuery ("UPDATE EMP SET ADDRESS ?
WHERE first _name = ? and last_name = ? and ssn = ?
and address = ? and city = ? and state = ?
and zip = ?");
// fairly complex query

Applications should call getBestRowIndentifier() to retrieve the
optimal set of columns (possibly a pseudo-column) that identifies
a specific record. Many databases support special columns that
are not explicitly defined by the user in the table definition but
are "hidden" columns of every table (for example, ROWID and
TID). These pseudo-columns generally provide the fastest access
to the data because they typically are pointers to the exact
location of the record. Because pseudo-columns are not part of
the explicit table definition, they are not returned from
getColumns. To determine if pseudo-columns exist, call
getBestRowlndentifier().

Consider the previous example again:

ResultSet WSrowid = getBestRowIndentifier ()
(.... "emp", ...);

WSs.executeQuery ("UPDATE EMP SET ADDRESS = ?
WHERE first _name = ? and last_name = ? and ssn = ?
and address = ? and city = ? and state = ?
and zip = ?");

// fastest access to the data!

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Conclusion

If your data source does not contain special pseudo-columns,
then the result set of getBestRowlndentifier() consists of the
columns of the most optimal unique index on the specified table
(if a unique index exists). Therefore, your application does not
need to call getindexInfo to find the smallest unique index.

Conclusion

With thoughtful design and implementation, the performance
of JDBC applications can be improved. By the appropriate use of
DatabaseMetaData methods, retrieving only required data,
selecting functions that optimize performance, and managing
connections and updates, your applications can run more
efficiently and generate less network traffic.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

91

92 Appendix C Designing JDBC Applications for Performance Optimization

SQL Server 2000 Driver for JDBC User’s Guide and Reference

D SQL Escape Sequences for JDBC

A number of language features, such as outer joins and scalar
function calls, are commonly implemented by DBMSs. The syntax
for these features is often DBMS-specific, even when a standard
syntax has been defined. JDBC defines escape sequences that
contain standard syntaxes for the following language features:

m Date, time, and timestamp literals

m Scalar functions such as numeric, string, and data type
conversion functions

m Outer joins

B Procedure calls

The escape sequence used by JDBC is:
{extension}

The escape sequence is recognized and parsed by the SQL Server
2000 Driver for JDBC, which replaces the escape sequences with
data store-specific grammar.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

93

94 Appendix D SQL Escape Sequences for JDBC

Date, Time, and Timestamp Escape Sequences

The escape sequence for date, time, and timestamp literals is:
{literal-type 'value'}

where literal-type is one of the following:

literal-type Description Value Format

d Date yyyy-mm-dd

t Time hh:mm:ss [1]

ts Timestamp yyyy-mm-dd hh:mm:ss[.f...]
Example:

UPDATE Orders SET OpenDate={d '1995-01-15"'}
WHERE OrderID=1023

Scalar Functions

You can use scalar functions in SQL statements with the following
syntax:

{fn scalar-function}

where scalar-function is a scalar function supported by the
Microsoft SQL Server 2000 Driver for JDBC, as listed in Table D-1.

Example:

SELECT {fn UCASE(NAME)} FROM EMP

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Scalar Functions

Table D-1. Scalar Functions Supported

Data Store String Numeric Timedate System
Functions Functions Functions Functions
SQL Server 2000 ASCII ABS DAYNAME DBNAME
CHAR ACOS DAYOFMONTH IFNULL
CONCAT ASIN DAYOFWEEK USERNAME
DIFFERENCE ATAN DAYOFYEAR
INSERT ATAN2 EXTRACT
LCASE CEILING HOUR
LEFT CcOoS MINUTE
LENGTH coT MONTH
LOCATE DEGREES MONTHNAME
LTRIM EXP NOW
REPEAT FLOOR QUARTER
REPLACE LOG SECOND
RIGHT LOG10 TIMESTAMPADD
RTRIM MOD TIMESTAMPDIFF
SOUNDEX Pl WEEK
SPACE POWER YEAR
SUBSTRING RADIANS
UCASE RAND
ROUND
SIGN
SIN
SQRT
TAN
TRUNCATE

SQL Server 2000 Driver for JDBC User’s Guide and Reference

95

96 Appendix D SQL Escape Sequences for JDBC

Outer Join Escape Sequences
JDBC supports the SQL92 left, right, and full outer join syntax.
The escape sequence for outer joins is:
{oj outer-join}
where outer-join is:

table-reference {LEFT | RIGHT | FULL} OUTER JOIN
{table-reference | outer-join} ON search-condition

where:
table-reference is a table name.

search-condition is the join condition you want to use for the
tables.

Example:

SELECT Customers.CustID, Customers.Name, Orders.OrderID,
Orders.Status
FROM {oj Customers LEFT OUTER JOIN
Orders ON Customers.CustID=Orders.CustID}
WHERE Orders.Status='OPEN'

Table D-2 lists the outer join escape sequences supported by the
Microsoft SQL Server 2000 Driver for JDBC.

Table D-2. Outer Join Escape Sequences Supported

Data Store Outer Join Escape Sequences

SQL Server 2000 Left outer joins
Right outer joins
Full outer joins
Nested outer joins

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Procedure Call Escape Sequences 97

Procedure Call Escape Sequences

A procedure is an executable object stored in the data store.
Generally, it is one or more SQL statements that have been
precompiled. The escape sequence for calling a procedure is:

{[?=]call procedure-namel ([parameter] [, [parameter]]...)]}
where:
procedure-name specifies the name of a stored procedure.

parameter specifies a stored procedure parameter.

SQL Server 2000 Driver for JDBC User’s Guide and Reference

98 Appendix D SQL Escape Sequences for JDBC

SQL Server 2000 Driver for JDBC User’s Guide and Reference

Index

C

connecting

data sources 17

JDBC driver manager 16

specifying connection properties 20
connection pooling, using 18
conventions, typographical 8

D

data sources
calling in an application 18
implementing 17
using connection pooling 18
data types, SQL Server 2000 Driver for JDBC
28
database errors 23
date, time, timestamp 94
designing JDBC applications. See
performance optimization
documentation, about 9
driver manager 16

E

error handling 22

G

getTypeinfo 65

99

isolation levels, SQL Server 2000 Driver for
JDBC 30

J

JDBC data sources. See data sources
JDBC driver manager 16

JDBC support 33

JTA, SQL Server 30

O

outer join 96

P

performance optimization
designing JDBC applications 86
general 77
retrieving data 81
retrieving long data 81
selecting JDBC objects and methods 83
updating data 88
using database metadata methods 77
procedure call 97

SQL Server 2000 Driver for JDBC User’s Guide and Reference

100 Index

S

scalar functions 94
SQL escape sequences
date, time, timestamp 94
general 93
outer join 96
procedure call 97
scalar functions 94
SQL Server 2000 Driver for JDBC
data types 28
directory structure 23
errors 22
general 15
isolation levels 30
using on a Java 2 platform 21
using scrollable cursors 30
SQL Server, JTA 30

U

URL 16
using scrollable cursors, SQL Server 2000
Driver for JDBC 30

SQL Server 2000 Driver for JDBC User’s Guide and Reference

	Table of Contents
	Preface
	Using This Book
	Typographical Conventions
	About SQL Server 2000 Driver for JDBC Documentation

	1 Quick Start
	Connecting to a Database
	1. Setting the Classpath
	2. Registering the Driver
	3. Passing the Connection URL

	2 Using the SQL Server 2000 Driver for JDBC
	About the SQL Server 2000 Driver for JDBC
	Connecting Through the JDBC Driver Manager
	URL Examples

	Connecting Through Data Sources
	How SQL Server 2000 Driver for JDBC Data Sources Are Implemented
	Calling a Data Source in an Application
	Using Connection Pooling

	Specifying Connection Properties
	Using the SQL Server 2000 Driver for JDBC on a Java 2 Platform
	Error Handling
	SQL Server 2000 Driver for JDBC Errors
	Database Errors

	SQL Server 2000 Driver for JDBC Directory Structure

	3 SQL Server 2000 Driver for JDBC
	Data Source and Driver Classes
	Connection String Properties
	Data Types
	SQL Escape Sequences
	Isolation Levels
	Using Scrollable Cursors
	Installing Stored Procedures for JTA

	A JDBC Support
	JDBC Compatibility
	Supported Functionality

	B SQL Server 2000 Driver for JDBC GetTypeinfo
	C Designing JDBC Applications for Performance Optimization
	Using Database Metadata Methods
	Minimizing the Use of Database Metadata Methods
	Avoiding Search Patterns
	Using a Test Query to Determine Table Characteristics

	Retrieving Data
	Retrieving Long Data
	Reducing the Size of Data Retrieved
	Choosing the Right Data Type

	Selecting JDBC Objects and Methods
	Using Parameter Markers as Arguments to Stored Procedures
	Using the Statement Object Instead of the PreparedStatement Object
	Choosing the Right Cursor

	Designing JDBC Applications
	Managing Connections
	Managing Commits in Transactions
	Choosing the Right Transaction Model

	Updating Data
	Using updateXXX Methods
	Using getBestRowIndentifier()

	Conclusion

	D SQL Escape Sequences for JDBC
	Date, Time, and Timestamp Escape Sequences
	Scalar Functions
	Outer Join Escape Sequences
	Procedure Call Escape Sequences

	Index

