[image: image5.png]Windows Hardware and Driver Central

WMX for Hardware Management Overview - 2

WMX for Hardware Management Overview

WinHEC 2004 Version - June 11, 2004
Abstract

This paper provides an overview of a Microsoft proposed solution for server management, which is suitable for the Microsoft® Windows® family of operating systems as well as others by the industry at large. This proposed solution is codenamed Web services for Management eXtension (WMX). WMX provides a way to manage the ever-increasing capabilities of hardware products in a much more thorough and powerful way than has been possible up to now.

How WMX will address the critical needs of customers who want to reduce the cost of managing a heterogeneous enterprise, both with regard to hardware and software components, is discussed. This paper helps system manufacturers and Baseboard Management Controller (BMC) firmware engineers understand how WMX is conceived to be a very practical and powerful next-generation management protocol.
The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/system/platform/server/default.mspx
Contents
4Introduction

4Platform Hardware Management Today

6Industry Standardization Work

6The WMX Solution

9Advantages of WMX

9WMX Terms and Definitions

10Benefits of Using WMX

10Standard Technologies and Tools

10Cost-Effective Implementations

11Security

11Simple Command Line Interface

11Compatibility with the CIM Object Model

12System Overview

12Protocol Operations

13Usage Examples

14Implementation and Subsets

15WMX “XMOF” Catalog

16Dependencies on Existing Standards

16SOAP 1.2

16HTTPS Binding

17WS-Addressing

17WS-Eventing

17XMOF

17Components

20Resources and Call to Action

20Call to Action

20Resources

21Appendix A - Glossary

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

Microsoft plans to introduce a new industry-standard protocol, codenamed WMX, for server management. WMX addresses the critical need for customers to reduce the cost of managing a heterogeneous enterprise.

This paper describes the management solutions that hardware manufactures have provided in the past and describes how WMX addresses these concerns. A system overview of how the WMX protocol works is also provided.

Platform Hardware Management Today

Management of server and peripheral hardware remains a significant part of the overall IT administration cost. To address the needs of hardware management, in particular to enable command and control of hardware components during pre-boot and post crash of the main operating system, the hardware manufacturing industry has been converging on an architecture that includes a specialized Baseboard Management Controller (BMC). The BMC monitors and provides remote access to information about the hardware state, configuration, and events.

Several standards have emerged to define the architecture of the BMC. The standard that is getting the most traction in the industry is Intelligent Platform Management Interface (IPMI), defined by Intel. The other well-known standard promoted by Hewlett Packard is Intelligent Lights Out (ILO). In spite of these standards, the management access to BMC remains highly specific to different platform implementations and requires customers to use proprietary management tools that are supplied by OEMs. This has prevented uniform and distributed server management in enterprises that use a mix of server platforms.

Another drawback of existing BMC implementations is that they include highly specialized wire protocols, for example, Remote Monitoring & Control Protocol (RMCP) with non-standard security mechanisms. That means the security and accessibility model on the same platform is different between the operating system states (for example, between pre-boot and OS-present).

To achieve uniformity of management across operating system states, some hardware manufacturers, in particular Intel and Hewlett Packard, have been promoting a proxy based architecture that uses the Web-Based Enterprise Management (WBEM) protocol for interoperability (The WBEM protocol, created a few years ago, uses the HTTP transport with special extensions and the Common Information Model (CIM) as a schema language).

The following figure illustrates this proxy based architecture:

[image: image1.emf]WBEM stack

WMI provider

BMC/IPMI driver

BMC

Management

Console

CIM/HTTP

M

a

c

h

i

n

e

b

o

u

n

d

a

r

y

User

Kernel

RMCP

SNMP (PET)

OS

Hardware

Machine

boundary

UMM

R

M

C

P

CIM/HTTP

Proxy based architecture

Figure 1 – Proxy Based Architecture

While the approach shown in Figure 1 was reasonable several years ago, its shortcomings become more apparent in light of advances in the Web service technologies. For example:

· The WBEM protocol, created a few years ago, uses the HTTP transport with special extensions, and Common Information Model (CIM) as a schema language.

· The WBEM protocol does not use the SOAP/XML standards and is not compatible with the Web services model of interoperability.

· This architecture requires customers to deploy additional components on each server, which increases costs.

· This architecture requires a proxy node called Universal Management Module (UMM) that translates the BMC wire protocols to WBEM.

Industry Standardization Work

As server manufacturers introduced proprietary tools and protocols for managing their server platform products, the interoperability among these offerings has increased. This has caused a major expense for administration of server platforms that are built with the Intel and AMD processor architectures. This has been even a greater cause for concern for companies that are looking to expand their enterprise IT operations.

Because almost every enterprise today uses solutions from different hardware manufacturers, a standard is required to address this problem and to establish commonality of administrative operations and server management data. To create such a standard, the Server Management Working Group (SMWG) has been established as part of the Distributed Management Task Force (DMTF) forum. From the beginning, Microsoft has been one of the most active members of the DMTF and an enthusiastic supporter of the SMWG’s charter. SMWG focuses on defining the common architecture for the server hardware management, standard Command Line Interface (CLI) protocol, and standard structured protocol for programmatic access. As a member of SMWG, Microsoft has proposed WMX as a standard structured protocol for managing server hardware.

The WMX Solution

The key element of the Microsoft proposed solution is a standard management profile, codenamed WMX. It is not a new protocol in itself, but rather a profile, or collection of operations that are borrowed from existing, proven definitions and composable Web services specifications that are part of the multi-vendor Web Services initiative. In this case, a profile is a definition which is in turn layered over other existing definitions. For example, the addressing aspects of WMX are drawn from WS-Addressing and the event subscription mechanism from WS-Eventing. For more information about the Web services specifications, WS-Addressing and WS-Eventing, see the References section, later in this paper.

WMX consists of a collection of existing and upcoming standardized Web services specifications which act together to define operations that are common to all systems management scenarios.

WMX defines the following:

· The available operations and their SOAP message formats, drawn from the composable Web Services base specifications.

· The standardized bindings to various transports, such as HTTPS and UDP.

· The standards used for resource and metadata discovery.

· A standardized operations log used to query recent operations.

· The minimum security standards that can be implemented.

A unique feature of WMX is the associated runtime environment. WMX is not merely a set of operations, but also defines a simple metadata model, which enables the client-side software to discover the resources and operations that are available from any given server implementation. This model allows other information models such as DMTF’s CIM model to be exposed in a transparent fashion. Further, a standardized operations log is also defined, so that clients can query the history of recent operations. This is especially helpful in cases where connectivity between the client and server is temporarily lost.
In addition to the items in the previous list, the WMX architecture requires a number of other critical components. These components include a standard Microsoft® Windows® driver that exposes the BMC data and operations to the operating system using the standard WDM provider that is included in WMI. However, a detailed discussion of these components is beyond the scope of this paper.

The following figure illustrates the proposed WMX architecture:

[image: image2.emf]WMX listener

WDM provider

BMC

Management

Console

WMX (OS runn

ing)

M

a

c

h

i

n

e

b

o

u

n

d

a

r

y

User

Kernel

WMX (pre-boot, post-crash)

OS

Hardware

WMX based architecture

BMC driver

 Figure 2 – WMX Based Architecture

Advantages of WMX

WMX represents an improvement over previous protocols in that it is compliant with standard XML, SOAP, and Web service technologies. Because WMX is built upon standard technologies, it does not necessitate the introduction of new concepts to support server management operations. This reduces the learning curve required to implement WMX or use it in new software components to access management information.

WMX is designed to scale from small devices to major operating systems. The protocol and its associated operating environment are simple enough that everything from small devices to major operating systems can implement and expose it at the right scale for their purposes. It enables uniformity of server management operations, which is necessary to achieve a high degree of interoperability in a heterogeneous environment. At the same time, it is extensible to support vendor specific customization. For example, a hardware vendor can extend the protocol to allow for the management of custom hardware components such as sensors.

WMX is based on the Simple Object Access Protocol (SOAP). A conformant implementation of WMX can include any relevant subset of operations and the runtime environment. Because WMX is built on SOAP, it is transport-independent and can be used with any suitable carrier protocol.

To achieve simplicity, the WMX protocol is designed to be small, consistent, secure, and with few options and variants. It is designed to support a small number of base operations that are commonly used for management tasks. This uniform and consistent design is critical in order to achieve a high degree of interoperability between dissimilar systems. While at the same time, it is extensible enough to support vendor-specific customization.

WMX is defined in such a way that a subset of it can be implemented in the BMC firmware or other resource-constrained hardware and software components. This subset of the WMX protocol would be compatible with the full WMX set, which Microsoft plans to implement in Microsoft Windows Vista™. With this approach, the WMX solution offers uniformity of all management operations.

WMX introduces a single access and security model between the operating states of a server system. These operating states are pre-boot, OS-present, and post-run. Because the protocol is defined as a set of SOAP extensions, it is also interoperable with other implementations of SOAP. For more information about SOAP, see the References section, later in this paper. This solution addresses the concerns that IT professionals have about the uniformity of management data and protocols used across different server platforms.

WMX Terms and Definitions

The following WMX-specific terms are used in this document when describing the WMX protocol.

Agent: The actual WMX server-side implementation. The agent is responsible for receiving network requests, dispatching them to local handlers on the server, and then returning responses.

Client: A software component using the protocol to manage the target system. This can be a dedicated application, an automated service, or an interactive shell.
Resource: The target endpoint of a WMX operation. Each resource represents an actual value, data source, or specific method. Each specific resource is identified by a Uniform Resource Identifier (URI). When a resource is accessed, it returns a value as the result. Accessing a resource is conceptually similar to accessing a Web URL to retrieve a page, perform a search, or fetch other information.

Value: The actual representation of a resource that is returned to the client. Just as the resource is equivalent to a Web URL, the value is similar to the HTML data returned to the Web browser when the URL is accessed.

Protocol Operation: One of the basic verbs exposed by WMX, such as "Get", "Put", “Subscribe”, or “Invoke”.

Server: The host device or system of the WMX implementation which contains the agent. This is also known as the “managed node”.

WMX Catalog: A set of virtualized XMOF metadata documents which together describe the resources that a particular agent exposes, including collections, properties, methods, event sources, and event types.

XML Managed Object Format (XMOF): The XML metadata format which describes available resources on a WMX Agent. This is a combination of an XSD and accompanying specification on usage and standards for WMX. WMX of course supports other standardized metadata types which are part of the Web Services specification suite.
Benefits of Using WMX

Standard Technologies and Tools

Because WMX is defined over existing standards, it can be implemented or used with readily available components. The definitions and implementations for all the component parts of WMX already exist. These component parts are: HTTP, HTTPS, TCP/IP, TLS 1.0 (SSL), XML, URI, and SOAP, and any Web Services-enabled toolkits or libraries which may be available to help speed development and deployment. WMX does not attempt to reinvent any existing lower-level infrastructure. Rather, it is defined entirely within the bounds of known, trusted concepts.

As IT professionals are becoming familiar with the concepts and infrastructure of Web Service technologies, it is expected that they will be able to understand and apply WMX to practical use with little additional learning curve. The only unique aspect of WMX is the predefined message types for management operations. Everything else is based on an existing standard. When available, the predefined message types will be available in the WMX specification.

Cost-Effective Implementations

Because the WMX-specific core is very small, and the remainder of the protocol is entirely based on well-known standards and readily available components, it is expected that developers can construct a working implementation of WMX in a short period of time. Additionally, the protocol is designed so that it is entirely practical to create small-scale implementations that expose only a few operations.

Server-side and instrumentation developers will find that the integration with Web Services in WMX is easy. Implementation of the main server components can be easily built upon Web application and Web services hosting solutions. Since the catalog is based on URIs and resources are accessed using SOAP, a developer can instrument his or her sensor or probe by simply creating a Web Service and then referencing the Web Service in the catalog. This task has become increasingly simple using tools like CGI, Perl, JSP or ASP/ASMX.

Client-side implementations can be constructed with existing libraries for practically every modern programming language. Partial client implementations for specific operations are trivial to build.

Security

Since SOAP is transport-independent, it can support multiple security mechanisms for authentication. WMX can be run over the standard SOAP transport stack specified in the WS-I Basic Profile, which includes HTTP and SSL/TLS. When running over this transport, SSL/TLS certificates combined with HTTP authentication can provide a secure solution.

WMX can be run over a standard HTTP-based SOAP-compatible implementation, as defined in the WS-I Basic Profile. For security reasons, HTTPS is recommended. In addition, planned TCP+SNEGO implementations will allow for Kerberos integration.

Other transports may be specified, and other security mechanisms may be used, however, this is beyond the scope of this document, and is expected to be part of the WMX specification.

Simple Command Line Interface

Since most WMX operations are fixed and fit within tight design and semantic constraints, a simple command-line interface to WMX is possible. WMX supports automation scenarios by allowing unparsed or opaque script text to be sent to the managed node where it can be interpreted by a command line shell or tool.

Note that WMX is not designed to support interactive CLI operations, such as those used by the Telnet or Secure Shell (SSH) technologies.

Compatibility with the CIM Object Model

Because WMX is designed to map existing information into its runtime environment, it can expose DMTF’s Common Information Model (CIM). Each CIM class becomes a WMX resource with its own URI and associated XML schema and each instance is identified and retrieved using a URI that is canonically derived from the CIM 'object path'.

System Overview

The information in this section is preliminary and subject to change.
Protocol Operations

A WMX conversation is a very simple session in which a connection is established and a WMX protocol operation is performed. For example, an HTTPS connection is formed from the client to the agent and a Get operation is performed to retrieve a desired value.

The following table shows the basic client-side operations provided by the WMX protocol and their definitions. The verbs that make up the client-side operation names are derived from existing and upcoming Web services specifications:

Table 1 – Client-side operations

	Client-side operation
	Description

	Get
	Retrieves a simple or complex value, which may be a configuration setting, a dynamic instrumentation value, or a file.

	Put
	Sets a simple or complex value; typically used for updating settings, configuration, or files.

	Create
	Creates a new resource, such as a network share point, log, user account, or a new file.

	Delete
	Deletes an existing resource, usually one created by the Create operation.

	Enumerate
	Enumerates or queries tables, logs, or other collections of items.

	ShellExecute
	Executes a command-line operation against a registered shell.

	Invoke
	Executes a general-purpose, user-defined method.

	Subscribe
	Allows the client to receive a stream of events or other data items.

	Unsubscribe
	Allows a client to cancel a subscription and stop receiving events.

	Renew
	Allows a client to renew a subscription which might otherwise soon expire.

	DeliverEvent
	Used to deliver a single event or streams of events to a subscriber.

	Trap
	Sends a datagram-based event to an address. These are limited-size notifications sent over UDP or multicast protocols.

	Control
	Used to cancel or otherwise affect outstanding operations.

Each client-side operation has an associated target, called a resource, which is identified by a URI as described in RFC 2396 at http://www.ietf.org/rfc/rfc2396.txt. This URI identifies the item being retrieved, the method being accessed, the table being queried, or the event stream to which a subscription applies, and so on.

An actual WMX protocol operation is a SOAP message which contains the following:

· A basic verb, such as "Get" or "Put".

· The address of the WMX agent that will process the request.

· A URI which identifies the resource in which the verb applies.

· Optional input XML which acts as the parameter that is set for certain verbs ("Put" requires the XML of the information being written, and so on).

This request is formatted as a SOAP operation on the client-side and the response from the server is returned to the client as a SOAP reply. This reply identifies the original request and contains the XML response, such as the information being retrieved and any status codes. If any errors occur, standard SOAP faults are returned.

Like all other SOAP protocols, WMX is assumed to operate over a lower-level transport. HTTPS is the base-line transport for all implementations, and Microsoft is planning to define and support additional secure transports.

The actual layout of the SOAP messages is largely defined by the Web Services specifications in which WMX Is based upon.

Usage Examples

This section provides usage examples of WMX operations.

Get is used to retrieve the representation or value of a resource, which may be simple or complex values, such as configuration settings or dynamic runtime-only values. The resource is always identified as a URI. Because all replies are formatted as XML, the value may be anything from a simple integer to a complex XML structure. Typical examples of this are: retrieving disk free space, hardware status, application settings, and operating system performance values. Because the Get operation can only retrieve a singleton (whether a simple value or complex XML Infoset), it is not appropriate for multiple entries or rows from tables and logs. However the Get operation could be used to retrieve a single entry from such collections.

Put is used for updating "settings" or "configuration" values, whether permanent or temporary. Examples of this operation are updating a disk volume comment, changing the logging level of a device, and changing a cache size setting or working directory. It may also be used to update an entire file.

Create is used for creating new resources which can subsequently be queried or retrieved using Get. Examples of this operation are: creating a new log, a new shared disk volume, a new user, a new file, a new network share point, or a new performance monitoring process. In practice, the user should be able to use Get to retrieve information about the new resources, update them using Put, and delete them using Delete. It is not a requirement that any or all operations be supported for any given resource. Because of this, it is legal to support Create and no other operation for a given resource, or to allow only Put without a Get.

Delete is used to remove resources, usually those created by Create. Examples of this operation are removing an obsolete log, removing an unused network share volume, or deleting user accounts.

Enumerate is used to enumerate or query resources which are tables or logs. Each table row or log entry is an XML Infoset, which means that the entire table is a container of XML Infosets. The table may contain items based on a single schema or of multiple schemas. Examples of this operation are enumerating dynamic lists, such as lists of running processes, lists of logged on users, or event log content.

ShellExecute is used to execute a command-line against a command shell resource. A shell is any code which can execute a command line expression. This includes anything from a true full shell implementation like the Korn Shell to a simple C-language application (using argc, argv[]) which supports a limited syntax and a single command. This operation may return a status or a stream of results, or both. Note that the shell itself is the resource, and the command-string becomes a parameter to that shell.

Invoke is used to execute a general-purpose, user-defined method. For example, a user could use this operation to invoke a PowerCycle method to reboot the server.
Subscribe is used to set up a subscription to events or other streaming telemetry from a stream resource on the agent. Each stream of events is a resource and has its own URI. Unlike an enumeration, a subscription continues to deliver results until it expires or the subscription is canceled. An example of an event source would be application faults which might send events each time an application raised a fault or crashed. A stream resource may issue events belonging to a single schema or to multiple schemas.

Unsubscribe is used to cancel a subscription created using the Subscribe operation.

Renew is used to renew an existing subscription so that the client may continue to retrieve events.

DeliverEvent is used to actually deliver the events based on a prior Subscribe operation.

Control is used to control the other protocol operations. This operation has opcodes, such as Cancel. These opcodes allow the client to modify the behavior of an outstanding operation. For example, if a Get is in progress and the client side no longer needs the result and is not willing to wait, a Control with a Cancel opcode may be sent to terminate the operation and prevent the agent from composing the results and to release any resources associated with the operation.

Trap is used to send out small datagram-based events based on a prior Subscribe operation, usually for monitoring or alerting purposes. They are intended to fill the same needs as SNMP "Traps". Traps are different from normal events in that they can be delivered over UDP or multicast transports, and they have very limited size (under 1500 octets), because they must conform to the MTU of the networking hardware.

Implementation and Subsets

A particular implementation is not required to support all operation types or to support any particular operation type for all available resources. For example, an implementation may support Put on some resources and not others. Additionally, a given agent may choose to only expose Get for a single resource on a device. Another example is supporting only ShellExecute to expose a remote shell in which only the single reset shell command is supported for restarting the hardware device.

A minimum, conformant implementation which models a thermometer may only expose a single resource ('temperature') which is accessed using a Get, for example.

For any given operation, an implementation may choose not to support specific flags or features. As long as the appropriate fault is returned, this is permitted. WMX is very specific about fault usage, as this is the only way that clients can discover how to alter their own workflow or work around the associated problem.

Just as the agent side may be very simple, clients may also be hard-coded to perform a single, specific operation or may be general-purpose accessors of the entire protocol space.

WMX “XMOF” Catalog

Each agent implementation must expose a list of resource types available for access on the server in the form of XML-based metadata. This list is called the WMX Catalog. Each resource is described in a WMX catalog entry which consists of an XML document using the XMOF meta-model. This document may be literally stored as text or virtualized on demand when needed, or may even reside at a Web address rather than on the agent itself.

The catalog is designed to be the basis of local and remote discovery of available management resources. You can think of a catalog as a searchable database for discovering available resources and intelligently identifying the correct entries for a desired operation. The idea is that Google-like facilities could be built over the catalog.

The following code shows a prototype example of an XMOF entry:

<Component>

 <Identification>

 <Uri> microsoft.windows.xp </Uri>

 <Description lang="en-us"> OS Instrumentation </Description>

 <Vendor> Microsoft Corporation </Vendor>

 <ReleaseDate> 2000-12-31T09:45:00 </ReleaseDate>

 <Version> 1.0 </Version>

 </Identification>

 <Resource resType="table">

 <Uri> microsoft.windows.xp/system/plist </Uri>

 <Description lang="en"> Lists all currenty running processes </Description>

 <Schema model="schemaref">

 http://schemas.microsoft.com/2004/02/windows/system/processlist

 </Schema>

 </Resource>

 </Component>

In the previous code example, the <Component> wrapper describes a component, which is any logical device or service that needs to be exposed using WMX. Within the <Component> is a list of <Resource> entries.

Each <Resource> catalog entry represents a resource which can be accessed using a WMX operation. A component can contain one or more resources. The code example above shows a component with a single resource which can provide the list of currently running processes.

The above <Resource> entry is a table resource (as indicated in the resType attribute), which means it is compatible with the Enumerate operation. Other resType values indicate whether the item is compatible with Get or Subscribe, and so on.

Each protocol operation must reference an entry in the WMX catalog, such as the entry shown in the previous example. If the resource is not listed, the agent refuses the requested operation.

All implementations of WMX must be able to return all of their catalog entries so that WMX clients can discover what resources are accessible and what types they are. This is critical for the proper operation of WMX. To enable this, all agents must expose a set of Standard WMX Resources which allow the user to discover and enumerate the catalog’s contents.

For example, clients may discover all of the catalog items, such as those shown in the previous example, by issuing an Enumerate operation against the standard URI wmx:wmx.system/catalog, which will successively retrieve all of the resource entries from the catalog.

For resource-constrained implementations, the catalog, in whole or in part, may reside on a Web site or other remote location.

Dependencies on Existing Standards

WMX is composed of existing SOAP standards, which means that WMX is based largely on existing, well-researched technology and concepts. This section provides information about the technologies and concepts in which the WMX protocol is built.

SOAP 1.2

WMX is defined over the base implementation of the following W3C recommendations for SOAP 1.2 as defined by the following recommendations:

· SOAP Version 1.2 Part 1: Messaging Framework paper at http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

· SOAP Version 1.2 Part 2: Adjuncts at http://www.w3.org/TR/2003/REC-soap12-part2-20030624/

All implementations of WMX must accept both UNICODE and ANSI-based XML content.

HTTPS Binding

The default transport for WMX is HTTPS. The HTTP/HTTPS binding for WMX is the same as described for SOAP 1.2 in the following W3C recommendations:

· SOAP Version 1.2 Part 1: Messaging Framework paper at http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

· SOAP Version 1.2 Part 2: Adjuncts at http://www.w3.org/TR/2003/REC-soap12-part2-20030624/
Standard usage of SOAP over HTTP is further defined in the “WS-I Basic Profile Version 1.0a” specification. For more information about this specification, see “WS-I Basic Profile Version 1.0a” in the “Resources” section, later in this paper. For more information about HTTPS, see “HTTP Over TLS” in the “Resources” section, later in this paper.

WS-Addressing

WMX employs SOAP header blocks from WS-Addressing. These headers are used to standardize the identification of the operation, message identification, sender, and recipients. For more information about WS-Addressing, see “Web Services Addressing (WS-Addressing)” in the “References” section, later in this paper.

WS-Eventing

WMX uses operations from WS-Eventing to expose basic event subscription operations, which allow clients to receive events from streaming sources. For more information, see “WS-Eventing” in the “References” section, later in this paper.

XMOF

WMX requires the XMOF metadata model for describing available resources. At the time this paper was written, XMOF was still under development.

Components

The typical components used in a WMX management session are the Client, which issues the requests, and Agent, which is the WMX listener on the Server PC or device.

The Agent derives its name from the fact that it must listen for the request and dispatch it to the appropriate local handler, acting as an agent for the client request. A WMX Agent is therefore very similar to a Web Server which resolves URL requests by dispatching them to various types of handlers, such as CGI applications. Any dispatching architecture which is appropriate to the platform is acceptable and should not affect the meaning of the protocol.

The client identifies the Resource that is desired by either knowing it, or by discovering it, and then selecting the appropriate operation for that resource. As a simple example, assume that the client application wants to know the fan speed on a motherboard.

For a system to support WMX, the hardware manufacturer must perform the following:

· Supply an appropriate software handler which can retrieve this value.

· Register this handler with the agent.

· Add a resource entry to the WMX catalog.

Assume that the fan speed is identified by the following URI:

wmx:acme.boards.model2012/fanspeed

Note that any URI that is conformant to RFC 2396 is legal, but certain conventions should be observed, as described in this section.

The resource in this case is identified as being an instance, which is a single read-only value and therefore compatible with a Get operation. The client builds a SOAP packet containing a Get request specifying the URI and sends it to the agent, as shown in the following figure.

[image: image3.emf]Client

Agent

Local

Handler

Get

wmx:acme.boards.model2012/fanspeed

Catalog

?

Figure 3 – Sending a Get operation
The agent receives the request and locally looks up the appropriate software handler in its local catalog. The catalog may be a literal read-write catalog, a virtual catalog, or hard-coded. The catalog helps the agent resolve the URI to the correct internal handler. The agent may of course be able to directly route the request without physically consulting the catalog.

At this point, the Agent will typically propagate the client's security credentials to the local handler so that the operation can be properly secured, audited, and executed on behalf of the true client.

Each agent implementation may have its own local technique for mapping and dispatching a URI to a handler, as long as the protocol behavior is strictly observed.

The handler determines the desired value and returns it to the agent, as shown in the following figure. The agent then encloses the value in a GetResponse operation (the standard response to a Get), which is wrapped in a SOAP message, and then sent to the client side:

[image: image4.emf]Client

Agent

Local

Handler

GetResponse

<speed>

1200

</speed>

Get

wmx:acme.boards.model2012/fanspeed

Figure 4 – Getting a response

The client then extracts the value (an XML Infoset) from the message.

In practice, client-side accessors will use a language-specific library which wraps the WMX SOAP access in a simple interface.

Similarly, the agent implementation on the server side will have some type of standardized plug-in or provider model for associating URI values with the appropriate software handlers. This makes the addition of new handlers a matter of implementing the plug-in model for the particular platform.

Resources and Call to Action

Call to Action

For system manufacturers:

Evaluate WMX for implementation in future server platform designs allowing them to be effectively managed across all system life-cycle phases (pre-boot, OS-present and post-run).

For BMC firmware engineers:

Evaluate WMX for implementation in existing and future BMC firmware to create a coherent and holistic interface for the server system.

Resources

RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl
SOAP Version 1.2 Part 1: Messaging Framework
W3C recommendation
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
SOAP Version 1.2 Part 2: Adjuncts
W3C Recommendation
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/
Web Services Specifications
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsmsgspecindex.asp
Common Information Model (CIM Standards)
http://www.dmtf.org/standards/cim
Uniform Resource Identifiers (URI): Generic Syntax
http://www.faqs.org/rfcs/rfc2396.html
WS-I Basic Profile Version 1.0a
http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.html
HTTP Over TLS
http://www.ietf.org/rfc/rfc2818.txt?number=2818
WS-Addressing

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/wsaddressingspecindex.asp

WS-Eventing
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/WS-Eventing.asp
Appendix A - Glossary

The following table describes the terminology used in this paper.

	Term
	Description

	Base operations
	An operation that is present in all implementations of WMX.

	Command Line Interface (CLI)
	A common command line interface developed by the DMTF Server Management Working Group. CLI enables local and remote management of server hardware in both the operating system (OS)-present and OS-absent environments.

	Server management data
	The data used to manage the servers.

WinHEC 2004 Version - June 11, 2004
© 2004 Microsoft Corporation. All rights reserved.

[image: image5.png]_1145102880.vsd
Client

Local Handler

Agent

Get  wmx:acme.boards.model2012/fanspeed

Catalog

?

_1145102881.vsd
Client

Local Handler

Agent

GetResponse <speed>  1200  </speed>

Get  wmx:acme.boards.model2012/fanspeed

_1145102879.vsd
WMX listener

WDM provider

BMC driver

BMC

Management  Console

WMX (OS running)

Machine

boundary

User

Kernel

WMX (pre-boot, post-crash)

OS

Hardware

WMX based architecture

