[image: image1.png]Windows Hardware and Driver Central

Yet Another Framework? Why the New Windows Driver Foundation Is Worth a Fresh Look - 16

Yet Another Framework? Why the New Windows Driver Foundation Is Worth a Fresh Look
August 26, 2004
Abstract

Bill McKenzie, a DDK Microsoft Most Valuable Professional (MVP), discusses some of the key features and directions of Windows Driver Foundation, highlighting reasons why it is worth taking the time to evaluate this framework.

Contents

2WDF Observations from WinHEC 2004

2WDF Yesterday

3I/O and Queues

3Break-Aways

4Down-Level Support

4Draw Backs

5WDF Today

5Correct PnP and Power Support

10I/O and Queues

11DMA

12Bus Drivers

12Other Features

13WDF Tomorrow

13Security

14User Mode

14Common Driver Model

14What More Could You Want?

14Tools

15Documentation

15Source

15Summary

Copyright © 2004 by Bill K. McKenzie. All rights reserved
Microsoft Disclaimer: The contents of this document have not been authored or confirmed by Microsoft. Accordingly, the information contained in this document does not necessarily represent the views of the Microsoft and Microsoft cannot make any representation concerning its accuracy. MICROSOFT MAKE NO WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS INFORMATION.

Microsoft, Windows, and Windows NT are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

WDF Observations from WinHEC 2004

I walked into this year's WinHEC as probably the single biggest critic of Microsoft's new Windows driver framework push. Why? Do I hate frameworks? Hardly. But to be honest, after working for several years on commercial driver development tools I am automatically skeptical of any new driver tools that come along. Also, I had to ask: Do we need yet another driver framework? There are already driver framework products available from third parties. More to the point, I was worried about who was producing this particular set of tools, and even more worried about how they would position them. After all, this is the same company that brought us all the joys of StorPort, NDIS, SCSI and video miniports, and many other driver stacks that have cost more than a few of us much hair from our heads. I could just see another dysfunctional miniport model being forced upon us all.

Almost as soon as I walked into WinHEC this year, my worst fears were confirmed. I found out that that Microsoft's framework push had been renamed the Windows Driver Foundation (WDF). Foundation? I knew they would force this framework on us eventually, but so soon? I was so opposed to the whole WDF idea that I had actually crossed off all WDF sessions from my WinHEC schedule. I knew from experience what the framework team was in for when they started. It would likely take a team of experienced framework developers four or more years to get a framework suite such as WDF into any reasonable working order. So now what, was Microsoft going to come in and save the day with this WDF? Not likely. No matter how I tried I could not avoid WDF at WinHEC 2004. WDF was everywhere. Out of morbid curiosity and self defense, I decided I should listen as the WDF team stated their case. I listened as they explained where WDF had come from, where it is today, and where they wanted WDF to go in the future. Now that WinHEC 2004 has come and gone, I have to admit that either the members of the WDF team are extraordinarily gifted brainwashers, or I might have been wrong on several counts.

WinHEC provided me with an opportunity to talk with many of the developers working on WDF. Having done that, I can see that this group has a handle on the problems facing Windows driver developers. Even better, they seem to fully understand what it is they do not understand. They genuinely want the help and feedback of experienced Windows driver developers. If they deliver on even half of what was presented at this year's WinHEC, it appears that WDF is truly going to do more to address our problems than any other tools to date. This is not easy for me to admit either. After all, I made a living for a number of years developing Windows driver tools.

There is some good stuff in and around this WDF. The following discussion highlights some of the key features and directions of WDF so that you can decide for yourself whether WDF is of interest to you. Hopefully, you will see why it is worth taking the time to evaluate this framework.

WDF Yesterday

WDF started out as a sort of new miniport idea. Several driver developers, including myself, were invited to the first Birds-of-a-Feather meeting hosted by Microsoft at WinHEC 2002. To attend the meeting we all had to sign Non-Disclosure Agreements (NDAs) protecting the contents of the meeting. This allowed the Microsoft developers, such as Narayanan Ganapathy (current architect of WDF), to speak freely and discuss future directions with us. In this meeting, we were asked what we would like to see in a new miniport type model and/or what we did not like about current miniport models. Several issues were brought to the table, and Microsoft listened.

Two issues with current miniport models were raised and agreed upon by virtually every developer in the room: miniport models are too restrictive, and compatibility with down-revision operating systems is a must. A classic example of a miniport model being too restrictive was NDIS at the time when USB first came along. There was no NDIS_WDM switch at that time which made handling NDIS and IRPs in the same driver quite a pain. As for down-level operating systems, there are not too many developers that have the luxury of writing a driver to operate solely on the latest platform. For a new miniport model to be useful, it has to support legacy platforms to some degree.

What we did not know back then was just how much we were really being listened to. I do not believe anyone in the room realized just how far from a miniport model this new initiative would go. This meeting was essentially the beginning of WDF.

The version of WDF originally released to the public at WinHEC 2003 was a pretty good first attempt at a framework. I never liked frameworks that provided too much abstraction from WDM, so I did think it hid too much about WDM from the end user. The idea for a kernel framework is not new, by the way. A small company named BlueWater Systems was the first to tackle this idea over 8 years ago with the WinDK product line. WinDK took the minimalist approach, abstracting away from the underlying driver model only where sufficient complexity dictated doing so. This has always seemed a superior approach to me. But, WDF did a nice job in few areas such as I/O handling, allowing break-aways from the WDF model, and down-level operating system support.

I/O and Queues

The I/O architecture seems to be very well thought out. The I/O model in WDF uses a building block approach. Everything in WDF is an object and almost every action is an event or has a callback method. For instance, the driver no longer handles IRPs, but rather WDFREQUEST objects. Also, the driver does not send requests to other drivers but to I/O target objects. These new objects are more than just wrappers. Requests use references to ensure that I/O requests that enter a driver are accounted for.

I/O targets track the PnP and power state transitions of the I/O target for synchronization. Also, I/O targets take references on all objects which helps with I/O cleanup. I/O targets represent device objects that receive requests.

Queue objects or WDFQUEUEs handle queuing requests in the driver. All I/O goes through these queues and these queues are quite configurable. Queues can be set to allow requests through to the driver in a serial, a parallel, or some manual (or "pull" type) setup. These queues could be used like building blocks. For instance, a WDF driver could use a single queue for all I/O requests coming into the driver: IRP_MJ_READ, IRP_MN_WRITE, IRP_MJ_DEVICE_IO_CONTROL, and IRP_MJ_INTERNAL_DEVICE_IO_CONTROL. A single default queue is associated with each WDFDEVICE, and this queue could be used in this case. The queue could be setup to allow request through to the driver in parallel. From here the driver could send the requests to other request type-specific WDFQUEUEs created and managed by the driver.

Break-Aways

There is nothing worse than getting 40% or more into a project only to find out you are trapped in a cage. This has been the experience of many a poor virtual disk driver developer trying to use a SCSI miniport for their needs. They soon find that they have to abandon the miniport model for the much more complex full port SCSI driver. The reason this is necessary is that SCSI miniports do not have access to WDM constructs such as IRPs and device objects.

Every miniport model has some limitation like this that drives developers crazy. Being able to get away from the model, yet still take advantage of the model was a key request for WDF. I was quite pleasantly surprised that the WDF team actually took this to heart. The early versions of WDF implemented some very nice break-aways to ensure that the poor developers out there do not get trapped by WDF. Almost all, if not all of the objects in WDF allow the developer to get at the underlying WDM object. IRPs, device objects, driver objects just about everything is still accessible if need be.

Down-Level Support

Of all of the features that WDF could support, I expected down-level operating system support to be the least likely to be implemented. I was again pleasantly surprised to see that we had been listened to back in 2002. WDF has been tested on all NT-based operating systems from Windows 2000 forward since its beginnings. I was stunned by this because support for down-level operating systems has never been a Microsoft strong point. The WDF team did device driver developers a huge favor with this feature.

Draw Backs

With all the good that the first version of WDF had, it had some severe limitations as well. Foremost among these limitations was lack of source. I have been involved in creating three different PnP, power, and I/O framework implementations and none of them were ever completely correct. I will discuss this topic more in a minute, but this code is incredibly hard to get right. There is no way I could have faith in any team getting this right on the first, second, or even third tries. Until a team has run up against some of the synchronization problems inherent in PnP, power, and I/O, they just cannot appreciate the complexity. There has never been a single PnP, power, and I/O implementation that has been correct to my knowledge, and I have evaluated numerous implementations.

Unlike most commercial driver tools, WDF has a large team with access to many more unique driver development cases. Windows is itself comprised of many different drivers and driver stacks with differing and complex needs and requirements. Rewriting some of these has helped the WDF team speed their journey along the learning curve. In addition, the WDF team is larger than most teams I have seen working strictly on driver development tools.

Even these advantages do not ensure success, however, and early versions of WDF would not have seen wide acceptance in my opinion. The typical argument against frameworks applied: yet another API for little or no gain and much obfuscation. I believe it took the process of the WDF team actually writing many drivers using the new framework before they could really start to see the core problems with WDM.

What are those core problems? To boil it down to one simple principle: WDM leaves way too much complexity in the hands of driver developers. WDM forces a tremendous amount of complexity on the developer, even for simple drivers. It would be much better to keep this complexity in one well-tested component than to distribute this complexity over thousands of drivers. Many drivers are developed by companies that do not have the resources to exhaustively test every path in their drivers. Testing some PnP and power code paths such as stop and standby can be challenging as well.

The WDF team understood some of this going in, but I do not believe they understood the full scope of the problem. It is one thing to handle most of the driver cases, it is quite another to handle them all and to handle them with a great degree of flexibility. DriverWorks, WinDK, KernelDriver all of the tools I know of were at least as full featured and usable as WDF was a year ago. Most of these tools provided much more than the early versions of WDF: more samples, more documentation, better implementations, and many more tools. So as of WinHEC 2003, my take on WDF was that it was several years behind what had already been done several years before.

WDF Today
Many tough, ill-understood, and ill-documented PnP and power management problems started to surface during WDF development. The WDF team decided that fixing these problems for all users was important enough to force a rewrite of much of the WDF code. It is rare that a software group will take this stance. This is a great approach going forward as well. So, what is so cool about WDF today? Read on and find out.

Correct PnP and Power Support

If you have even dabbled with writing Windows device drivers, you likely hit a wall when you started. It is the same wall that most of us hit when just starting out: PnP, power, pending I/O, correct I/O handling and synchronization, DMA. The list goes on and on. So, what are the problems that a driver framework should solve? Certainly all those issues just named should be made easier to handle, but that is the obvious stuff, the beginner stuff. I have always thought that if you are going to make a framework that makes the beginner's job easier, it should be robust and flexible enough to be useful to experts as well.

So, what problems do experts face? What if I said, "PnP, power, correct I/O handling and synchronization, DMA"--several of the same problems that rookies face? Let me ask a question that may help clarify my point. How many of you think you have ever written a correct WDM driver? "Correct" here meaning that PnP, power, and I/O were handled safely and correctly, including multi-processor support. If you answered in the affirmative, you are very likely wrong.

How can I say that with such confidence? Because, I have been through PnP and power exhaustively. I have yet to see a WDM driver sample anywhere that correctly synchronizes PnP, power, and I/O for all potential applications--not in the Windows Driver Development Kit (DDK), not in any books, not in any commercial toolkits, not anywhere. Certainly, I have not ever seen a PnP and power management code base that could be copied and used for just any type of WDM device. Selective suspend alone, throws out every implementation I know of.

Let me give you a simpler example of what I am talking about from the Toaster sample in the DDK. By the way, I am not picking on this sample. I could find similar problems in most WDM drivers, as could most of you. Consider the following code snippet from the ToasterIoDecrement method in Toaster.c:

 LONG result;

 result = InterlockedDecrement(&FdoData->OutstandingIO);

 //ToasterDebugPrint(TRACE, "ToasterIoDecrement %d\n", result);

 ASSERT(result >= 0);

 if (1 == result)
 {
 KeSetEvent (&FdoData->StopEvent,
 IO_NO_INCREMENT,
 FALSE);
 }

 if (0 == result)
 {
 ASSERT(Deleted == FdoData->DevicePnPState);

 KeSetEvent (&FdoData->RemoveEvent,
 IO_NO_INCREMENT,
 FALSE);
 }

 return result;

Toaster, like many WDM drivers, uses a variable, FdoData->OutstandingIO above, to count outstanding I/O requests in the driver. The value of FdoData->OutstandingIO is incremented in an interlocked fashion whenever a new I/O request enters one of the driver's dispatch routines. The same variable is decremented in an interlocked fashion whenever one of the counted I/O requests is completed. The count starts at 1, so that if it is later decremented to 1, the driver knows all I/O is complete and a stop is allowed. The final decrement to zero is accomplished in the driver's remove handler and allows one count variable to suffice for both stop and remove.

This approach can simplify synchronization problems between stop and remove. However, there is a problem in this code. Many drivers have implemented similar code, some well before the Toaster sample existed. The problem goes something like this: a counted I/O request in the driver completes and FdoData->OutstandingIO is decremented to a value of 1. The decrement occurs in some thread we will call thread A. Thread A then gets interrupted just after the decrement occurs as shown in the code snipped below.

 LONG result;

 result = InterlockedDecrement(&FdoData->OutstandingIO);
 //ToasterDebugPrint(TRACE, "ToasterIoDecrement %d\n", result);

 ASSERT(result >= 0);

 // **** Code is executed in thread A to this point and result is set to a value of 1 ****
 // **** Thread A is interrupted here ****
 .
 .
 .
No stop or query stop has occurred in the driver at this point. Now, imagine some I/O requests come into the driver on another processor and FdoData->OutstandingIO is bumped up to reflect that there are outstanding I/O requests. One of the received requests is a stop request. The toaster stop handler, part of which is shown below, eventually ends up waiting on the event, FdoData->StopEvent. We will call the thread that is waiting on the stop event thread B.

 //
 // Determine if the hardware instance can safely be stopped, without losing
 // any data.
 //
 status = ToasterCanStopDevice(DeviceObject, Irp);
 if (NT_SUCCESS(status))
 {
 SET_NEW_PNP_STATE(fdoData, StopPending);
 fdoData->QueueState = HoldRequests;
 ToasterDebugPrint(INFO, "Holding requests...\n");
 ToasterIoDecrement(fdoData);
 // **** Thread B gets here and waits on stop event
 KeWaitForSingleObject(
 &fdoData->StopEvent,
 Executive,
 KernelMode,
 FALSE,
 NULL);

When thread A finally gets freed up, the stop event gets signaled even though there is outstanding I/O in the driver:
 .
 .
 .
 // **** Thread A eventually is set to run again at the point where it was interrupted ****
 // **** The variable result still has a value of 1 ****

 if (1 == result)
 {
 KeSetEvent (&FdoData->StopEvent,
 IO_NO_INCREMENT,
 FALSE);
 }

 if (0 == result)
 {
 ASSERT(Deleted == FdoData->DevicePnPState);

 KeSetEvent (&FdoData->RemoveEvent,
 IO_NO_INCREMENT,
 FALSE);
 }

 return result;

The stop handler, running on thread B, sees the signaled stop event and proceeds as if there is no active I/O in the driver. Disaster looms as the driver's resources are let go. This may seem like a rare or unlikely case, but it is quite possible on a multiprocessor machine. When you consider that Windows runs on > 100 million desktops, it would probably be interesting to know just how many one-in-a-million events occur each year.

So, what does all of this have to do with WDF? To understand the need for and scope of driver frameworks, it is important to understand just how hard the "basics" are. The "basics" in the Windows driver world are so complex that most seasoned driver developers get some part of them wrong in virtually every driver they write. To complicate the "basics" even further, there is a good amount of information that while critical, has never been documented. For instance, how many of you were aware of the following:

 "All of the PnP IRPs that cause state changes and System power IRPs (S-IRPs) are coordinated by acquiring a common lock under the hood. So, it is not possible to get power IRPs in your driver while you are being stopped or in a stopped state. So long as you keep any Device power IRPs (D-IRPs), which are requested on account of S-IRPs, slaved to those S-IRPs, you do not have to worry about system-generated PnP IRPs sneaking in. However, when your driver generates D-IRPs to support idle detection, you need to worry about all these issues because there is absolutely no coordination between D-IRPs and Plug and Play."

I was not sure of the inherent synchronization between S-IRPs and PnP IRPs until Eliyas Yakub from Microsoft confirmed this for me (I have been looking for a good place to finally share this with the world). Most driver developers likely never delve that deeply into PnP or power handling in their WDM drivers. Most developers probably copy an existing PnP/power implementation out of some DDK sample like Toaster or some book examples somewhere. In fact, most driver developers probably do not want to have to think about PnP or power in their drivers. And why should they have to? Most developers just want their drivers to do the right thing, and then be able to modify behaviors that affect their devices easily. Sounds like a perfect place for a framework solution, no?

Remember now, we are just talking about the easy stuff here. I do not have the time, room, or patience to go into the hard stuff. Things such as correctly implemented IRP queues, synchronizing I/O between DPCs, queue StartIo routines, and cancel routines for in-progress cancelable IRPs, USB selective suspend... Hopefully, you are starting to get the picture. Even these latter-mentioned tasks are pretty basic WDM driver tasks, but most drivers get these wrong in some minor or major fashion. The synchronization problems inherent in WDM are daunting. So far, I have only talked about correct PnP/power implementations. I have not even broached the topics of aggressive power management, fast resume, or idle detection. Throw these features in, and good luck getting close to a correct PnP/power implementation.

It struck me some time ago that some more formal methods should be used to analyze and solve the whole WDM synchronization problem. Walter Oney came as close as anyone in the example drivers that shipped with his book "Programming the Windows Driver Model 2nd Ed." Walter Oney used a state machine for his power handling, which he brought forward from his first WDM book--what a simple yet excellently engineered solution. I still have not found a better solution for power handling in a WDM driver--until now.

Lacking source, I took advantage of the developer access at the Birds-of-a-Feather and Ask-the-Experts meetings at WinHEC to talk with several of the WDF developers about some of the problems discussed above. I had the good fortune of stealing a couple of minutes of time from Jake Oshins and Doron Holan. They proceeded to bring up a Visio image on a laptop revealing a huge state machine. It was here for the first time that I started to realize that I have never understood just how big the problems with WDM really are. It seems these guys started running into the same problems we all do. These guys took the bull by the horns.

I was shown three main state-machines, one for PnP, one for power, and one for power policy. The WDF team used these state machines as the basis to completely rewrite the WDF frameworks. These state machines took into account everything: wake devices (both wake from idle and wake from system sleep), USB selective suspend, in-rush power, pageable devices--you name a WDM corner case and it is probably in there somewhere. These state machines, which the WDF team hopes to eventually include in the WDF documentation, encompass over 200 states! This is just a few more states than you will see presented in the typical WDM state diagrams in WDM driver seminars or in any of the books on the topic.

Multiple drivers are potentially going to be created from this framework, it is absolutely critical that the code be correct. It is nice to see that these guys are not fooling around. The fact that the WDF team formally solved the PnP/power/I/O synchronization problem is, quite frankly, enough to convince me that the new WDF is the only way to go for Windows drivers. But there is more.

Rather than just making a correct solution, the WDF team has worked to take the pain out of WDM. For instance, most of the hassle of PnP and power has been moved into the framework and out of the driver. There is a new collection of callbacks that the driver sets to handle PnP and power events. Each of these callbacks has a default implementation that is used if the driver does not set its own callback. The current PnP and power callbacks are shown below:

typedef struct _WDF_PNPPOWER_EVENT_CALLBACKS {
//
// Size of this structure in bytes
//
ULONG Size;

PFN_WDF_DEVICE_D0_ENTRY EvtDeviceD0Entry;
PFN_WDF_DEVICE_D0_EXIT EvtDeviceD0Exit;
PFN_WDF_DEVICE_PREPARE_HARDWARE EvtDevicePrepareHardware;
PFN_WDF_DEVICE_RELEASE_HARDWARE EvtDeviceReleaseHardware;
PFN_WDF_DEVICE_SELF_MANAGED_IO_CLEANUP EvtDeviceSelfManagedIoCleanup;
PFN_WDF_DEVICE_SELF_MANAGED_IO_INIT EvtDeviceSelfManagedIoInit;
PFN_WDF_DEVICE_SELF_MANAGED_IO_SUSPEND EvtDeviceSelfManagedIoSuspend;
PFN_WDF_DEVICE_SELF_MANAGED_IO_RESTART EvtDeviceSelfManagedIoRestart;
PFN_WDF_DEVICE_SELF_MANAGED_IO_STOP EvtDeviceSelfManagedIoStop;
PFN_WDF_DEVICE_SURPRISE_REMOVAL EvtDeviceSurpriseRemoval;
PFN_WDF_DEVICE_USAGE_NOTIFICATION EvtDeviceUsageNotification;
PFN_WDF_DEVICE_RELATIONS_QUERY EvtDeviceRelationsQuery;
PFN_WDF_DEVICE_ENABLE_WAKE_AT_BUS EvtDeviceEnableWakeAtBus;
PFN_WDF_DEVICE_DISABLE_WAKE_AT_BUS EvtDeviceDisableWakeAtBus;
} WDF_PNPPOWER_EVENT_CALLBACKS, *PWDF_PNPPOWER_EVENT_CALLBACKS;

typedef struct _WDF_POWER_POLICY_EVENT_CALLBACKS {
//
// Size of this structure in bytes
//
ULONG Size;

PFN_WDF_DEVICE_ARM_WAKE_FROM_S0 EvtDeviceArmWakeFromS0;
PFN_WDF_DEVICE_DISARM_WAKE_FROM_S0 EvtDeviceDisarmWakeFromS0;
PFN_WDF_DEVICE_WAKE_FROM_S0_TRIGGERED EvtDeviceWakeFromS0Triggered;

PFN_WDF_DEVICE_ARM_WAKE_FROM_SX EvtDeviceArmWakeFromSx;
PFN_WDF_DEVICE_DISARM_WAKE_FROM_SX EvtDeviceDisarmWakeFromSx;
PFN_WDF_DEVICE_WAKE_FROM_SX_TRIGGERED EvtDeviceWakeFromSxTriggered;

} WDF_POWER_POLICY_EVENT_CALLBACKS, *PWDF_POWER_POLICY_EVENT_CALLBACKS;

If you have seen earlier versions of WDF, or you have read earlier articles on WDF here on WD3 you might notice that some of the earlier callbacks such as EvtDeviceStart no longer exist. The WDF rewrite has changed the whole framework approach a good bit. Now instead of following the IRP-imposed structure of WDM, the callbacks more logically follow the events that the driver cares about. For example, instead of having to worry about StartDevice, the driver developer just needs to handle events such as EvtDevicePrepareHardware and possibly EvtDeviceD0Entry--or possibly neither of these--to properly handle startup in a device driver.

The driver developer no longer has to worry about whether this is the first IRP_MN_START_DEVICE that the driver has received, or whether the device is already at D0, or whether the bus truly powered this device as expected at start. Remove is no longer a worry either. Instead, you just handle EvtDeviceReleaseHardware and/or EvtDeviceSurpriseRemoval. No more tracking previous power states either. I like this new feature of WDF about as much as any.

All PnP and power related callbacks execute at PASSIVE_LEVEL IRQL. This helps simplify the developer's job a great deal. Because we are talking about PnP and power, there are no driver performance worries.

I have revised my view of WDM abstraction. I now believe more abstraction is better. Certainly the abstraction present in the new WDF is better than any I have seen to date.

I/O and Queues
Queues Types:

When you dig into WDM, you start to realize that synchronizing PnP, power, and I/O together is not a straightforward task even in the simplest of WDM drivers. It is deceptively difficult to synchronize I/O with stops or power downs in an efficient fashion. Queues make life a lot easier. It is much easier to design queues such that I/O requests can be paused, resumed and cancelled than to track and handle individual I/O requests. It seems natural then that WDF would provide a good queue implementation. Indeed, WDF does exactly that and it provides queue support which is quite unique and nice.

First off, beyond setup, there is little you have to do to manage WDF queues. Just configure the queues to operate as desired and set the event callbacks, and the framework provides the rest.

At the same time, the queues allow for a lot of flexibility. A driver can handle all I/O request types in one callback, each in a separate callback, or some setup in between. The developer can provide custom stop, resume and/or cancel event callbacks or use the defaults provided by WDF.

Even cooler than all of this, WDF queues can be setup as power managed for requests that touch hardware and non-power managed for requests that do not touch hardware. This is nice for filter drivers or other drivers that do not control hardware. The queues have been improved from the early versions of WDF, but the same basic architecture is still in place. The driver can still use multiple queues in a building-block fashion.

Self-Managed I/O:

Unlike NDIS or SCSI or <name your most hated miniport model here> you can break away from the WDF model when necessary. This is true in many ways including for I/O requests. If a driver needs to handle I/O requests outside of WDF-managed queues, WDF provides a mechanism for this. The PciDrv sample in the WDF beta potentially receives requests from an NDIS miniport. Because NDIS does not communicate power or PnP transitions to miniport drivers, it is possible that PciDrv will receive requests during PnP or power state transitions. The WDF queues are synchronized with PnP and power state transitions, thus using WDF queues with these requests cause deadlocks. For this case, WDF has created a special type of I/O called self-managed I/O. As you can see in the callbacks listed earlier, there are several callbacks just for self-managed I/O. Self-managed I/O allows for I/O in a driver that is not handled within the structure of a WDF queue. A WDF driver can use self-managed I/O to manage power and PnP synchronization for I/O requests on its own. This is a new feature this year in WDF, and quite a nice feature at that.

I/O requests that are not self-managed and for which no queue callbacks are setup are failed by the default WDF queue handling with status STATUS_INVALID_DEVICE_REQUEST.

Pushing most or all requests to queues is absolutely the right way to go for correctness sake. Taking the complexity of queue implementations away from the developer, while maintaining flexibility in application is exactly what a good framework should do.

DMA
This is one area I am admittedly weak on. I know WDF has DMA support, but I have not had the time to try this out for myself. However, WDF does have support for bus master DMA devices using packet-based or scatter-gather DMA, and it supports common-buffers. There are instructions to convert I/O requests into DMA operations. Three PCI DMA samples are now included with WDF: plx9x5x, pcidrv, and amcc5933. Looking over these samples, it looks fairly straight-forward to write a DMA driver using the framework. An event callback is used for the driver to initiate DMA transfers. The PLX sample even shows simultaneous read and write DMA transfers for PLX 9x5x devices that contain two DMA engines.

Object Oriented Design and Support:

I still have some issues with this new "Foundation." Having quite a bit of experience with both C and C++ based driver tools, I can state unequivocally that C++ is a much better language for implementing frameworks. One nice feature of C++ is the ability to override base functionality without having to explicitly modify a bunch of pointer tables and such. There are plenty of other even more compelling reasons to use C++--yes, even in the Windows kernel, but I will spare you the one-sided debate.

As soon as I broached this topic with the WDF development team, they made it clear that much of the WDF code was written in C++ internally. I have worked in the kernel long enough and out of the kernel sufficiently to realize that Windows driver programming is a good 10 to 20 years behind the software development times. The WDF team seems to get it. They are not afraid to use the right tools, popular or not.

There are several legitimate reasons, from Microsoft's point of view, to not explicitly support C++ in the kernel today. The main problem is the DDK compiler which the kernel development team has very little control over. The DDK compiler never has, and still does not, directly support C++ in the kernel. There is a new whitepaper from Microsoft that explains some of the risks of using C++ in the kernel: http://www.microsoft.com/whdc/driver/kernel/KMcode.mspx. Most of the problems presented in this document are easy to get around and hundreds of commercial Windows drivers have been written using C++.

However, because there are limitations to C++ in the kernel, Microsoft does not want developers taking on even more complexity when developing their Windows drivers. I can completely understand this position, and thus I can reluctantly accept a C-based framework. Of course, I hope that in the future the compiler can be adjusted and that WDF will have C++ support exposed for our use. At any rate, the framework is heavily object oriented in design even thought it exposes a C API. Although dealing with zeroing out and filling in structures and such is not nearly as nice as having classes with constructors, the WDF object design is very well implemented.

Bus Drivers
WDF now supports bus drivers. Not only does it support bus drivers, but it makes them almost trivial to develop. The WDF beta includes a fully WDF'd Toaster sample that includes a WDF bus driver implementation. If you have ever written a WDM bus driver and dealt with the complexities of child device management, you will be shocked at how easy WDF bus drivers are to write. There are some very simple framework calls to report new child devices or to report child devices missing. No more device object lifetime worries. In addition, WDF implements aggressive power management for bus drivers, powering down the bus when all child devices are powered down.

Other Features
There is so much to WDF that I have not had a chance to try it all out yet. There are several real-world sample drivers now available with the WDF beta, and I am sure more to come. Several driver stacks in Windows are being rewritten with WDF including the audio stack, the storage stack, and (rumor has it) the 1394 stack (although I am having a hard time confirming that last one).

One huge feature of WDF that has been carried forward is back compatibility. The WDF team has tested WDF from the ground up on all NT-based Windows operating systems from Windows 2000 forward. So, when WDF ships, you will not have to worry about making a WDF driver for Longhorn and a WDM driver for everything else. WDF will be fully compatible with down-revision NT-based WDM platforms. This feature alone makes WDF extremely compelling.

Other framework tools have made WDM easier, so this is not a new idea. However, WDF has been implemented in a way that I think goes beyond what has been done before. WDF now handles synchronizing PnP, power, and I/O correctly and in a way to minimize what the developer has to deal with. No more having to worry about the D0 power state in a driver's PnP handlers, or stop and remove in a driver's power handlers. The events WDF exposes to the driver provides the driver with a clear and consistent interface.

But wait, there's more. Not only does WDF handle PnP and power synchronization for I/O and event callbacks, but WDF can also disconnect interrupts and stop DMA when the device is not fully powered. WDF also supports fast resume, WMI including driver tracing, idle detection power management, deterministic wake device handling, sleep, hibernate, paging, crash dump, or hibernation path device support, and much more.

WDF provides a driver model that is very clean and very simple. WDF is the driver model we should have gotten instead of WDM. I have often said that there is not a single correct WDM driver in existence. Perhaps, I will no longer be able to say this. I am finding it harder to dismiss this new initiative from Microsoft.

WDF Tomorrow

So, what does the future hold for WDF? Many more driver stacks and miniport models will likely be converted to WDF. WDF is now a much broader concept than just a kernel driver development framework. A few of the ideas related to the future direction of WDF were discussed at WinHEC, and I briefly highlight some of these below.

Security
Driver Interface Generation (DIG)

DIG was one of the coolest new ideas I saw presented at WinHEC in relation to drivers. The idea is to use an interface description language similar to COM's IDL to describe the parameters being sent to a driver. This has several advantages.

First, it simplifies the user-mode code and makes automatic generation of code possible in multiple languages such as C# or C++. Can you imagine not having to call DeviceIoControl with an overlapped structure anymore? How nice.

Perhaps more importantly, an IDL-like language could change many parameter errors from run-time errors to compile-time errors. With the current IOCTL implementation, all that is sent down to the kernel is a buffer pointer and a length. It is difficult to impossible to verify that what an IOCTL buffer contains is what was intended, or if it is valid at all. With a description language like DIG, parameters can be checked for number, type, length, and validity. This would make Windows drivers much more secure, while relieving the driver developer of a lot of boilerplate I/O code. For WDF, this is less a benefit from a driver complexity standpoint, but DIG still provides the type safety and nice interface for user-mode.

Another advantage to DIG is it would allow for better checking by static analysis tools like PREFast or static driver verifier. Currently, there is no way to know how a particular IOCTL should perform or what IOCTLs a driver supports. DIG would make this information available. This is an idea whose time has come.

Driver Isolation

There has been quite a bit of talk surrounding driver isolation over the last few years. Most of the talk has centered on some type of hardware isolation. The idea here is to isolate or quarantine a driver so that if the driver crashes the system is not brought down. Hardware isolation can be difficult and expensive to achieve. A more interesting solution to driver isolation touched on at WinHEC was managed code in device drivers.

Okay, I can see some eyes glazing over out there. This is not C# for drivers. However, WDF along with DIG actually makes managed code a plausible and perhaps a good idea for drivers. This idea has great promise.

User Mode
User-mode drivers are not a new idea. BlueWater Systems was again first to the party, way back in the early nineties, with WinRT. WinRT was originally designed to provide DOS programmers a familiar inp/outp Win32 API for executing PIO on hardware under Windows. WinRT grew to encompass many more types of devices eventually including USB with the WinRT-USB product. The WDF team, like many of us, has realized that not every device should require the development of a kernel-mode driver to operate. This is particularly true for custom devices on serial buses such as USB and 1394. USB is a bus with a very simple command set, and USB devices do not require resources. Non-performance critical USB devices could easily benefit from a user-mode interface.

There is a new user-mode driver for USB devices called WinUSB that the WDF team is planning to launch with Longhorn. The general idea is that there would be a user-mode framework as a part of WDF. This framework would have the same or similar APIs as the kernel-mode framework. The user-mode framework will interact with prefabricated kernel-mode driver(s) that will handle the bus interactions. There are several types of devices that would benefit from a user-mode versus kernel-mode interface.

Common Driver Model
If WDF gains mass acceptance, which seems likely, there is a good chance that many Windows driver stacks will be rewritten using it. Most, if not all, new driver stacks will use it as well. These development efforts are actually part of a larger push to move all Windows drivers to a single driver model. The idea is to push all common driver tasks, such as memory allocation, lock instructions, etc., to a common DDI. This would eliminate having separate and redundant functions for WDM, SCSI, NDIS, etc.

This would also push us away from every driver type requiring a new expertise. Today, there are not many developers that are experts in all of the different Windows driver types. For instance, if you had a project that required a file system filter driver, a SCSI port driver, a virtual COM driver with TDI support, a PCI DMA driver, a video miniport driver, and a NDIS intermediate driver, you would be hard pressed to find an individual that could develop all of these for you. Most developers concentrate on specific driver types and sometimes venture out and learn two or three others. If all drivers had a common DDI and simplified model, crossing over might be a good deal easier. There was some talk at WinHEC that the NDIS team is already evaluating WDF for eventual NDIS adoption.

What More Could You Want?
There is a lot in this new WDF to like. I have only scratched the surface in this article. For more information and detail, check out Microsoft's WDF webpage: http://www.microsoft.com/whdc/driver/wdf/default.mspx.

Tools
There is still a lot more that has been done before by third parties that would be nice to see in WDF. For instance, code wizards would be a nice addition to WDF. The WDF code would be easy to generate from a wizard. There has been a lot of criticism about wizards on newsgroups, and none of it ever seems to have anything to do with wizards. It is difficult to imagine any down side to having customized code generated automatically. Wizards instantly make a framework two to three times easier to use by providing prewritten sample code and removing cut-and-paste errors. An IDE-independent wizard would be ideal, but any wizard is better than no wizard.

Code generating wizards, IDE integration, and several other ideas were brought up in some of the Birds-of-a-Feather meetings at this year's WinHEC. Those poor Microsoft developers and program managers stayed at the Seattle Convention Center until late into the evening on several nights to hear us out on what we would like to see in WDF. If history is any indicator, WDF is likely to go where we would like to see it go.

Documentation
Better documentation? The WDF team indicated that more and better WDF documentation is forth coming. I have to say that I have not looked at the WDF documentation all that much, but when I have, what I needed was in there. There are so many samples available in the WDF beta, the beta samples are so well commented, and the WDF APIs are so simple that documentation, while it would be nice, really is not necessary. It does not take much time for an experienced driver developer to get up to speed with WDF, and that is a pleasant surprise. Documentation on the underlying design would be very helpful.

Source
Have I mentioned source!?! I cannot support this framework until I can verify that it does what it says it does. In fact, without WDF source, I will again become a major WDF detractor. If Microsoft is serious about their stated goals for WDF, I do not know how they could justify not distributing the the source when WDF is released. If the perception of WDF is to be a help to the developer versus a push to control the developer, source must be made available.

It will be many years before all drivers move to WDF, so WDM knowledge is still required for all Windows driver developers. WDF brings many new structures, functions and concepts to the driver development table. The new driver developer is going to be more confused than ever. The only real way to curb this problem is to provide the WDF source.

There is no way to know what the default WDF callback implementations do without being able to see the WDF source. In addition, debugging WDF drivers will be problematic without WDF source.

The entire framework is presumably written using publicly available WDM calls, so a good reason for not publishing the WDF source is not clear. Non-buildable source, similar to what is released with MFC, would likely be acceptable to most developers. No one should ever rebuild the framework code.

Every member of the WDF team I talked to, including the program manager, was in favor of releasing source. It seems the only hold up now is Microsoft legal. Hopefully, the right thing will be done here.

Summary
When Microsoft started down the driver framework path, I was fully prepared to be underwhelmed. I feared the mother of all miniport models being foisted upon us poor developers leaving us no where to run.

I came away from WinHEC a believer in and supporter of WDF. It is not so much that I like WDF, although I do: it is more that I like the fact that the WDF team is taking on some long standing, difficult, and critical Windows driver problems and solving them in elegant ways. Like I said, the WDF PnP/power/I/O implementation alone is enough to convince me that I cannot do better on my own. Add that with some of the new directions like a common model, DIG, and managed code and I am beginning to believe that the WDF team just gets it. They get the problems that have existed in WDM since its inception, and they get how these problems should be solved. They are forward looking, forward thinking, yet well grounded and talented individuals that want to produce an outstanding product. And the product is free.

Okay, they sold me. Hopefully, I have convinced a few of you to take a look or another look at WDF. I do not think it will be a waste of your time.

The WDF team wants our help. WDF is very likely going to be our driver model of choice for Windows driver development very soon. As such, we can have a direct effect on it today. The core features of the kernel framework portion of WDF are complete, but the WDF team is looking for feedback on what can be done better, new directions to explore, and whatever your experience can provide to make this a better foundation. If interested, sign up for the WDF Beta Program: http://beta.microsoft.com (GuestID: ‘Guest4WDF’).

About the author:

Bill McKenzie has been developing system-level software for over seven years, including over five years experience developing device drivers for Windows platforms. His primary background is in the development of software products targeted for device driver developers. He is currently working on device driver and application software development for the Prism line of 802.11 wireless devices at Conexant Systems, Inc.

August 26, 2004

[image: image1.png]