[image: image3.png]Windows Hardware and Driver Central




DMA Support in Windows Drivers - 37

DMA Support in Windows Drivers
December 7, 2004  

Abstract

The paper describes how Windows drivers support direct memory access (DMA) devices, using both the Windows Driver Model (WDM) and the Windows Driver Foundation (WDF) Kernel Mode Framework. Because understanding Windows DMA architecture is key to properly implementing DMA drivers on Windows, this paper also describes the Windows DMA architecture and the Windows DMA abstraction.

This information applies to drivers that support Microsoft® Windows® 2000 and later operating systems. 

The current version of this paper is maintained on the Web at: 
http://www.microsoft.com/whdc/driver/kernel/default.mspx

Contents

3Introduction


3Basic DMA Concepts and Terminology


3Bus-Master and System DMA Devices


3Packet-Based and Common-Buffer DMA


3Packet-Based DMA Devices


4Common-Buffer DMA Devices


4Hybrid Device Designs


4Hardware Scatter/Gather Support


5Preparing to Write a Windows Driver for a DMA Device


5DMA Design Type


6Device Addressing Capability


6Hardware Scatter/Gather Capability


6Maximum Transfer Length


7Buffer Alignment Requirements


7What Is Not a Consideration


8Windows DMA Abstraction


9DMA Operations and Processor Cache


9DMA Operations and Processor Cache: The Concept


9DMA Operations and Processor Cache: The Implementation


9Completing DMA Transfers by Flushing Caches


9Completing DMA Transfers by Flushing Caches: The Concept


9Completing DMA Transfers by Flushing Caches: The Implementation


10Map Registers


10Map Registers: The Concept


11Map Registers: The Implementation


12When Are Map Registers Used?


12System Scatter/Gather Support


12System Scatter/Gather: The Concept


13System Scatter/Gather: The Implementation


14DMA Transfer to Any Location in Physical Memory


14DMA Transfer to Any Location: The Concept


15DMA Transfer to Any Location: The Implementation


15Implementing DMA Drivers Using WDF


16Basic Steps for Implementing DMA


17Driver Initialization


19Packet-Based DMA Transfer Initiation


21DMA Completion Processing


23Implementing DMA Drivers Using WDM


23Basic Steps for Implementing DMA


25Driver Initialization


26Initializing the DEVICE_DESCRIPTION Data Structure


27Calling IoGetDmaAdapter


28Initialization for Common-buffer DMA


29Packet-Based DMA Transfer Initiation – Part 1


32Packet-Based DMA Transfer Initiation – Part 2


33DMA Completion Processing


36Testing DMA Drivers on Windows


36DMA-Specific Verification


37The !DMA Debugger Extension


37Best Practices: Dos and Don’ts




Disclaimer
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein. 

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. 

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred. 
© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Figure 1 and Figure 2, Copyright © 1999-2004 OSR Open System Resources, Inc. Used with permission.

Introduction

Using direct memory access (DMA) for data transfers to or from a device has many advantages, which can include higher speed transfers, and lower overall system CPU utilization. Writing a driver for Microsoft® Windows® that supports DMA is a bit more complicated than writing a Windows driver for a programmed I/O type of device. 

This paper describes the basic concepts and terminology used in writing DMA drivers for Windows. It also describes the details that driver writers should know about the DMA implementation in a device before they begin to write the driver.

The paper includes details and example code using both the Windows Driver Model and Windows Driver Foundation.

Note: This white paper was written before the Windows Driver Foundation (WDF) was released. It may not reflect the final state of the kernel-mode framework device driver interface (DDI). See the Microsoft Windows Driver Development Kit (DDK) documentation for the latest information about WDF.

Basic DMA Concepts and Terminology

To help you get started in understanding DMA and Windows drivers, this section describes key concepts in DMA device architecture and introduces the terminology that will be used in this paper.

Bus-Master and System DMA Devices
Microsoft Windows supports two types of DMA devices, bus-master DMA devices and system (also known as “slave”) DMA devices. Both types of DMA devices can transfer data to and from a host’s system memory without using the system CPU, but that is where the similarities end.

Bus-master DMA devices are by far the most common type of DMA devices on Windows systems. A bus-master DMA device contains all the electronics and logic necessary to take control of, or “master,” the bus on which it is located and to autonomously transfer data between the device’s buffer and the host’s system memory. 

System DMA devices are vestiges of the original IBM PC design. These devices rely on a DMA controller chip on the motherboard to perform data transfers. Because modern devices that use system DMA are relatively scarce, this paper discusses only bus-master DMA devices.

Note: Unless stated otherwise, the term “DMA” in this paper refers only to bus-master DMA.

Packet-Based and Common-Buffer DMA
Bus-master DMA devices differ widely in their designs. The two basic types of DMA device design are packet-based DMA and common-buffer DMA. This section describes the main features of each design.

Packet-Based DMA Devices

The most frequently encountered DMA design is packet-based DMA. In this design, the device driver explicitly sets up and requests each DMA transfer from the device. One example of a packet-based DMA device is a mass storage device, in which the driver indicates to the DMA device the sectors to read and provides the device with a pointer to a buffer in system memory that will receive the data. The device generates an interrupt after the read operation is complete. As a result of this interrupt, the driver performs any teardown necessary and completes the request.

Common-Buffer DMA Devices

In a common-buffer DMA design, the driver allocates a region, or buffer, in system memory that it shares with the DMA device. The format of this region is defined by the DMA device and is understood by the driver. The shared area can contain data structures that the driver uses to control the device, and it may also contain one or more data buffers. The device periodically checks and updates the data structures in the shared buffer area by performing DMA transfers. Because these DMA transfers take place as required by the device, without any specific initiating action by the driver, common-buffer DMA is sometimes referred to as “continuous” DMA.

One example of a common-buffer DMA device is an intelligent network adapter. The common-buffer for such an adapter might contain a set of data buffers and a pair of circular lists: one for transmit, and one for receive. Each entry in the receive list might contain a description of a corresponding data buffer, which can hold an incoming network message, and a status field that indicates whether the data buffer is available or it already contains a message.

Hybrid Device Designs

Hybrid DMA device designs incorporate both packet-based and common-buffer DMA. These designs typically combine a host-resident shared memory buffer that contains control structures (the common-buffer part of the design) with descriptors that contain data about each fragment of the message to be transmitted. Before making an entry in the common buffer for a new message to transmit, the driver for such a device performs the setup necessary to transmit the message directly from the data buffer in which it is located. (This is the packet-based part of the design.) 

Unlike a pure common-buffer design, the driver does not copy the contents of the data buffer to the common-buffer. After the message has been transmitted, the device generates an interrupt. After receiving the interrupt, the driver for the device determines which messages are complete, performs any teardown necessary, and completes the associated requests.

Hardware Scatter/Gather Support
Hardware scatter/gather, also called DMA chaining, refers to a device’s ability to perform a single DMA transfer to or from multiple physical locations in system memory. DMA devices can differ in their support for hardware scatter/gather. A device that does not support hardware scatter/gather can support DMA transfers only from contiguous memory areas. That is, all transfers by such devices must be described by using a single base address and length pair.

Hardware scatter/gather devices, by contrast, can perform DMA transfers to or from a buffer comprising multiple distinct memory areas. Such a buffer must be described using multiple base address and length pairs. This list of base address and length pairs is commonly referred to as a scatter/gather list. The maximum number of buffer fragments that a hardware scatter/gather device can support depends on the device; however, in most modern devices, the maximum number of fragments is unlimited.

Device support for hardware scatter/gather is both highly compatible with Windows operating system architecture and extremely convenient for the driver writer. Because Windows uses demand-paged virtual memory, virtually contiguous data buffers are often not physically contiguous. To support a transfer request to or from a noncontiguous user data buffer, the driver for a device that does not support hardware scatter/gather will need either to program the device to perform multiple, serial, independent DMA operations (generating an interrupt after each one) or to rely on Windows system scatter/gather support (which is discussed later in this paper). As discussed later in this paper, both of these alternatives have important implications for both driver and system performance. 

The driver for a device that supports hardware scatter/gather will have no problem supporting a transfer to or from a noncontiguous data buffer. The driver will be able to provide such a device with the list of base address and length pairs required to describe the noncontiguous buffer. The device will subsequently perform the transfer request as a single operation, generating an interrupt only when the entire operation is complete.

Preparing to Write a Windows Driver for a DMA Device

Writing a driver for a DMA device is much more complicated than writing a driver for a typical programmed I/O device. To make the job as easy as possible you must understand the design details of your device and how your driver can control it before you begin to write your driver.

This section describes some of the common issues that driver writers for DMA devices need to understand before starting to write their drivers. Because device implementations vary greatly, not all of these issues may apply to you. 

This section does not discuss every issue you could possibly encounter; be sure to check with the designer of your particular device, or with a hardware engineer who understands the details of your device’s design, for any issues that you should consider that are unique to your device and therefore might not be mentioned in this section. For your convenience, a checklist of the common design information that you will need is shown in Table 1.

Table 1. DMA-specific information to determine about a device

	Device Information  Needed
	Common Results

	DMA design type
	Packet-based, common-buffer, or hybrid

	Maximum addressing capability
	32-bit, 64-bit, or other

	Hardware scatter/gather support
	Yes or no

	Maximum transfer length per DMA operation
	Number of bytes

	Buffer alignment requirement
	None, word, longword, quadword


DMA Design Type
The most important fact that you need to know about your device is whether it uses a packet-based DMA design, a common-buffer DMA design, or a hybrid of the two. The DMA design type will dictate the overall architecture and design of your driver.

It is usually harder to write drivers for common-buffer and hybrid DMA devices than for packet-based devices. This is because the device designs that use common-buffers require a complete understanding and careful coordination of the data structures that the driver and the device share. Examples of some of the issues that you may need to identify include: 

· How does your driver communicate the base address of the common buffer to your device?

· What format is used for pointers that are stored in the common buffer, such as for linked-lists?

· What types of synchronization are required between your driver and your device when updating structures in the common buffer area?

Designs that utilize common buffers can also introduce subtle side effects that you may need to handle in your driver. For example, common-buffer devices perform frequent DMA transfers to or from system memory as the device hardware scans for changes to the shared data structures. Although this is not a problem in most systems, on laptop systems such designs can have a negative impact on battery life. If you cannot avoid using a common-buffer DMA device design in a laptop, you should typically ensure that your driver implements an aggressive power-management scheme for the device. For example, you might design your driver to power down the device whenever the device is idle.

Some hybrid designs can allow the device to be used as a completely packet-based device. Because drivers for packet-based DMA devices are typically less complex to write than those for common-buffer devices, driver writers that are new to Windows might consider first implementing a driver for a hybrid device using the simpler packet-based interface, and later adding support for the common-buffer area.

Device Addressing Capability

Another important fact that you must determine about your device is its physical addressing capability: Specifically, you need to know if your device is capable of 64-bit addressing. You will need to indicate whether your device supports DMA transfers to 64-bit addresses when you fill out the DEVICE_DESCRIPTION data structure before calling IoGetDmaAdapter (for a WDM driver) or when selecting an appropriate DMA profile (for a WDF driver). Both of these operations are described later in this paper.

Hardware Scatter/Gather Capability

Does your device support hardware scatter/gather? Newly designed devices for Windows should include hardware scatter/gather support, because this can significantly reduce data transfer overhead and latency. You will need to indicate whether your device supports hardware scatter/gather when you fill out the DEVICE_DESCRIPTION data structure prior to calling IoGetDmaAdapter (for a WDM driver) or when selecting an appropriate DMA profile (for a WDF driver). The details about how scatter/gather is supported both with and without support by device hardware, as well as how to fill out the DEVICE_DESCRIPTION data structure or select a DMA profile, are provided later in this paper.

Maximum Transfer Length

Many devices have a maximum number of bytes that they are capable of transferring in one DMA operation. If your device has such a limit, you need to determine what the limit is. Some devices have no limit on the maximum length of a DMA transfer. For these devices, you need to determine a practical maximum transfer length that your driver will support. 

Regardless of whether the limit is set by the device or by the driver, you will need to fill this value into the MaximumLength member of the DEVICE_DESCRIPTION data structure before calling IoGetDmaAdapter (for a WDM driver) or WDF_DMA_ENABLER_CONFIG_INIT (for a WDF driver). Issues concerning the maximum transfer length are discussed later in this paper.

Buffer Alignment Requirements

DMA devices often require that data buffers used in DMA transfers be aligned in particular ways. For example, one relatively common DMA support chipset requires data buffers used for DMA read and write operations to be aligned on a 16-byte boundary. This is because the chipset reserves the lowest 4 bits of each address for its own use.

Your driver needs to inform Windows about your device’s data buffer alignments during initialization processing. How you do so depends on whether you are writing a WDM or WDF driver, as discussed later in this paper.

What Is Not a Consideration

Windows implements extensive system support for DMA according to the Windows DMA abstraction described later in this paper. Drivers that carefully follow the Windows DMA model avoid a considerable amount of complicated code to handle issues such as the following:

· Windows-64 Support. Drivers that follow the model based on the Windows DMA abstraction do not typically have to implement any special code to work properly in the 64-bit virtual address space that Windows-64 provides. Drivers should always use the 64-bit safe data types, such as ULONG_PTR, to make their data size specification clear and unambiguous. Drivers that need to differentiate between 32-bit and 64-bit callers may do so by calling the Windows function IoIs32bitProcess.

· The amount of physical memory present. Drivers that follow the Windows DMA model use their device’s capabilities to determine the size of the memory pointers that they pass to their device, as opposed to the physical addressing capability or amount of memory installed on a given system. The standard Windows DMA implementation described later in this paper ensures that drivers always receive data buffer physical addresses that are within the addressing capabilities of their devices. Thus, a driver for a device that is capable of only 32-bit addressing will not receive a pointer with more than 32 significant bits.

The Windows PHYSICAL_ADDRESS data structure has always been 64 bits. If you expect an address that can be safely truncated to 32-bits, it is good programming practice to ASSERT that the high half of the address is zero.

· The bus addressing capability. Driver writers that follow the Windows DMA model never have to be concerned about the addressing capability of the bus to which their device is attached. For example, the driver for a PCI bus device that is capable of 64-bit addressing does not need to be aware of whether the device is attached to a 64-bit capable PCI bus. Just as with the amount of physical memory present on the machine, the addressing capability of the bus is made transparent by the standard Windows DMA implementation. 

Bus addressing transparency is maintained for PCI buses with 64 address lines, as well as for PCI buses that support the dual address cycle (DAC) mode of 64-bit addressing.

The above features apply only to drivers that follow the model based on the Windows DMA abstraction. Drivers that take shortcuts by not following the model, often in an unnecessary attempt at performance optimization, will receive unpredictable levels of support for the features described above, depending on precisely which parts of the DMA model they use.

Windows DMA Abstraction

Windows DMA architecture presents an abstract view of the underlying system hardware. This view, called the Windows DMA abstraction, is created by the I/O manager, hardware abstraction layer, bus drivers, and any bus filter drivers that may be present. OEMs can customize some of these components, if required, to support unique features of their hardware; however, most Windows computers use standard hardware designs that are supported by the standard Windows DMA implementation.

The Windows DMA abstraction frees driver writers from dealing with the unique capabilities and organization of the underlying hardware platform.

The Windows DMA abstraction describes a system with the following major characteristics:

· DMA operations take place directly from system memory and cannot be assumed to be coordinated with the contents of the processor cache. Thus, a driver is responsible for flushing any changed data residing in processor cache back to system memory before each DMA operation.
· At the end of each DMA operation, part of the transferred data may remain cached either by Windows or by one of the supporting hardware chipsets. As a result, a driver is responsible for flushing this internal adapter cache after each DMA operation.

· The address space on any given device bus is separate from the address space of system memory. Map registers convert between device bus logical addresses and system memory physical addresses. This mapping allows the Windows DMA abstraction to support the following features:

If a device does not support scatter/gather in hardware, Windows will provide “system scatter/gather” support for the device’s driver. This support will free the driver, in most cases, from having to program the device to perform multiple independent DMA operations to complete a single request to or from a fragmented data buffer 

DMA operations on any device bus can reach any location in system memory without special handling on the part of the driver. For example, a driver does not need to perform any special processing to ensure that DMA operations that it performs on a PCI bus with 32-bit addressing will reach data buffers that are located in system memory above the 4GB (0xFFFFFFFF) physical address mark.

When developing a Windows driver for a DMA device, driver writers should always program to the model based on the Windows DMA abstraction. The abstraction provides an invariant hardware environment that the driver writer can rely on. As a result, Windows drivers do not have to be conditionally compiled, nor do they need to include run-time checks, to support different underlying hardware platforms. Of course, drivers for different processor architectures (such as x86 and Intel Itanium) will need to be compiled using the compiler appropriate for the target environment.

The remainder of this section describes the Windows DMA abstraction more fully. Each item that forms a part of the Windows DMA abstraction is described in two parts. First, the underlying concepts are described. Next, the details of how the Windows standard components implement those concepts on common hardware platforms are presented. 

Driver writers should concentrate on understanding the concepts that form each part of the Windows DMA abstraction. This is because driver writers base implementation and design on the abstraction provided by the concepts, not on the details of how Windows may implement these concepts on a particular hardware platform. The implementation details are provided only as background, and as an aid to understanding the performance impact of various driver design decisions.

DMA Operations and Processor Cache

This section describes how the Windows DMA abstraction deals with issues related to hardware caches and DMA operations.
DMA Operations and Processor Cache: The Concept
In the Windows DMA abstraction, DMA operations bypass the system hardware cache and take place directly in system memory. Therefore, before performing each DMA operation, the driver for a DMA device is responsible for updating system memory by flushing any data back from the system hardware cache to system memory. Drivers that use the Windows Driver Model perform this flushing directly by calling the KeFlushIoBuffers or GetScatterGatherList functions. Drivers that use the Windows Driver Foundation perform flushing indirectly by calling WdfDmaTransactionExecute.

DMA Operations and Processor Cache: The Implementation
Windows implements this architectural abstraction rather differently than its concept. On many systems, DMA operations will properly reflect the contents of the system hardware cache when it is different from the contents in system memory. As a result, there is no reason to perform a write-back operation from the cache to system memory before a DMA operation. On these systems, the standard Windows DMA implementation does not actually perform any operation at all in response to a driver’s flush request before a DMA operation.

On machines or bus configurations in which cache coherence for DMA operations is not automatically assured by the hardware (such as certain Intel Itanium 64 systems), the standard Windows DMA implementation does the process-specific work that is necessary to ensure such coherency when KeFlushIoBuffers is called.

In all cases, developers must design their drivers to the Windows DMA abstraction. Never rely on the details of a specific implementation.
Completing DMA Transfers by Flushing Caches

This section explains the need to flush DMA caches in the Windows DMA abstraction. It also describes how cache flushing is implemented by the standard Windows DMA implementation.

Completing DMA Transfers by Flushing Caches: The Concept
According to the Windows DMA abstraction, data can remain cached by Windows or by another system hardware component after a DMA transfer is completed. This caching is entirely transparent to the DMA driver. Therefore, after performing each DMA operation, the driver for a DMA device is responsible for flushing this data from the Windows internal cache. Drivers flush this cache by calling FlushAdapterBuffers (for a WDM driver) or WdfDmaTransactionDmaCompleted (for a WDF driver).

Completing DMA Transfers by Flushing Caches: The Implementation
Windows relies on being informed by the driver of the completion of each DMA transfer. This reliance allows the operating system to properly complete any transfers that use map registers. Map registers are discussed in detail in the next section of this paper.

Map Registers

One of the major features of the Windows DMA abstraction is the use of map registers. This section describes the conceptual abstraction of map registers that the Windows DMA model uses and briefly discusses how map registers are realized in the standard Windows DMA implementation.

Map Registers: The Concept
Figure 1 depicts how system memory and device buses are connected in the Windows DMA abstraction. This diagram represents the system that a Windows driver for a DMA device must target. The device buses in the diagram might be two PCI buses, for example. Keep in mind that Figure 1 is a conceptual diagram and is not intended to depict the physical hardware layout of any specific machine.

Figure 1 shows two device buses, each of which is separate from the memory bus. In the Windows DMA abstraction, each device bus has an address space that is separate from the address space of all other device buses and that is also separate from the address space of system memory. The address space for a given device bus is referred to as the device bus logical address space for that bus.

[image: image1.emf]DMA

Device 1

Main

Memory

Map Registers

Memory Bus

Device Bus A

CPU

DMA

Device 2

Map Registers

Device Bus B

DMA

Device 3


Figure 1. Conceptually connecting device and memory bus using map registers [Source: OSR Open Systems Resources, Inc.]
Connecting each device bus to the memory bus in Figure 1 is a cloud labeled “Map Registers.” Because device bus logical address space and system memory address space are separate, some component is required to translate addresses between them. That component is the group of map registers. Map registers connect the memory bus and the device bus so data can flow between those two buses, while translating addresses between the two spaces.

Map registers perform the translation between device bus logical addresses and memory bus physical addresses in much the same way that the processor’s memory management registers (the page directory entries and page table entries) translate between processor virtual addresses and physical memory addresses. Each map register can translate up to a page (PAGE_SIZE, which is 4K on x86 and x64, and 8K on Itanium 64 systems) of addresses in one direction.

Map registers are a shared resource that is managed by the Windows operating system. The total number of map registers available on a given system is not available to drivers. However, drivers should treat map registers as a scarce resource by allocating map registers only as needed during a DMA operation and freeing the registers when the operation is complete.
Whenever a DMA device needs to transfer data to or from system memory, the device driver is responsible for allocating and programming the map registers that are required for the transfer. The driver performs these operations implicitly by calling Windows DMA functions. The particular functions that the driver uses depend on whether the driver is a WDM or WDF driver. Implementation details for both of these driver types are described later in this paper.

Because each map register can translate the addresses for up to one page of data, the number of map registers required for a transfer depends on the transfer size, as shown by the following equation:

Number of Map Registers Needed = (Transfer Size / PAGE_SIZE) + 1

In the equation above the additional map register added by the “+1” accounts for the case when a transfer does not start at a page-aligned address.

Map registers are allocated in a contiguous block. The block of map registers represents a contiguous set of device bus logical addresses that can be used to translate an equally sized set of system memory physical addresses in either transfer direction. Windows represents the block of map registers to the driver by a map register base value and a length. The map register base value is opaque to the driver, so driver code should not attempt to interpret the map register base.

Map Registers: The Implementation

Because map registers are a conceptual abstraction used by Windows, system hardware designers and the kernel-mode developers working with them are free to implement them any way they choose. Over the history of Windows and Windows NT there have been a number of interesting implementations of hardware-based map registers. Some of these designs used memory management logic to implement address mapping between the device bus and the memory bus in a manner very similar to that shown in Figure 1.

Most modern systems running Windows use standard hardware designs and so use the standard Windows DMA implementation. In this implementation, map registers are realized entirely in software.

The standard Windows DMA components implement each map register as one PAGE_SIZE buffer located in physical memory below 4GB. Depending on the bus being supported, the map registers might even be located in physical memory below the 16MB physical address mark. When a driver prepares to perform a DMA transfer, Windows determines if any map registers are required to support the transfer and if so, how many. Map registers may be needed to support transfer of an entire data buffer, or they may be needed only to support the transfer of particular fragments of a data buffer. How the standard Windows DMA components determine if map registers are required for a transfer is discussed in detail in the “System Scatter/Gather” and “DMA Transfer to Any Location in Physical Memory” sections later in this paper. 

If no map registers are required to support a transfer, the standard Windows DMA implementation provides the driver with the physical memory address of a buffer fragment as the fragment’s device bus logical address.

If map registers are needed to support the transfer, the standard Windows DMA implementation allocates buffer space for the duration of the transfer. If map registers are required but not enough buffer space is available, the request is delayed until sufficient buffer space becomes free. When a DMA transfer using map registers is complete, the standard Windows DMA implementation returns the map registers that were used, thus making them available to support another transfer.

When Are Map Registers Used?

Conceptually, the Windows DMA abstraction always uses map registers to translate between device bus logical addresses and physical memory addresses. This is one reason why it is never architecturally correct to use a physical address returned from MmGetPhysicalAddress directly for DMA operations. Map registers are always required to perform the translation.

In implementation, the standard Windows DMA components will use map registers (buffers) if any of the following are true:

· The driver for the DMA device indicates that the device does not support hardware scatter/gather.

· Any part of the buffer used for a given transfer exceeds the device’s addressing capability. For example, a DMA device is capable only of 32-bit transfers, but part of the buffer being transferred is located above the 4 GB physical address mark.
The following sections describe the concepts and implementation involved in each of these cases.
System Scatter/Gather Support

Windows provides special support to drivers for devices that do not implement scatter/gather support in hardware. This support is possible because Windows uses map registers. This section describes the concepts behind the Windows system scatter/gather support and also describes how the standard Windows DMA components implement system scatter/gather support.
System Scatter/Gather: The Concept

When data buffers are not contiguous–and on Windows systems they are rarely contiguous–a driver for a device without hardware scatter/gather support usually has to perform a lot of extra processing: The driver for such a device typically sets up and performs a separate DMA transfer for each physical fragment of a user buffer. At least, that is what would be required if the Windows DMA abstraction did not provide system scatter/gather support. 

Map registers, which convert device bus logical addresses to system memory physical addresses and vice versa, map all data transfers between the device bus and the memory bus. Map registers for providing system scatter/gather support for a given transfer are allocated contiguously. As a result, transfers that use map registers always appear to the device as a contiguous set of device bus logical addresses, even if the corresponding pages in system memory are not physically contiguous.

A picture might help clarify this concept. Figure 2 shows how a fragmented data buffer is described by a series of contiguous map registers. The standard Windows DMA components have programmed the map registers to point to various locations in the host’s physical memory. However, the device bus logical addresses represented by the map registers are contiguous and may therefore be described to the DMA device using a single (device bus logical) base address and length.

[image: image2.emf]Device Bus Logical

Address Space

Map Reg n+3

Map Reg n+2

Map Reg n

Map Reg n+1

Frag 4 --Len = 2K

Frag 3 --Len = 4K

Frag 1 --Len = 3K

Frag 2 --Len = 4K

Main Memory Physical

Address Space


Figure 2. How a fragmented bugger is translated using map registers [Source: OSR Open Systems Resources, Inc.]
If you are having trouble understanding this abstraction, remember that map registers conceptually translate physical addresses in system memory to device bus logical addresses for DMA transfers in precisely the same way that the system’s memory management hardware translates virtual addresses to physical addresses for program execution.

System Scatter/Gather: The Implementation

The standard Windows DMA implementation uses map registers to support system scatter/gather by intermediate buffering of DMA transfers.

During initialization, a driver can indicate that its device does not support hardware scatter/gather. A WDF driver indicates that it does not support hardware scatter/gather by selecting a non-scatter/gather profile. A WDM driver indicates that it does not support hardware scatter/gather by not setting the ScatterGather field to TRUE in the DEVICE_DESCRIPTION data structure passed into IoGetDmaAdapter. More details about how drivers implement DMA in WDF and WDM are provided later in this paper.

If the driver indicates that its device does not support hardware scatter/gather, the standard Windows DMA implementation will use map registers to support all DMA transfers to or from the device. To provide this support, the standard Windows DMA implementation the proceeds as follows:

1. It allocates sufficient contiguous map registers (that is, low memory buffers) to contain the data for the entire transfer. If sufficient buffer space is not available, the request is delayed until sufficient buffer space becomes free.

2. If the transfer is a write operation (a transfer from system memory to the device), the implementation copies the data from the original data buffer to the map register buffer.

3. It provides the driver with the physical memory addresses of the map register buffer as the buffer’s device bus logical address.

The driver uses the provided address (not the actual address of the data buffer fragments) and the length of the transfer as the address and length with which to program its device for the DMA operation. Because the buffer is physically contiguous, only a single base address and length pair is required to describe the buffer for the transfer. Also, because the map register buffers are located below the 4GB physical address mark, such buffers will always be within the addressing capability of any bus master DMA device.

When informed by the driver that the DMA transfer is complete, the standard Windows DMA implementation determines if map registers were used for the transfer and whether the operation was a read (from the device to system memory). If so, it copies the contents of the map register buffers that were used to the original data buffer, and then the standard DMA components free the map registers that were used for the transfer, making them available for another DMA transfer.

DMA Transfer to Any Location in Physical Memory

By using map registers, the Windows DMA abstraction supports transfers between device buses of any addressing capability and system memory of any size. As a result, even devices with only limited addressing capabilities can access all of physical memory under Windows.

Support for DMA transfers to any location in physical memory as described in this section applies only to drivers for devices that support hardware scatter/gather. While devices without hardware scatter/gather support can also access any location in physical memory, the standard Windows DMA implementation provides support for this feature through System DMA, as discussed earlier in this paper.

This section describes how map registers make it possible for a DMA device to transfer data to any location in physical memory, as well as how this feature is realized by the standard Windows DMA implementation.

DMA Transfer to Any Location: The Concept

Suppose DMA Device 1 in Figure 1 is a 32-bit bus-master DMA device located on Device Bus A. Because Device 1 is only 32-bit capable, it can present only addresses from 0x00000000 to 0xFFFFFFFF on the device bus. This represents 4GB of addressing capability. If Device Bus A was directly connected to system memory, it could only transfer data to or from data buffers located in the low 4GB of the system’s physical address space. Because of the way the Windows virtual memory system works, there is no way to prevent a program that needs to use Device 1 from having its data buffers located above the 4GB mark on a machine with more than 4GB of physical memory (or, indeed, on any system that has memory located above the 4GB physical address point). The driver for Device 1 would have to solve this problem either by buffering every transfer (in buffers it allocated for this purpose below the 4GB mark) or by implementing special processing for physical addresses of any fragments of user data buffers that are located out of its device’s addressing range.

The Windows DMA abstraction makes such special processing unnecessary. As part of setting up the DMA transfer, the Windows DMA functions allocate and program the map registers between Device Bus A and the memory bus to perform the required relocation. Just as memory management registers in certain x86 machines translate 32-bit virtual addresses to 36-bit physical addresses, so do map registers translate 32-bit device bus logical addresses to 36-bit memory bus physical addresses.

DMA Transfer to Any Location: The Implementation

In the standard Windows DMA implementation, map registers are realized entirely in software as contiguous PAGE_SIZE buffers in system memory with a physical address less than 4GB.

Each time a driver for a DMA device sets up a DMA transfer by using the standard Windows DMA functions, the Windows DMA components determine whether map registers are required to support the transfer. For the purpose of supporting transfers to any location in physical memory, map registers are required if any part of the data buffer being transferred is located beyond the device’s physical addressing capability. Thus, if a 32-bit DMA device sets up a transfer using a given data buffer, and one or more fragments of that data buffer are located above the 4GB address mark, map registers will be required to support the transfer.

When map registers are needed to support DMA transfers to any location, the standard Windows DMA implementation examines the physical memory address of each fragment of the data buffer to be transferred to determine if it is within the addressing capability of the device. If it is, Windows provides the physical memory address of the fragment to the driver as that fragment’s device bus logical address.

If the fragment is not within the devices addressing capability, the standard Windows DMA implementation:

1. Allocates a map register (buffer) to contain the data within the fragment. If sufficient buffer space is not available, the request is delayed until sufficient buffer space becomes free.

2. Copies the fragment’s data from the original data buffer to the map register buffer, if the transfer is a write operation (a transfer from system memory to the device).

3. Provides the driver with the physical memory address of the map register buffer as the fragment’s device bus logical address.

This processing takes place for each fragment of the data buffer.

After all fragments of the data buffer have been processed, the driver uses the pointers provided by Windows to program its device for the scatter/gather DMA operation. Each pointer will be the physical memory address of either a data buffer fragment or a map register buffer.

When informed by the driver that the DMA transfer is complete, the standard Windows DMA implementation determines if it used map registers to support the transfer. If it did, and if the operation was a read (from the device to system memory), the standard Windows DMA implementation copies the contents of any map register buffers that were used to the original data buffer. The standard DMA components then free the map registers that were used for the transfer, making them available for another DMA transfer.

Implementing DMA Drivers Using WDF

This section explains how to use the Windows DMA abstraction to write a driver using the Windows Driver Foundation kernel mode framework. Although there are many options and design alternatives, this paper will focus on the simplest and most common approaches.

Basic Steps for Implementing DMA

The basic steps for implementing DMA support in a typical WDF driver are as follows:

1. During initialization (typically from within the EvtDeviceAdd callback):

a. Initialize a WDF_DMA_ENABLER_CONFIG structure, using the WDF_DMA_ENABLER_CONFIG_INIT macro, with a DMA profile and your device’s maximum transfer length. The DMA profile you choose indicates your device’s basic DMA characteristics, such as whether it supports 64-bit addressing and hardware scatter/gather.

b. Create a DMA Enabler object by calling WdfDmaEnablerCreate.

c. If your device is a common-buffer DMA device, create a common-buffer by calling WdfCommonBufferCreate. This function takes the length of the desired common-buffer as input. You can get the kernel virtual address of the created common-buffer by calling WdfCommonBufferGetAlignedVirtualAddress, and you can get the device bus logical address of the common-buffer by calling WdfCommonBufferGetAlignedLogicalAddress. After you have the kernel virtual and device bus logical addresses of the common-buffer area, you can program your device and perform transfers in a device-specific way.

2. For a packet-based DMA device, initiate a transfer, typically from within the EvtStartIo or other I/O processing callback:

a. Create a new DMA transaction that your driver will use to manage the DMA request by calling WdfDmaTransactionCreate.

b. Initialize the newly created transaction with WdfDmaTransactionInitializeUsingRequest. This function takes as input a pointer to the WDFREQUEST object to be processed, the direction of the transfer (to or from the device), and a pointer to your driver’s EvtProgramDma callback.

c. Call WdfDmaTransactionExecute to begin processing the DMA transaction. Before beginning the DMA transaction, this function also flushes any changed data in the processor cache back to system memory.

d. WDF calls your driver’s EvtProgramDma callback to request that your driver program the device for this DMA transfer. WDF passes your driver a pointer to a set of device bus logical address and length pairs that describe the current DMA transfer. Your driver uses these address/length pairs to program your device for the DMA transfer. 

3. For a packet-based DMA device, each time a DMA transfer operation is completed by the hardware (typically, as part of the DpcForIsr):

a. Call WdfDmaTransactionDmaCompleted. This function flushes the Windows cache of any remaining data and frees resources, such as map registers, that were used for the transfer. A DMA transaction can be larger than the system can accommodate in one DMA transfer. If it is, when your driver calls WdfDmaTransactionDmaCompleted, WDF will once again try to allocate the resources necessary to perform the next transfer for this DMA transaction. When these resources are available, WDF will call your driver’s program DMA callback, and processing returns to step 2d.

b. If WdfDmaTransactionDmaCompleted returns TRUE, no more transfers are required to complete this transaction. In this case, call WdfRequestComplete, and propagate execution of your driver by determining if there are other DMA requests for the device to process.

Driver Initialization

The following example, which is roughly based on the PLX9x5x example driver in the Windows Driver Foundation prerelease kit, illustrates the DMA-specific operations that a typical WDF driver performs. This example demonstrates the initialization required for both common-buffer and packet-based DMA support.
WDF_DMA_ENABLER_CONFIG   dmaConfig;

//
// PLx PCI9656 DMA_TRANSFER_ELEMENTS must be 16-byte aligned
//
WdfDeviceSetAlignmentRequirement( DevExt->WdfDevice,
                                 PCI9656_DTE_ALIGNMENT_16 );


WDF_DMA_ENABLER_CONFIG_INIT( &dmaConfig,
                             WdfDmaProfileScatterGather64,
                             DevExt->MaximumTransferLength );

status = WdfDmaEnablerCreate( DevExt->WdfDevice, 
                              &dmaConfig,
                              WDF_NO_OBJECT_ATTRIBUTES,
                              &DevExt->DmaEnabler );

if (!NT_SUCCESS (status)) {
            ...
}


//
// Allocate common-buffer
// 

DevExt->WriteCommonBufferSize = 
                        sizeof(DMA_TRANSFER_ELEMENT) * 
           DevExt->WriteTransferElements;

status = WdfCommonBufferCreate( DevExt->DmaEnabler,
                                DevExt->WriteCommonBufferSize,
                                WDF_NO_OBJECT_ATTRIBUTES,
                                &DevExt->WriteCommonBuffer);

if (!NT_SUCCESS(status)) {
        ...
}


DevExt->WriteCommonBufferBase = 
           WdfCommonBufferGetAlignedVirtualAddress(
                                DevExt->WriteCommonBuffer);


DevExt->WriteCommonBufferBaseLA =
           WdfCommonBufferGetAlignedLogicalAddress(
                                DevExt->WriteCommonBuffer); 

RtlZeroMemory( DevExt->WriteCommonBufferBase, 
               DevExt->WriteCommonBufferSize);



The code example starts by defining a device object attribute that indicates the required alignment for DMA transfers from this device.

Next, the driver initializes a WDF_DMA_ENABLER_CONFIG structure by calling WDF_DMA_ENABLER_CONFIG_INIT and specifying the DMA profile that best describes the device and the maximum transfer length the device supports in a single DMA operation.

The DMA profile indicates the device’s packet-based DMA characteristics in terms of addressing capability, hardware scatter/gather support, and ability to support simultaneous read and write operations. Most of the names of the available DMA profiles are self-explanatory, but for completeness, Table 2 lists all the profiles and their associated attributes.

Table 2 - WDF DMA Profiles and their meanings

	Profile Name
	64-bit addressing capable
	Supports hardware scatter/gather
	Supports simultaneous read and write operations

	WdfDmaProfilePacket
	No
	No
	No

	WdfDmaProfileScatterGather
	No
	Yes
	No

	WdfDmaProfileScatterGatherDuplex
	No
	Yes
	Yes

	WdfDmaProfilePacket64
	Yes
	No
	No

	WdfDmaProfileScatterGather64
	Yes
	Yes
	No

	WdfDmaProfileScatterGather64Duplex
	Yes
	Yes
	Yes


In the example, the driver selects the WdfDmaProfileScatterGather64 profile to indicate that the device supports both 64-bit DMA transfers and hardware scatter/gather.

With the WDF_DMA_ENABLE_CONFIG structure initialized, the driver creates a new WDFDMAENABLER object instance by calling WdfDmaEnablerCreate. The driver stores the handle to the created instance for later use. The driver uses the WDFDMAENABLER object to communicate with WDF about DMA transfers for a specific device object.

If this driver supported a purely packet-based DMA device, no further DMA-related initialization activity would be required. However, because this device uses a hybrid architecture (that is, it supports a combination of both packet-based and common-buffer DMA) the driver next creates a common buffer. It does this by calling WdfCommonBufferCreate, passing the length in bytes of the required common buffer. The allocated common-buffer area is not necessarily physically contiguous. 

In addition to allocating the common-buffer space, WdfCommonBufferCreate also allocates a sufficient number of contiguous map registers to translate the physical addresses spanned by the common buffer to device bus logical addresses, and it programs those map registers to perform the necessary translations between logical and physical device bus addresses.

The driver retrieves the kernel virtual address of the common buffer it created by calling WdfCommonBufferGetAlignedVirtualAddress. The driver will use this address to manipulate the data structures located in the common-buffer area that it shares with the device. The driver completes its DMA-specific initialization by calling WdfCommonBufferGetAlignedLogicalAddress to retrieve the device bus logical address of the common buffer.

Packet-Based DMA Transfer Initiation

Drawing again from the PLX9x5x example driver in the Windows Driver Foundation prerelease kit, the following code example illustrates the steps that a typical WDF driver performs to initiate a packet-based DMA transfer.
VOID 
PLxEvtIoRead(
    IN WDFQUEUE         Queue,
    IN WDFREQUEST       Request,
    IN ULONG            Length
    )
{

NTSTATUS                status = STATUS_SUCCESS;
PDEVICE_EXTENSION       devExt;
WDFDMATRANSACTION       dmaTransaction = NULL;

//
// Get the DevExt from the Queue handle
//
devExt = PLxGetDevExt(WdfIoQueueGetDevice(Queue));

//
// Validate the Length of the transfer
//
if ((Length == 0) || (Length > PCI9656_SRAM_SIZE))  {
        ... error...
}


//
// Create a new DmaTransaction
//
status = WdfDmaTransactionCreate(devExt->DmaEnabler,

                      WDF_NO_OBJECT_ATTRIBUTES,
                             &dmaTransaction );

if(!NT_SUCCESS(status)) {
    ... error...
}



//
// Initialize this new DmaTransaction
//
status = WdfDmaTransactionInitializeUsingRequest( 
                              dmaTransaction,
                              Request,
                              PLxEvtProgramReadDma,
                              WdfDmaDirectionReadFromDevice );

//
// If this didn't work, delete the transaction

// and complete the request
//
if(!NT_SUCCESS(status)) {

    WdfDmaTransactionDelete( dmaTransaction );

    WdfRequestCompleteWithInformation(Request, status, 0);



    return;

}

//
// Set this DmaTransaction as the Current Read DmaTransaction
//
devExt->CurrentReadDmaTransaction = dmaTransaction;

//
// Execute this DmaTransaction.
//
status = WdfDmaTransactionExecute( dmaTransaction,
                                   WDF_NO_CONTEXT);

if(!NT_SUCCESS(status)) {
    ... error...
} 


return;
}


This example code shows the processing that takes place in the driver’s EvtIoRead callback. The driver starts by getting a pointer to its WDFDEVICE context area (in this case, the device extension) and validating this request. The driver then acquires a spin lock to ensure that it has exclusive access to the data structures in its WDFDEVICE context area.

Next, the driver creates a WDFDMATRANSACTION object by calling WdfTransactionCreate, passing in a pointer to the previously created WDFDMAENABLER and getting back a handle to the newly created WDFDMATRANSACTION instance. Both WDF and the driver use the WDFDMATRANSACTION object to manage the DMA operations for a given request.

The driver next calls WdfDmaTransactionInitializeUsingRequest to associate the request that WDF passed to its EvtIoRead callback with the WDFDMATRANSACTION object that it just created. This function takes as input pointers to both the WDFREQUEST and WDFDMATRANSACTION objects. It also takes as input a transfer direction indicator (WdfDmaDirectionReadFromDevice or WdfDmaDirectionWriteToDevice) and a pointer to the driver’s EvtProgramDma callback.

WDF calls the driver’s EvtProgramDma callback to request the driver to program its device for a DMA transfer. Before calling the callback, WDF allocates and programs any map registers that are required for the transfer. WDF passes the EvtProgramDma callback a pointer to a set of device bus logical address and length pairs (also known as a scatter/gather list) representing the fragments of the data buffer to be filled with data during this DMA read operation. If the device profile indicates that the device does not support hardware scatter/gather, the scatter/gather list that WDF passes to the driver’s EvtprogramDma callback will always contain a single base address and length pair.

Notice the error handling code that appears immediately after the call to WdfDmaTransactionInitializeUsingRequest.  In this example, if the call to WdfDmaTransactionInitializeUsingRequest fails, the driver drops its spin lock (which was guarding its shared data area), calls WdfDmaTransactionDelete to delete the created WDFDMATRANSACTION object, and then completes the request with an error status in the usual way.

Finally, assuming WdfDmaTransactionInitializeUsingRequest did not return an error, the driver saves the handle to the WDFDMATRANSACTION object in its WDFDEVICE context area and calls WdfTransactionExecute. This function:

· Determines the length of the DMA transfer that it will initiate. The length of the DMA transfer depends on whether the current DMA request can be satisfied with one transfer or whether, because of size constraints imposed by the device or constraints on the availability of mapping registers, the transaction will need to be divided into multiple transfers. If WDF can process the entire request in a single DMA transfer, then it will. If not, WDF will divide the transaction into multiple DMA transfers, which it will process serially.

· Requests the Windows DMA implementation to make processor cache coherent with system memory for the purposes of a DMA request.

· Allocates and initializes the necessary resources to perform the transfer. This step includes allocating and programming any necessary map registers and building the scatter/gather list that will be passed to the driver.

· Calls the driver’s EvtProgramDma callback, passing a pointer to the created list of device bus logical base address and length pairs, so that the driver can program the device to initiate the DMA operation.

If WdfTransactionExecute determines that multiple DMA transfers are necessary to fulfill the DMA transaction, WDF will perform these transfers serially. That is, WDF will determine the length for the first transfer and call the driver’s EvtProgramDma callback to program the device for that transfer. Later, after this first transfer is complete and the driver calls WdfDmaTransactionCompleted (most likely from its DpcForIsr function), WDF will determine if the entire transaction has been completed. If not, WDF will determine the length of the next transfer and call the driver’s EvtProgramDma callback again to perform the transfer. This cycle is repeated until the entire DMA transaction, and thus the WDF request associated with the transaction, is complete.

DMA Completion Processing

Once again using the PLX9x5x example driver in the WDF prerelease kit as a general guide, the following code example illustrates the steps that a typical WDF driver performs to complete a packet-based DMA transfer.

    if (readComplete) {

        BOOLEAN                transactionComplete;
        PDMA_TRANSFER_ELEMENT  dteVA;
        ULONG                  length;


        //
        // Get the current Read DmaTransaction.
        //
        dmaTransaction = devExt->CurrentReadDmaTransaction;

        //
        // Indicate this DMA operation has completed:
        // This may drive the transfer on the next packet if 
        // there is still data to be transferred.
        //
        transactionComplete = 
            WdfDmaTransactionDmaCompleted( dmaTransaction,
                                           &status ); 

        if (transactionComplete) {


            //
            // Complete this DmaTransaction.
            //
            devExt->CurrentReadDmaTransaction = NULL;

            //
            // Get the final bytes transferred count
            //
            bytesTransferred =  
             ( NT_SUCCESS(Status)) ? 
               WdfDmaTransactionGetBytesTransferred(DmaTransaction):
               0 );
                      
            //
            // Delete this DmaTransaction
            //
            WdfDmaTransactionDelete( DmaTransaction );
        
            //
            // Complete this Request
            //
            WdfRequestCompleteWithInformation(request,

Status,      

bytesTransferred);

                                                                        

 }
    }

The sample code fragment above is from the driver’s DpcForIsr. It demonstrates how a typical WDF driver handles DMA request completion. The driver executes this code when it receives a read-complete interrupt.

The code example begins by getting a handle to the current WDFDMATRANSACTION object. Using this handle, the driver calls WdfDmaTransactionCompleted. This function tells WDF that the current transfer that is part of the indicated WDF DMA transaction is complete, and it asks WDF if this transfer being complete means that the entire transaction is now complete. WdfDmaTransactionCompleted performs the following actions:

· Flushes any remaining data from the Windows cache.

· Free the shared resources, such as map registers, that were used to support the transfer.

· Determines if the transfer that is now complete has resulted in the entire DMA transaction being completed. If so, the function returns TRUE and the completion status of the request; otherwise, processing continues.

· If the entire DMA transaction is not complete, initiates a new DMA transfer to continue the transaction, as follows:

Determines the length of the next DMA transfer to initiate. If WDF can process the remaining bytes in the request in a single DMA transfer, it will. If not, WDF will divide the transaction into multiple DMA transfers that fit within size constraints imposed by the device or the number of available map registers, and it will process these DMA transfers serially.

Requests the Windows DMA implementation to make the processor cache coherent with system memory for the purposes of a DMA request.

Allocates and initializes the necessary resources needed for the transfer. This action includes allocating and programming any necessary map registers and building the scatter/gather list for the driver.

Calls the driver’s EvtProgramDma callback, passing a pointer to the created scatter/gather list. From this callback, the driver programs the device to initiate the DMA operation.

If WdfDmaTransactionCompleted returns TRUE, the driver completes the current request by setting the storage location that holds the handle for the current WDFDMATRANSACTION object in its WDFDEVICE context area to NULL. If the transfer was completed with success, the driver retrieves the number of bytes transferred by the WDFDMATRANSACTION object by calling WdfDmaTransactionGetBytesTransferred. Now that the entire transaction is complete, the driver deletes the DMA transaction by calling WdfDmaTransactionDelete. Finally, the driver completes the request in the usual manner, by calling WdfCompleteRequestWithInformation, passing the status and length of the transfer as determined from the transaction.

If WdfDmaTransactionCompleted returns FALSE, the driver does not need to perform any more processing for this DMA transaction in its DpcForIsr, because the driver’s EvtProgramDma callback will be immediately called to process the next transfer associated with the transaction. 

Implementing DMA Drivers Using WDM

This section covers the basics of using the Windows DMA abstraction to write a WDM driver. Many possible options and design alternatives exist for writing a WDM driver that supports DMA. This section describes only the basic and most common options.

Basic Steps for Implementing DMA

The basic steps for implementing DMA support in a typical WDM driver are as follows:

1. During initialization, typically during Start Device processing:

a. Describe the DMA characteristics of your device by filling in a DEVICE_CHARACTERISTICS structure.

b. Get, and store for later use, a pointer to one or more DMA adapter structures by calling IoGetDmaAdapter. This function takes as input a pointer to the DEVICE_CHARACTERISTICS structure filled in during step a. It also returns a pointer to the DMA adapter for the device, as well as the maximum number of map registers that your driver can allocate for any one DMA transfer operation.

c. If the device is a common-buffer DMA device, call AllocateCommonBuffer to allocate the memory area to be shared by the driver and the device. AllocateCommonBuffer takes as input the length of the area to be allocated, and it returns to your driver both the device bus logical address and kernel virtual address of the allocated memory area. Once you have the kernel virtual addresses and the device bus logical addresses of the common-buffer area, you program your device and perform transfers in a device-specific way.

2. If the device is a packet-based DMA device, do the following to initiate each DMA transfer, typically as part of your driver’s StartIo or dispatch routine:

a. Determine whether the total length of the request exceeds the maximum allowed number of map registers your driver can use for one transfer as returned by IoGetDmaAdapter. If the total length of the request is too large, your driver will need to divide the request into multiple DMA transfers, with each transfer using no more than the maximum allowable number of map registers.

b. Call KeFlushIoBuffers to ensure that the processor’s cache is coherent with system memory for the purposes of the DMA transfer.

c. Call GetScatterGatherList, providing a pointer to an execution routine. Windows will call the execution routine after it has assembled the necessary resources, such as sufficient map registers, to support the transfer.

d. Windows calls your driver’s execution routine with a scatter/gather list that describes the current DMA transfer. Your driver will use these provided base address/length pairs to program its device for the DMA transfer.

3. If the device is a packet-based DMA device, do the following each time a DMA transfer operation is completed by the hardware ,typically as part of your driver’s DpcForIsr:

a. Call PutScatterGatherList to return the map registers that were used for the transfer.

b. Determine whether the entire request has been satisfied with the completion of this transfer. This might not be the case, for example, if your driver needed to divide the request into multiple transfers because the maximum allowable number of map registers was not large enough to accommodate the entire transfer in one transfer. If additional data remains to be transferred, determine the amount of data and return to step 2a.

c. Complete the request by calling IoCompleteRequest, and propagate execution of the driver by determining if there are other DMA requests for the device to process.

4. During driver unload processing:

a. Call PutDmaAdapter to free the DMA adapter previously referenced during driver initialization by calling IoGetDmaAdapter.

Driver Initialization

The following example illustrates the DMA-specific operations that a typical WDM driver performs during initialization. In most drivers, this initialization takes place during Start Device processing.

//
// Important: Zero out the entire structure first so that
//  the fields that we don't use get set to FALSE (or 0)
//
RtlZeroMemory(&deviceDescription, sizeof(DEVICE_DESCRIPTION));

//
// We need to fill in the DEVICE_DESCRIPTION structure
//  with the characteristics of our particular DMA
//  hardware before we call IoGetDmaAdapter
//
deviceDescription.Version = DEVICE_DESCRIPTION_VERSION2;

//
// We're a Bus Master device..
//
deviceDescription.Master = TRUE;

//
// We support scatter/gather...
//
deviceDescription.ScatterGather = TRUE;

//
// We support 64 bit addresses...
//
deviceDescription.Dma64BitAddresses = TRUE;

//
// We're on the PCI bus...
//
deviceDescription.InterfaceType = PCIBus;

//
// Maximum size of transfer that we support on this device.    //
deviceDescription.MaximumLength     = PCI9054_SRAM_SIZE;

//
// Allocate one Adapter for WRITE
//
DevExt->WriteAdapter =
                IoGetDmaAdapter(DevExt->PhysicalDeviceObject,
                                &deviceDescription,
                                &DevExt->MaxWriteMapRegs);

if(!DevExt->WriteAdapter)  {

        ...error...

        return STATUS_UNSUCCESSFUL;
    }


//
//  Now we need to allocate the common-buffer
//

commonBuffSize =

              (ULONG)ROUND_TO_PAGES(sizeof(SG_DESCRIPTOR) * 

                              (DevExt->MaxWriteMapRegs + 1));


DevExt->ScatterGatherWriteBaseVA =
    DevExt->WriteAdapter->DmaOperations->AllocateCommonBuffer(
                  DevExt->WriteAdapter,
                  commonBuffSize,
                  &DevExt->ScatterGatherWriteBasePA,
                  FALSE); 

if (!DevExt->ScatterGatherWriteBaseVA) {

        ...error...


        return STATUS_INSUFFICIENT_RESOURCES;
    }


The example code shows the DMA-specific processing that takes place in the driver’s Start Device routine. The driver starts its DMA-specific work by initializing a DEVICE_DESCRIPTION data structure with information describing the DMA characteristics of the device the driver supports. These characteristics and features were determined by the driver writer beforehand, as described in “Preparing to Write a Windows Driver for a DMA Device” earlier in this paper.

Initializing the DEVICE_DESCRIPTION Data Structure
To begin its initialization, the driver zeros the entire DEVICE_DESCRIPTION structure. The driver then fills in the Version field of the structure, indicating the version of the DEVICE_DESCRIPTION data structure that the driver supports. Next, the driver sets the contents of the Master, ScatterGather, Dma64BitAddresses, InterfaceType, and MaximumLength fields to indicate the DMA characteristics of its device. 

Driver writers often find the DEVICE_DESCRIPTION data structure confusing to initialize because it has many fields. However, most of these fields apply only when a driver is supporting system DMA devices, so they are not relevant for bus-master DMA devices. Table 3 lists the fields in the DEVICE_DESCRIPTION data structure that apply to bus-master DMA devices.

Table 3. DEVICE_DESCRIPTION fields used to describe bus-master devices

	Field Name
	Usage

	Version
	Identifies version of structure. Set to DEVICE_DESCRIPTION_VERSION2

	Master
	Set to TRUE for bus-master devices

	ScatterGather
	Set to TRUE to indicate the device supports hardware scatter/gather. May also be set to TRUE in other rare cases (see text).

	Dma32BitAddresses
	Set to TRUE to indicate that the device is capable of DMA transfers to 32-bit memory addresses

	Dma64BitAddresses
	Set to TRUE to indicate that the device is capable of DMA transfers to 64-bit memory addresses

	InterfaceType
	Specifies the INTERFACE_TYPE of the bus to which the device is connected. This is typically the enumeration PciBus.

	MaximumLength
	Specifies the largest DMA transfer, in bytes, that the device and driver will support.


A few of the fields of the DEVICE_DESCRIPTION structure are worth discussing in a bit more detail. The ScatterGather field is typically set to TRUE only by drivers for devices that support scatter/gather in hardware, as previously described. When ScatterGather is set to TRUE, Windows will pass a scatter/gather list comprising multiple base address and length pairs (if required by the buffer’s physical configuration) to the driver’s execution routine. Because the device supports hardware scatter/gather, the driver can directly program the device to perform a single DMA transfer operation using the supplied base address and length pairs.

Drivers for devices that do not support hardware scatter/gather usually set the DEVICE_DESCRIPTION structure’s ScatterGather field to FALSE. As a result, Windows provides system scatter/gather support to the driver. As described previously, when system scatter/gather is used, Windows passes the driver’s execution routine a scatter/gather list with only a single base address and length pair. This will be true even when the buffer is not physically contiguous.

The only time that a driver for a device that does not support hardware scatter/gather would set the DEVICE_DESCRIPTION structure’s ScatterGather to TRUE is when the driver writer does not want to use Windows system scatter/gather support. This situation will be rare, and it should be considered only by experienced driver developers after careful evaluation of the possible advantages and disadvantages.

Recall that anytime a driver specifies TRUE in the ScatterGather field, Windows may call the driver’s execution routine with a scatter/gather list containing multiple base address and length pairs, depending on the actual physical configuration of the buffer. Because a device that does not support scatter/gather in hardware supports only a single base address and length per transfer, in such a case the driver will have to manage the transfer manually. This will typically involve storing the scatter/gather list and programming the device to perform one DMA transfer for each base address and length pair in the scatter/gather list. Managing a device in this way is a cumbersome process that often results in slower device performance. That is why Windows by default provides system scatter/gather support for devices that do not support hardware scatter/gather. However, in certain circumstances, manually handling scatter/gather processing for a device can result in lower system CPU utilization. This is the only potential advantage of this approach.

The other two fields of the DEVICE_DESCRIPTION data structure that might require further explanation are the Boolean fields Dma32BitAddresses and Dma64BitAddresses. The driver sets these fields depending on the addressing capability of its device. As described previously, the driver does not attempt to determine the addressing capability of the bus to which its device is attached before setting these fields. A driver for a device that is capable of DMA transfers to or from 64-bit addresses sets both the Dma64BitAddresses and Dma32BitAddresses fields to TRUE. Drivers for devices that support DMA transfers to or from 32-bit addresses (but not to or from 64-bit addresses) set the Dma32BitAddresses field to TRUE and the Dma64BitAddresses field to FALSE.

Calling IoGetDmaAdapter

After the driver initializes the DEVICE_DESCRIPTION data structure, it calls IoGetDmaAdapter, passing a pointer to its physical device object (PDO), a pointer to the initialized DEVICE_DESCRIPTION data structure, and a pointer to a ULONG variable into which to return the maximum map register count. If successful, the function returns a pointer to the DMA_ADAPTER structure that Windows has allocated for the driver’s use with this device. If unsuccessful, IoGetDmaAdapter returns NULL.

The two values returned by IoGetDmaAdapter are vital to the driver’s operation. The pointer to the DMA_ADAPTER structure that Windows returns is important because the DmaOperations field of that structure contains a pointer to the DMA_OPERATIONS vector. The DMA_OPERATIONS vector contains pointers to the functions that the driver will use to perform and manage DMA operations. The example code stores the pointer to the DMA_ADAPTER in the WriteAdapter field of its device extension.

The second value that IoGetDmaAdapter returns is the value returned into the ULONG location pointed to by the NumberOfMapRegisters parameter. The example driver specifies the MaxWriteMapRegs field of its device extension as the storage location for this value. The value returned into NumberOfMapRegisters is the maximum number of map registers that the driver can use to perform a single DMA transfer. Whenever possible, this value will reflect the device’s desired maximum transfer length as indicated in the MaximumLength field of the DEVICE_DESCRIPTION data structure. However, regardless of the MaximumLength specified, the driver must never attempt a DMA transfer that will use more than the number of map registers returned by IoGetDmaAdapter.
Initialization for Common-buffer DMA

If the example driver supported a purely packet-based DMA device, no further DMA-related initialization would be required. However, because this device uses a hybrid architecture (that is, it supports both packet-based and common-buffer DMA), the driver next determines the size of the common buffer that it needs to create, and then it creates that common buffer. 

The example driver determines the size of the common buffer to create using a formula that is specific to its hardware device. In the example, this formula takes into account the maximum number of map registers allowed per transfer, as returned by IoGetDmaAdapter.

With the size of the common buffer determined, the driver allocates the common buffer by calling the AllocateCommonBuffer function. The driver gets a pointer to the AllocateCommonBuffer function from the DMA_OPERATIONS vector, which is in turn located via the DMA_ADAPTER object that was returned to the driver’s IoGetDmaAdpater call.

The call to AllocateCommonBuffer takes the following parameters:

· A pointer to the device’s PDO.

· The size in bytes of the common buffer that the driver wants to allocate.

· A pointer to a location into which to store the device bus logical address of the common buffer that is allocated. The driver uses this address to program its device.

· A Boolean value indicating whether hardware cache-enabled memory should be allocated for the common buffer. A value of TRUE indicates that the memory should be cache-enabled. Drivers should typically set this value to TRUE to take advantage of the better performance available with the use of cached memory. The only time a driver should need to set this value to FALSE is on a computer or bus using DMA that is not cache coherent.

On success, AllocateCommonBuffer returns the kernel virtual address of the allocated common-buffer. If it could not allocate the buffer, AllocateCommonBuffer returns NULL. The example driver stores both returned addresses in its device extension for later use.

Packet-Based DMA Transfer Initiation – Part 1

The following code example illustrates the initial steps that a typical WDM driver performs to initiate a packet-based DMA transfer. This code specifically shows DMA setup for a write request; processing for a read request is identical. The example code would typically be called from the driver’s write dispatch entry point, StartIo function, and/or DpcForIsr, whenever the device is available and there is a pending DMA write request to start.

//
// Get our IRP stack location
//
ioStack = IoGetCurrentIrpStackLocation(Irp);

//
// There is no in-progress request. Start this request on the
// device.
//
devExt->CurrentWriteIrp  = Irp;
devExt->WriteTotalLength = ioStack->Parameters.Write.Length;
devExt->WriteSoFar       = 0;

//
// Since we're about to initiate a DMA operation, ensure the 
// data buffer is flushed from the cache back into memory per
// the Windows DMA abstraction.
//
// Parameter two is FALSE since this is a write operation
//
KeFlushIoBuffers(Irp->MdlAddress, FALSE, TRUE);

//
// Get the user's virtual address. Do NOT try to access this

// address! It’s only valid in the requestor's process

// context. We're going to use it to determine the number of 

// map registers we need.
//
virtualAddress = MmGetMdlVirtualAddress(Irp->MdlAddress);

//
// Determine the number of map registers we'll need to process
// the entire user's request.
//
mapRegsNeeded = 
    ADDRESS_AND_SIZE_TO_SPAN_PAGES(virtualAddress,
                           ioStack->Parameters.Write.Length);

//
// Assume we'll be able to do this entire request

// in one DMA transfer
//
transferLength = ioStack->Parameters.Write.Length;

//
// If the number of map registers required for this request
// exceeds the maximum we're allowed to use at one time
// (as reported to us from IoGetDmaAdapter() in our 

// StartDevice routine), we'll need to limit the transfer to 

// using no more map registers to the maximum we're allowed.
//
// As a result, we'll have to break the user's request up into
// multiple DMA transfer operations.
//
    if(mapRegsNeeded > devExt->MaxWriteMapRegs)  {

        //
        // Compute the max transfer length, based on the 
        // number of map registers to which we've been
        // limited. Each map register can support up to 
        // PAGE_SIZE bytes IF PAGE ALIGNED. However, if the 
        // transfer doesn't start on an even page boundary,
        // we'll need to allow an extra map register for that.
        //
        firstPageRemainder =
           (ULONG)((ULONG_PTR)virtualAddress & (PAGE_SIZE-1));

        if(firstPageRemainder)  {
            transferLength =
                 ((devExt->MaxWriteMapRegs-1) * PAGE_SIZE) +
                       (PAGE_SIZE - firstPageRemainder);
        } else {

         transferLength = devExt->MaxWriteMapRegs * PAGE_SIZE;

        }

    } 

//
// GetScatterGatherList must be called at IRQL DISPATCH_LEVEL
//
KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);

//
// Get the list of base address and length pairs that

// describe the buffer to be transfered. When map registers

// have been assigned, our WriteExecutionRoutine function is 

// called. In that function, we’ll program the device 

// hardware to perform the transfer.
//


status = 

    devExt->WriteAdapter->DmaOperations->GetScatterGatherList(
                                devExt->WriteAdapter,
                                DeviceObject,
                                Irp->MdlAddress,
                                virtualAddress,
                                transferLength,
                                WriteExecutionRoutine,
                                (PVOID)Irp,
                                TRUE);

KeLowerIrql(oldIrql);

//
// Sanity check...
//
ASSERT(NT_SUCCESS(status));

The example code above shows the typical work required to initiate a packet-based DMA transfer. 

The example driver starts by getting a pointer to the current IRP stack location, from which it will determine the size, in bytes, of the transfer request. Before this point in its execution, the example driver must have validated the transfer length and determined that the length of the transfer is not zero, and that the length of the transfer is not longer than the maximum length it reported in the MaximumLength field of the DEVICE_DESCRIPTION data structure.
The example driver next initializes the fields in its device extension that it will use to keep track of the current request and current transfer. It then calls KeFlushIoBuffers to flush any data from hardware cache back to main memory, as required by the Windows DMA abstraction.

Next, the example driver determines whether the entire request can be performed in one transfer or whether the allowed transfer length will be constrained by the maximum number of map registers allowed per transfer. Recall that the maximum number of map registers was returned to the driver’s call to IoGetDmaAdapter. The example driver stored this returned value in the MaxWriteMapRegs field of its device extension.

The driver determines the number of map registers required to process the current request using the ADDRESS_AND_SIZE_TO_SPAN_PAGES macro, passing the user virtual address of the buffer and the length of the request in bytes. If the value returned by ADDRESS_AND_SIZE_TO_SPAN_PAGES is greater than the maximum number of map registers that the driver is allowed to use for one transfer, the driver adjusts the transfer length. The new length of the transfer is limited to the size allowed by the maximum number of map registers.

The driver then calls GetScatterGatherList, using the pointer obtained from the DMA_OPERATIONS structure. If this call is successful, Windows allocates any mapping registers that are required for this transfer and call the driver’s execution routine. In its execution routine the driver programs the device hardware to perform the DMA transfer.

The name of the function GetScatterGatherList can be confusing. This function is used by all drivers, whether or not the underlying device supports hardware scatter/gather. GetScatterGatherList is called with the following parameters:

· A pointer to a DMA_ADAPTER that the driver has previously obtained from a call to IoGetDmaAdapter,

· A pointer to the functional device object (FDO) for the device

· A pointer to the memory descriptor list (MDL) that describes the buffer to be transferred

· The user virtual address of the start of the transfer

· The length, in bytes, of the transfer

· A pointer to the driver’s execution routine (WriteExecutionRoutine in the example code)

· A PVOID value to pass to the driver’s execution routine as context

· A Boolean value indicating the direction of the transfer (TRUE to indicate a write to the device)

If the call to GetScatterGatherList is successful, the driver will next be called at its execution routine. This call will occur after Windows has assembled all the resources necessary to support the requested transfer, include allocating any required map registers. Therefore, there may be a delay between the driver calling GetScatterGatherList and the driver’s execution routine being called.

Note: You may be familiar with the function IoAllocateAdapterChannel, which is considered obsolete, or with AllocateAdapterChannel, which is the equivalent function for Windows 2000 and later systems. Although AllocateAdapterChannel continues to work, you should use GetScatterGatherList (or BuildScatterGatherList) instead of AllocateAdapterChannel in any new code that you write. These functions are offer better all-around performance, and they are more flexible and easier to use reliably than AllocateAdapterChannel. Whenever it is convenient, you should also convert any calls that your existing driver makes to AllocateAdapterChannel to calls to GetScatterGatherList or BuildScatterGatherList.

Packet-Based DMA Transfer Initiation – Part 2

The code below is an example of a driver’s execution routine. This code follows on from the previously described example DMA initiation code.

VOID
WriteExecutionRoutine(PDEVICE_OBJECT DeviceObject,
    PIRP IrpIfSystemQueuing,
    PSCATTER_GATHER_LIST ScatterGather,
    PVOID Context)
{

    POSR_DEVICE_EXT    devExt;
    ULONG              thisTransferLen = 0;
    KIRQL              oldIrql;

    UNREFERENCED_PARAMETER(IrpIfSystemQueuing);

    //
    // Get our device extension
    //
    devExt = (POSR_DEVICE_EXT)DeviceObject->DeviceExtension;


    //
    // Go program the device's hardware with the supplied
    // scatter/gather list. Returns the length of this
    // transfer in bytes.
    //
    thisTransferLen = ProgramDevice(DeviceObject,
                                    ScatterGather,
                                           TRUE);

    //
    // Store the address of the scatter/gather list. We need
    // this to clean up from the transfer in the DpcForIsr
    //
    devExt->WriteScatterGatherList = ScatterGather;

    //
    // Store the length of this transfer...
    //
    devExt->WriteLength = thisTransferLen;

    //
    // Track the length of the requestor's buffer we've
    // written so far.
    //
    devExt->WriteSoFar += devExt->WriteLength;

    //
    // Start the request on the device...
    //
    oldIrql =

      KeAcquireInterruptSpinLock(devExt->InterruptObject);

    StartWriteOnDevice(devExt);

    KeReleaseInterruptSpinLock(devExt->InterruptObject, 

                               oldIrql);
}    


When Windows has accumulated all the resources necessary to perform the requested DMA transfer, including allocating any necessary map registers, it calls the driver’s execution routine. The execution routine is called with a set of device bus logical address and length pairs that describe the buffer to be used for the transfer. As previously described, when a driver sets the ScatterGather field of the DEVICE_DESCRIPTION data structure to FALSE before calling IoGetDmaAdapter, Windows will always call the driver’s execution routine with a single device bus logical address and length pair describing the buffer. When the driver sets ScatterGather to TRUE before calling IoGetDmaAdapter, the driver’s execution routine will be called with a scatter/gather list containing multiple device bus logical address and length pairs, each of which describes a fragment of the user’s buffer.

The example driver calls a private function, ProgramDevice, to pass the scatter/gather list it has received to its device and to ready the device to perform the transfer. Because this code is entirely device-dependent, it is not shown in the example.

On return from ProgramDevice, the driver saves a pointer to the scatter/gather list for later use. It also saves the length of the current transfer and the number of bytes that have that have been written from the buffer so far, including the current transfer, thereby assuming the current transfer will be successful. The driver then calls another private function, StartWriteOnDevice, protecting the work this call performs by holding the interrupt spin lock. The StartWriteOnDevice function, which is device-dependent and therefore not shown, completes the programming of the device and actually initiates the transfer by setting the “go” bit on the device. The driver holds the interrupt spin lock during this call to prevent the device from interrupting while it is being programmed. Again, the requirement to serialize access to the device registers in this function is entirely device-dependent.

DMA Completion Processing

The following code example from the driver’s DpcForIsr illustrates how a DMA transfer is completed. This code example continues from the previous DMA initiation examples.

//
// Return the scatter/gather list we've been using
//
// Third parameter is TRUE because this is a Write 
//  operation
//
devExt->WriteAdapter->DmaOperations->PutScatterGatherList(
                            devExt->WriteAdapter,
                            devExt->WriteScatterGatherList,
                            TRUE);

//
// See if there's more of the user's buffer left

// for us to DMA.
//
if(devExt->WriteTotalLength - devExt->WriteSoFar == 0)  {


    //
    // The request is now complete.

    //
    writeIrp->IoStatus.Status      = STATUS_SUCCESS;
    writeIrp->IoStatus.Information = devExt->WriteTotalLength;

    IoCompleteRequest(writeIrp, IO_NO_INCREMENT);


    ...attempt to dequeue the next pending write IRP if

       there is one, and start a new write DMA operation...
} else  {

    //
    // We're not going to complete the request this
    //  time around...
    //

    //
    // The user buffer has NOT been completely DMA'ed.
    // How many map regs can we use this time?
    //
    virtualAddress 
       = (PUCHAR)MmGetMdlVirtualAddress(writeIrp->MdlAddress)+
                                devExt->WriteSoFar;

    //
    // Assume we'll be able to finish in one more operation
    //
    transferLength = 

              devExt->WriteTotalLength - devExt->WriteSoFar;

    mapRegsNeeded = 
        ADDRESS_AND_SIZE_TO_SPAN_PAGES(virtualAddress,
                                       transferLength);

    //
    // Too many map regs needed to be able to finish the
    // request in one additional transfer?
    //
    if(mapRegsNeeded > devExt->MaxWriteMapRegs)  {

        transferLength = devExt->MaxWriteMapRegs * PAGE_SIZE;
    } 

    //

    // Build the scatter/gather list – Our execution routine

    // will next be called

    //

    status =
    devExt->WriteAdapter->DmaOperations->GetScatterGatherList(
                                devExt->WriteAdapter,
                                DeviceObject,
                                writeIrp->MdlAddress,
                                virtualAddress,
                                transferLength,
                                WriteExecutionRoutine,
                                (PVOID)writeIrp,
                                TRUE);
            
    ASSERT(NT_SUCCESS(status));
}

The example code above is taken from a driver’s DpcForIsr. The code assumes that the driver has already determined that a write DMA transfer has successfully completed on the hardware. Next, the driver must determine if this transfer completes an outstanding write request.
The example driver begins its processing by calling PutScatterGatherList to return the scatter/gather list that was used for the transfer. As with previous DMA functions, this function is called by its function pointer located in the DMA_OPERATIONS structure.

With the previously used scatter/gather list returned, the driver determines whether the transfer that has just completed represents the completion of an entire request. This will not be true if the length of the just completed transfer was constrained by the maximum available map registers. If the total length of the write request minus the number of bytes that have been transferred to this point is zero, the request is complete. The driver sets the completion status (STATUS_SUCCESS) into the Status field of the current write IRP’s I/O status block, sets the Information field of the I/O status block to the number of bytes that were successfully written, and calls IoCompleteRequest. The next thing a typical driver would do is attempt to determine if there are any pending write requests, and if so, attempt to start one. The driver would accomplish this, in part, by executing the example code shown in the section “Packet-Based DMA Transfer Initiation – Part 1.”

If the current request has not been entirely completed, the driver proceeds as shown in the else clause in the example code. The first thing the driver needs to do is determine how much of the remaining buffer can be transferred. The driver determines the virtual address of the starting offset of the transfer by adding the contents of the WriteSoFar field of its device extension to the base address of the request’s buffer. It determines the number of bytes remaining to be transferred for this request by subtracting devExt->WriteSoFar from devExt->WriteTotalLength. Using these values, it once again calls ADDRESS_AND_SIZE_TO_SPAN_PAGES to determine the number of map registers required to transfer the entire remaining buffer.

As it did in its DMA initiation code, the driver limits the maximum length of its transfer to a length that size than can be accommodated by the maximum number of map registers that it may use. With the length of the next transfer thus determined, the driver calls GetScatterGatherList to request the system to allocate any necessary map registers. GetScatterGatherList, in turn, calls the driver’s execution routine with the scatter/gather list that describes the transfer.

Testing DMA Drivers on Windows

One of the most important parts of any driver development project is testing. Windows provides Driver Verifier, which can greatly help you with testing. We strongly recommend that you enable Driver Verifier for your driver with the standard settings on your test machine while you debug your driver. Doing so will help you identify errors in your code as early as possible, when they are easiest to find and fix. To enable Driver Verifier on your driver, run Verifier.exe, select “Create Standard Settings,” and then select your driver.

DMA-Specific Verification

Starting with Windows XP, Driver Verifier includes specific verification tests to detect improper use of various DMA operations. Driver Verifier includes checks for the following DMA-specific errors:
· Overrunning or underrunning the DMA memory buffer. These errors can be made by the hardware or by the driver. 

· Freeing the same common buffer, adapter channel, map register, or scatter-gather list more than once.

· Leaking memory by failing to free common buffers, adapter channels, map registers, scatter/gather lists, or adapters. 

· Attempting to use an adapter that has already been freed and no longer exists. 

· Not flushing an adapter buffer. 

· Performing DMA on a pageable buffer. All buffers should be locked before DMA transfer begins. 

· Allocating too many map registers at one time or allocating more map registers than the maximum number allowed. 

· Attempting to free map registers while some are still mapped. 

· Attempting to flush a map register that has not been mapped. 

· Calling DMA routines at an improper IRQL. 

In addition to the above, Driver Verifier includes several minor consistency checks that are not described.

Driver Verifier implements one additional feature to facilitate testing of drivers for DMA devices. When Driver Verifier runs, it double-buffers all DMA transfers for verified drivers. Among other things, double-buffering helps to ensure that the driver does not depend on the physical addresses that are passed in the MDL. Depending on the error it discovers, Driver Verifier reports DMA-specific errors either by generating an ASSERT or by issuing a Bug Check 0x6E (DRIVER_VERIFIER_DMA_VIOLATION).

When you test your driver, remember that Driver Verifier is not an automated test utility. Rather, enabling verification for your driver causes Driver Verifier to watch the operations that your driver performs, and warn you if it detects any operations that you perform incorrectly. Therefore, it is up to you ensure that your driver is thoroughly exercised with a wide variety of I/O requests, including read and write requests of various lengths, while Driver Verifier is enabled.

Driver Verifier and DMA-specific verification are described in detail in the Windows DDK.

The !DMA Debugger Extension

Another helpful debugging aid for drivers that support DMA devices is the !dma kernel debugger extension. This extension can be used to display a vast array of information about the DMA subsystem and DMA device drivers that are being verified.

If DMA verification is not enabled for a driver, the !dma debugger extension can list all of the DMA adapters in the system. When DMA verification is enabled the !dma debugger extension can also list the following information:

· The device object, map registers, scatter/gather lists, and common buffers associated with each DMA adapter

· The map register usage for a particular DMA adapter, including whether transfers to and from the device are being double-buffered

· The length, virtual and physical addresses of any common-buffer segments.

The !dma debugger extension is described in detail in the documentation that accompanies the kernel debugger.

Best Practices: Dos and Don’ts

Here are some reminders and tips regarding writing DMA drivers for Windows

· DO strive to understand and use the Windows DMA abstraction. Understanding the abstraction is the key to understanding how to write your DMA driver.

· DO use the Windows DMA device driver interface (DDI). The DDI is there both to make it easier to write cross-platform compatible DMA drivers and to help maximize the reliability of your driver and its interaction with Windows.

· DO use GetScatterGatherList if you are writing a WDM driver, whether or not your driver supports hardware scatter/gather. This function is highly preferable to the older function AllocateAdapterChannel.

· DO test your driver with Driver Verifier enabled in general, and with DMA verification enabled specifically. Aside from designing your driver to properly follow the Windows DMA abstraction, thorough testing with Driver Verifier is probably the single most important thing you can do to ensure that your driver functions properly on Windows.

· DON’T directly call HAL functions. These functions have names that start with HalXxxx. These HAL functions are obsolete, and they may not work the way you expect. Instead, use the functions pointed to from the DMA_OPERATIONS structure. See the Windows DDK for more information on these functions.
· DON’T bypass the Windows DMA abstraction and attempt to “roll your own.” For example, it is never acceptable to build the contents of a scatter/gather list manually by interpreting the contents of an MDL and to then use the resulting data to program your DMA device, as this does account for the possible use of map registers.

Resources

Windows Hardware and Driver Central 

http://www.microsoft.com/whdc/default.mspx 





















© 2004 Microsoft Corporation. All rights reserved.

[image: image3.png]