
[image: image1]
Summary of Windows Synchronization Primitives - 7

Summary of Windows Synchronization Primitives

June 20, 2005
Abstract

This paper summarizes the synchronization primitives available to kernel-mode drivers for the Microsoft® Windows® family of operating systems.

This information applies for the following operating systems:

Microsoft Windows Vista™

Microsoft Windows Server™ 2003

Microsoft Windows XP

Microsoft Windows 2000

Microsoft Windows NT®
The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/driver/tips/default.mspx
References and resources discussed here are listed at the end of this paper.

Disclaimer

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Summary of Windows Synchronization Primitives

Microsoft® Windows® supports numerous synchronization primitives, each of which has unique characteristics. In any situation, the best primitive to use depends on the operations that require synchronization. The table in this document lists the synchronization primitives that are available to kernel-mode drivers along with the characteristics of each primitive. It includes the following information:

Primitive—Lists the name of the primitive, the name of the data types used to represent it (if any), and the DDIs that acquire and release it.

Usage—Describes the type of synchronization the primitive provides and the situations in which to use it.

IRQL—Lists the IRQL at which a caller can invoke the primitive and the IRQL at which code that is protected by the primitive runs.

Effect on APCs—Indicates whether user, normal kernel, and special kernel asynchronous procedure calls (APCs) can be delivered to the thread while the primitive is in use. Windows supports three types of APCs:

· User APCs run in user mode and are delivered during the unwind from kernel mode to user mode. This type of APC is used for thread termination and user-mode signaling operations.

· Normal kernel APCs are used for thread suspension and hard error pop-ups unless delivery has been disabled using KeEnterCriticalRegion. They run in kernel mode at PASSIVE_LEVEL

· Special kernel APCs run in kernel mode at APC_LEVEL and are used in IRP completion.

Recursive acquisition—Indicates whether the primitive can be acquired recursively, and thus whether it can be used safely in reentrant code.

Operating system support—Lists the operating system releases that support this primitive.

Windows Kernel-Mode Synchronization Primitives
	Primitive
	Usage
	IRQL
	Effect on APCs
	Recursive acquisition?
	Operating system support

	Mutex (KMUTEX)

Acquire: KeWaitXxx
	Provides exclusive access to a resource. Use in passive-level code that might be reentered while holding the lock.
	To acquire: PASSIVE_LEVEL

During use: No change
	While waiting to acquire a mutex: Delivery of APCs depends on the values of the WaitMode and Alertable parameters to the KeWaitXxx routine.

While holding a mutex:

User APCs: Disabled

Normal kernel APCs: Disabled

Special kernel APCs: Delivered and executed
	Yes, by the same thread
	Windows NT 4.0, Windows 2000 and later

	Fast mutex (FAST_MUTEX)

Acquire: ExAcquireFastMutex or ExTryToAcquireFastMutex
Release: ExReleaseFastMutex
	Provides exclusive access to a resource. Use in passive-level or APC-level code that cannot be reentered while holding the lock.
	To acquire: PASSIVE_LEVEL or APC_LEVEL

During use: APC_LEVEL
	All disabled
	No
	Windows NT 4.0, Windows 2000 and later

	Unsafe fast mutex (FAST_MUTEX)

Acquire: ExAcquireFastMutexUnsafe
Release: ExReleaseFastMutexUnsafe
	Provides exclusive access to a resource. Use in passive-level or APC-level code that cannot be reentered while holding the lock.

The driver is responsible for ensuring that APCs are not delivered while it holds the unsafe fast mutex.
	To acquire: PASSIVE_LEVEL or APC_LEVEL

During use: No change
	Not disabled
	No
	Windows NT 4.0, Windows 2000 and later

	Guarded mutex (KGUARDED_MUTEX)

Acquire: KeAcquireGuardedMutex or KeTryToAcquireGuardedMutex
Release: KeReleaseGuardedMutex
	Provides exclusive access to a resource. Use in passive-level or APC-level code that cannot be reentered while holding the lock.

Disables all APCs but does not raise IRQL to APC_LEVEL. Does not require reprogramming the CPU Task Priority Register (TPR), which is used for routing interrupts in the I/O APIC on a multiprocessor system, thereby improving performance over fast mutexes.
	To acquire: PASSIVE_LEVEL or APC_LEVEL

During use: No change
	All disabled
	No
	Windows Server 2003 and later

	Critical region

Enter: KeEnterCriticalRegion
Leave: KeLeaveCriticalRegion
	Prevents thread suspension.

Use in file systems and file system filters to prevent thread suspension while holding a kernel dispatcher object lock such as an event, semaphore, or mutex.
	To acquire: PASSIVE_LEVEL or APC_LEVEL

During use: No change
	User APCs: Disabled

Normal kernel APCs: Disabled

Special kernel APCs: Delivered and executed
	Recursive up to 2^31 times
	Windows NT 4.0, Windows 2000 and later

	Guarded region

Enter: KeEnterGuardedRegion
Leave: KeLeaveGuardedRegion
	Disables all APCs but does not raise IRQL to APC_LEVEL. Re-enables APCs after the thread exits the outermost guarded region.

Use instead of raising IRQL to APC_LEVEL.
	To acquire: PASSIVE_LEVEL or APC_LEVEL

During use: No change
	All disabled
	Recursive up to 2^31 times
	Windows Server 2003 and later

	Executive resource (ERESOURCE)

Acquire: ExAcquireResourceSharedLite, ExAcquireSharedStarveExclusive, or ExTryToAcquireResourceExclusiveLite
Release: ExReleaseResourceForThread
	Provides a read/write lock. Use in passive-level or APC-level code that usually requires shared access, but occasionally requires exclusive access.
	To acquire: PASSIVE_LEVEL or APC_LEVEL

During use: No change
	Not disabled
	Yes, by the same thread
	Windows NT 4.0, Windows 2000 and later

	Event (KEVENT)

Acquire: KeWaitXxx
	Blocks execution of the current thread until some other thread signals that an event has occurred.
	To acquire: PASSIVE_LEVEL or APC_LEVEL

During use: No change
	Not disabled. Delivery of APCs depends on the values of the WaitMode and Alertable parameters to the KeWaitXxx routine.1
	No thread ownership
	Windows NT 4.0, Windows 2000 and later

	Semaphore (KSEMAPHORE)

Acquire: KeWaitXxx
	Provides shared access to a resource. Use in passive-level or APC-level code.
	To acquire: PASSIVE_LEVEL or APC_LEVEL

During use: No change
	Not disabled; delivery of APCs depends on the values of the WaitMode and Alertable parameters to the KeWaitXxx routine.1
	No thread ownership
	Windows NT 4.0, Windows 2000 and later

	Executive spin lock (KSPIN_LOCK)

Acquire: KeAcquireSpinLock, KeAcquireSpinLockAtDpcLevel, or KeTryToAcquireSpinLockAtDpcLevel
Release: KeReleaseSpinLock or KeReleaseSpinLockFromDpcLevel
	Provides exclusive access to a resource at DISPATCH_LEVEL.
	To acquire: DISPATCH_LEVEL or lower

During use: DISPATCH_LEVEL
	All disabled
	No
	Windows NT 4.0, Windows 2000 and later

	Queued spin lock (KSPIN_LOCK, KLOCK_QUEUE_HANDLE)

Acquire: KeAcquireInStackQueuedSpinLock, or KeAcquireInStackQueuedSpinLockAtDpcLevel
Release: KeReleaseInStackQueuedSpinLock, or KeReleaseInStackQueuedSpinLockFromDpcLevel
	Provides exclusive access to a resource at DISPATCH_LEVEL.
	To acquire: DISPATCH_LEVEL or lower

During use:
DISPATCH_LEVEL
	All disabled
	No
	Windows XP and later

	Interrupt spin lock (KINTERRUPT)

Acquire: KeAcquireInterruptSpinLock
Release: KeReleaseInterruptSpinLock
	Provides exclusive access to a resource at IRQL greater than DISPATCH_LEVEL.

On Windows NT 4.0 and Windows 2000, use KeSynchronizeExecution with a SynchCritSection routine to raise IRQL to DIRQL for the device.
	To acquire: DIRQL or lower

During use: DIRQL
	All disabled
	No
	Windows XP and later

	Timer object (KTIMER)

Acquire: KeWaitXxx
	Delays execution of current thread for specified period of time or performs a one-time or periodic operation in a DPC associated with the timer.
	To acquire: DISPATCH_LEVEL or lower

During use: Associated DPC is called at DISPATCH_LEVEL
	Not applicable
	Not applicable
	Windows NT 4.0, Windows 2000 and later

For more information

Locks, Deadlocks, and Synchronization

Windows DDK:
General Driver Information

Kernel-Mode Driver Architecture

Design Guide

Synchronization Techniques

� For details, see “Do Waiting Threads Receive Alerts and APCs?” in the Windows DDK.

June 20, 2005 - © 2005 Microsoft Corporation. All rights reserved.

[image: image1][image: image2.png]Windows Hardware and Driver Central

[image: image3.png]Microsoft

a 'Windows

