[image: image1.png]Windows Hardware and Driver Central

Power Management of USB Host Controllers - 11

Power Management of USB Host Controllers

August 30, 2004

Abstract

This paper provides information about power capabilities of USB 2.0 host controllers. It outlines the procedure for defining capabilities and explains interpretation of these capabilities by the USB host controller drivers in the Microsoft® Windows® family of operating systems.

The power capabilities for USB host controllers are conceived by the underlying PCI bus driver. The ACPI driver optionally modifies these capabilities before handing them to the host controller drivers. The drivers retain these capabilities for their hardware entities. This paper provides guidelines for programming these capabilities and demonstrates how incorrect values can cause problems in the power management of the system.

This document assumes familiarity with concepts of system power management and USB host controllers.

This information applies for the following operating systems:
Microsoft Windows Vista™
Microsoft Windows ServerTM 2003 Service Pack 1
Microsoft Windows XP Service Pack 2

The current version of this paper is maintained on the Web at
http://www.microsoft.com/whdc/system/bus/usb/default.mspx.

References and resources discussed here are listed at the end of this paper.

Contents

3Introduction

3USB 2.0 Host Controller

3Port Routing

4PCI Power Management

4EHCI Power Management Interface

5ACPI

5_SxD (Sx Device State)

6_PRW (Power Resources for Wake)

7Device Power Management Capabilities

7USB Host Controller Driver

8USBBIOSx

8Illustrations

8Consistent Power Capabilities across Different Controllers

9Onboard EHCI controller with no _PRW Object

9Effect of Selective Suspend

10Mobile Platform with Hardwired USB Device

10References

11Appendix A: EHCI Core Logic Powered from Auxiliary Source

Disclaimer

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

This paper provides information about power capabilities of USB 2.0 host controllers. It outlines the procedure for defining capabilities and explains interpretation of these capabilities by the USB host controller drivers in the Microsoft® Windows® family of operating systems.

The power capabilities for USB host controllers are conceived by the underlying PCI bus driver. The ACPI driver optionally modifies these capabilities before handing them to the host controller drivers. The drivers retain these capabilities for their hardware entities. This paper provides guidelines for programming these capabilities and demonstrates how incorrect values can cause problems in the power management of the system.

USB 2.0 Host Controller

A USB 2.0 Host Controller (HC) includes one high-speed mode host controller and zero or more USB 1.1 controllers. The high-speed controller implements an Enhanced Host Controller Interface (EHCI) specification. It is used for all high-speed communications to high-speed-mode devices connected to the root ports of the USB 2.0 host controller. The communication to full- and low-speed devices connected to the root ports of the USB 2.0 controller is provided by companion USB 1.1 controllers. There are two industry standard specifications for companion controllers: Universal Host Controller Interface (UHCI) and Open Host Controller Interface (OHCI).

A USB 2.0 HC is a single PCI device with multiple functions. One function is an EHCI controller and the remaining functions are companion controllers. The USB 2.0 HC may be integrated on the motherboard or available as an add-in PCI card.

	kd> !pcitree

Bus 0x0 (FDO Ext 85cfeb60)

...

 0c03 24d28086 (d=1d, f=0) devext 85cfe408 Serial Bus Controller/USB

 0c03 24d48086 (d=1d, f=1) devext 85d220f8 Serial Bus Controller/USB

 0c03 24d78086 (d=1d, f=2) devext 85d22328 Serial Bus Controller/USB

 0c03 24de8086 (d=1d, f=3) devext 85cfdf08 Serial Bus Controller/USB

 0c03 24dd8086 (d=1d, f=7) devext 85cfdbc0 Serial Bus Controller/USB

...

Figure 1: USB2.0 Controller on ICH4

Port Routing

As described in the previous section, EHCI performs high-speed communication with high-speed devices on root ports while the companion controller performs full- or low-speed communication with full- or low-speed devices on root ports. This flexible operating environment is delivered by port routing logic in the USB 2.0 controller.

All USB ports on the USB 2.0 controller default to the companion controllers. Once the EHCI controller is configured by its driver, all ports are owned by the EHCI controller. The EHCI controller specifically releases the transceiver to the companion host controller if the attached device is not a high-speed device. When the port ownership is transferred to the companion controller, the device enumeration by the companion controller starts with device-attach detection, also described as Connect Change in the USB specification.

PCI Power Management

The PCI Power Management specification is fundamental to the understanding of the standard set of interfaces and behavioral policies that enable an operating system to power manage PCI functions or buses.

If a PCI function is designed in accordance with this specification, then the Capabilities bit in the PCI Status register in the PCI Configuration Space is set and the Capabilities list contains an item for PCI Power Management.

The organization of the PCI Power Management Register Block is illustrated below. The PCI Power Management capability has an ID of 01h. For detailed information on these registers, refer to [2].

	Power Management Capabilities (PMC)
	Next Item Ptr
	Capability ID

	Data
	PMCSR_BSE Bridge Support Extensions
	Power Management Control/Status Register (PMCSR)

Figure 2: Power Management Register Block

If a PCI function does not support PCI power management, then the operating system will assume that the function only supports D0 and D3cold power management states.

The UHCI and OHCI controller specifications do not mandate power management capabilities whereas the EHCI specification mandates power capabilities in its controller to allow power savings for a host system.

EHCI Power Management Interface

In accordance with the rules defined in [1] and [2], EHCI is required to support power management states of D0, D3hot, and D3cold. The power management states of D1 and D2 are optional. The two D3 variants designated as D3hot and D3cold refer to the presence or absence of VCC respectively.

The host controller must be capable of asserting PME# when in any supported device state. Power managed systems that support PME# assertion while in D3cold state require an auxiliary power source, assuming that no power is made available to the PCI device from the normal VCC power plane. The Aux_Current in PMC register or Data register values report the 3.3Vaux auxiliary current requirements for the host controller. However, for systems in which host controller support for PME# assertion from D3cold is not supported due to insufficient or non-existent auxiliary power, then the PME_Support bit for D3cold must not be set, and the Aux_Current field or Data Register (D3 Power Consumed, D3 Power Dissipated) must report “000.” This is particularly true for PCI add-in controller cards. As systems route the PME# signal to appropriate system logic to wake the system, incorrect claims on PME_Support impair system wake capabilities.

If the operating system and the PCI function both support wake events, the operating system should enable the function’s PMD (PME#) line via the PME_En bit in the function’s PMCSR. In addition, the operating system ensures that any bridge between the device and the core logic can forward the wake signal even if it is in low power state.

In cases where a wake signal for a device cannot be propagated on an upstream bus, the operating system will assume fewer capabilities for its device. To override this behavior, motherboard devices should provide for and define ACPI properties.

Figure 3 illustrates power management capabilities for an onboard Intel EHCI controller. The capabilities indicate that the controller supports wake from D3cold and reports the Aux _Current requirement in this state. The following is partial output of a kernel debugger command.

	kd> !pci 100 0 1d 7

...

Capabilities:

 50: CapID 01 PwrMgmt

 51: NextPtr 58

 52: PwrMgmtCap c9c2 PMED0 PMED3Hot PMED3Cold Version=2

 54: PwrMgmtCtrl 0000 DataScale:0 DataSel:0 D0

...

Figure 3: EHCI Power Management Capabilities for an onboard controller

Figure 4 illustrates power management capabilities for an add-in NEC EHCI controller card. The capabilities indicate that the controller supports wake from D2 and not D3cold as PME_Support bit for D3cold is not set and the Aux_Current field or Data Register fields report values of 0.

	kd> !pci 100 2 7 2

...

Capabilities:

 40: CapID 01 PwrMgmt

 41: NextPtr 00

 42: PwrMgmtCap 7e02 D1Support D2Support PMED0 PMED1 PMED2

 PMED3Hot Version=2

 44: PwrMgmtCtrl 0000 DataScale:0 DataSel:0 D0

...

Figure 4: EHCI Power Management Capabilities for an add-in controller

The power management capabilities for controllers integrated on the motherboard can be modified by ACPI. The details are described in the following section.

ACPI

The Advanced Configuration and Power Management Interface (ACPI) specification contains interfaces that provide standard controls and operation needed to perform system and device power management. This information is most useful for operating system vendors, OEMs and IHVs.

A subset of generic objects and control methods related to power management that may be defined for a USB HC are described in the following sections.

_SxD (Sx Device State)

For systems whose devices support multiple D-states, the operating system determines S-state to D-state mapping for the device by way of _SxD methods. The operating system is allowed to pick a lower D-state for a given S-state but not allowed to exceed the given D-state.

_S1D (S1 Device State), _S2D (S2 Device State), _S3D (S3 Device State), and _S4D (S4 Device State) evaluate to a number that is the highest D-state supported by the device in the S1, S2, S3, and S4 states, respectively. It should be noted that higher D-state values correspond to lower power consumption states, with D0 being the highest powered state and D5 being the lowest power state (off).

_PRW (Power Resources for Wake)

This object is only required for devices that have the ability to wake the system from a sleep state. This object evaluates to a package that describes the lowest power system sleep state while retaining the wake functionality and the GPE pin for the device that will trigger the wake event.

When a device asserts its wake signal, the general purpose status event bit for the device is set and the SCI interrupt is asserted. The SCI can be mapped to any shareable system interrupt and the operating system services this interrupt on transition to S0 state.

For a complete list of objects/methods and their descriptions, refer to [4].

When ACPI properties are defined for a motherboard device, the operating system places an ACPI device object in the device stack. This allows the operating system to filter power management capabilities for the device.

Figure 5 displays device stacks for the onboard EHCI controller and add-in NEC controller. The ACPI properties described below for an Intel EHCI controller on a desktop system are for illustrative purposes only.

	kd> !devstack 0x85cfdb08

 !DevObj !DrvObj !DevExt ObjectName

 85b2b038 \Driver\usbehci 85b2b0f0 USBFDO-4

 85c92040 \Driver\ACPI 85cfc298 00000049

> 85cfdb08 \Driver\PCI 85cfdbc0 NTPNP_PCI0006

!DevNode 85c925d8 :

 DeviceInst is "PCI\VEN_8086&DEV_24DD&SUBSYS_42468086&REV_02\3&267a616a&0&EF"

 ServiceName is "usbehci"

kd> !devstack 0x85c9e7c0

 !DevObj !DrvObj !DevExt ObjectName

 85a68038 \Driver\usbehci 85a680f0 USBFDO-7

> 85c9e7c0 \Driver\PCI 85c9e878 NTPNP_PCI0019

!DevNode 85ceadc8 :

 DeviceInst is "PCI\VEN_1033&DEV_00E0&SUBSYS_00E01033&REV_04\4&2e98101c&0&22F0"

 ServiceName is "usbehci"

kd> !amli dns /s _SB.PCI0.USB7

ACPI Name Space: _SB.PCI0.USB7 (ffffffff85d2eb7c)

Device(USB7)

| Integer(_ADR:Value=0x00000000001d0007[1900551])

| OpRegion(BAR0:RegionSpace=PCIConfigSpace,Offset=0x62,Len=2)

| Field(:Base=BAR0)

| FieldUnit(USBW:FieldParent=ffffffff85d2eca4,ByteOffset=0x0,StartBit=0x0,NumBits=16,FieldFlags=0x1)

| Method(_PSW:Flags=0x1,CodeBuff=ffffffff85d2ed81,Len=19)

| Method(_PRW:Flags=0x0,CodeBuff=ffffffff85d2edf5,Len=9)

| Integer(_S1D:Value=0x0000000000000002[2])

| Integer(_S3D:Value=0x0000000000000002[2])

Figure 5: ACPI properties for an EHCI controller

Device Power Management Capabilities

The operating system defines a structure called DEVICE_CAPABILITIES to describe the PnP and power management capabilities of the device to its function driver. Its definition is shown in the figure below.

	kd> dt nt!_DEVICE_CAPABILITIES

 +0x000 Size : Uint2B

 +0x002 Version : Uint2B

 +0x004 DeviceD1 : Pos 0, 1 Bit

 +0x004 DeviceD2 : Pos 1, 1 Bit

 +0x004 LockSupported : Pos 2, 1 Bit

 +0x004 EjectSupported : Pos 3, 1 Bit

 +0x004 Removable : Pos 4, 1 Bit

 +0x004 DockDevice : Pos 5, 1 Bit

 +0x004 UniqueID : Pos 6, 1 Bit

 +0x004 SilentInstall : Pos 7, 1 Bit

 +0x004 RawDeviceOK : Pos 8, 1 Bit

 +0x004 SurpriseRemovalOK : Pos 9, 1 Bit

 +0x004 WakeFromD0 : Pos 10, 1 Bit

 +0x004 WakeFromD1 : Pos 11, 1 Bit

 +0x004 WakeFromD2 : Pos 12, 1 Bit

 +0x004 WakeFromD3 : Pos 13, 1 Bit

 +0x004 HardwareDisabled : Pos 14, 1 Bit

 +0x004 NonDynamic : Pos 15, 1 Bit

 +0x004 WarmEjectSupported : Pos 16, 1 Bit

 +0x004 NoDisplayInUI : Pos 17, 1 Bit

 +0x004 Reserved : Pos 18, 14 Bits

 +0x008 Address : Uint4B

 +0x00c UINumber : Uint4B

 +0x010 DeviceState : [7] _DEVICE_POWER_STATE

 +0x02c SystemWake : _SYSTEM_POWER_STATE

 +0x030 DeviceWake : _DEVICE_POWER_STATE

 +0x034 D1Latency : Uint4B

 +0x038 D2Latency : Uint4B

 +0x03c D3Latency : Uint4B

Figure 6: DEVICE_CAPABILITIES

The DeviceState is an array of values that provides a mapping between the system and device power states. The SystemWake and DeviceWake fields specify the least-powered system and device power states respectively from which the device can signal a wake event.

As explained in the previous sections, these values originate from the PCI power management for the device. These values are limited by the power capabilities of the parent or an immediate bridge.

Further, these values are overridden by the ACPI properties (if present) for the device.

USB Host Controller Driver

The USB host controller driver ascertains power capabilities for its controller from the operating system-defined DEVICE_CAPABILITIES structure. The driver examines the SystemWake and DeviceWake fields of DEVICE_CAPABILITIES during transition to system sleep state.

The driver suspends the controller in accordance to the specification (EHCI, UHCI, or OHCI, as the case may be) when the system transitions to SystemWake or lighter sleep states. Before suspending the controller, the driver posts an IRP_MN_WAIT_WAKE request to arm the host controller for wake. A resume signal on the USB bus will assert a system interrupt via PME or SCI interrupt line. This interrupt is handled once the system transitions to S0.

The driver turns off the host controller for sleep states deeper than SystemWake. As a result, the wake-capable devices downstream of the USB controller no longer retain the ability to wake the system from these sleep states. In addition to this, the EHCI driver will transfer port ownership to the companion controllers.

The system resume time drastically increases when controllers are turned off. This is because a resume-from-controller off state entails re-initialization of the host controller and re-enumeration of all USB devices downstream of this controller.

Figure 6 shows the definition of the DEVICE_CAPABILITES structure.

USBBIOSx
The description of power management of USB host controllers is incomplete without details on the USBBIOSx registry key. This key is present in Microsoft Windows XP or later and Microsoft Windows ServerTM 2003 or later operating systems.

In absence of the USBBIOSx key, the host controller driver assumes a fixed set of power capabilities, namely wake from S1. This is true for all USB host controllers in the system.

In the presence of the USBBIOSx key, the host controller driver assumes power capabilities as reflected in the OS-defined DEVICE_CAPABILITIES structure. The only valid value for this key is 0.

Illustrations

The examples cited in this section are for illustrative purposes only. Each OEM has unique hardware and different power management requirements. The examples are to be used to aid in understanding the concepts outlined in this paper.

Consistent Power Capabilities across Different Controllers

The USB functions in a PCI device are independent entities, but in reality they share some portions of core logic. In order to avoid system-related power management issues, the behavior for these functions in different sleep states should be the same. This does not imply that S-state to D-state mapping for all controllers should be identical. An example of consistent power capabilities for all controllers is provided below.

EHCI

PowerSystemWorking (PowerDeviceD0

PowerSystemSleeping1 (PowerDeviceD3

PowerSystemSleeping3 (PowerDeviceD3

SystemWake (PowerSystemSleeping3

DeviceWake (PowerDeviceD3
UHCI

PowerSystemWorking (PowerDeviceD0

PowerSystemSleeping1 (PowerDeviceD2

PowerSystemSleeping3 (PowerDeviceD2

SystemWake (PowerSystemSleeping3

DeviceWake (PowerDeviceD2
Onboard EHCI controller with no _PRW Object

Consider an ICH4 desktop system that does not define a _PRW object for its EHCI controller. The power capabilities for this controller are derived by the operating system by overlaying power capabilities of its upstream bus above the PCI power management capabilities of the controller. The resultant capabilities for EHCI are as follows:

PowerSystemWorking (PowerDeviceD0

PowerSystemSleeping1 (PowerDeviceD3

PowerSystemSleeping3 (PowerDeviceD3

SystemWake (PowerSystemUnspecified

DeviceWake (PowerDeviceUnspecified
The power capabilities for companion controllers are as follows:

PowerSystemWorking (PowerDeviceD0

PowerSystemSleeping1 (PowerDeviceD3

PowerSystemSleeping3 (PowerDeviceD3

PowerSystemHibernate (PowerDeviceD3

SystemWake (PowerSystemHibernate

DeviceWake (PowerDeviceD3
When the system is placed in either the S1, S3, or S4 system sleep state, the companion controllers are armed for wake and suspended. On the other hand, the EHCI controller is turned off. This causes any device on the root hub port of the EHCI controller to move over to the companion controller. As companion controllers are armed for wake on connect, this generates a resume signal and brings the system out of suspend state. Thus, the system can never suspend with a high-speed device on EHCI with the above-mentioned power capabilities.

Effect of Selective Suspend

An anomalous behavior was observed on a system with power capabilities as shown above and the selective suspend feature.

When the selective suspend feature is disabled on a specific companion controller, the system no longer auto-wakes from system sleep state. This can be attributed to the fact that disabling the selective suspend feature on a companion controller causes the host controller driver to no longer arm the controller for wake. As a result, arrival of a device on a companion controller does not generate any resume signaling and does not wake the system.

Disabling selective suspend may seem to resolve this issue but should not be used as a fix for this problem. The reasons for this are that none of the devices on the companion controller will have the ability to wake the system and all high-speed devices are re-enumerated during system wake, thereby increasing resume time.

The fix is to define _PRW for the EHCI controller with an enable bit for the device in the GPE block for wake events.

Mobile Platform with Hardwired USB Device

A mobile platform with the ICH4 chipset has some USB device hardwired on the companion controller. In order to save power and comply with some regulations, the power is removed from the device when the system goes into S3 state. This causes the device to drop off the USB bus. If the USB controller is armed for wake, this will result in a resume signal due to the connect change event. This will transition the system to the S0 state.

The fix is to remove the _PRW object on the controller. Care should be taken not to expose any other ports on this controller. Also sufficient testing should be undertaken to ensure that this does not adversely impact the wake capabilities on other USB controllers.

The _PRW object can be removed by reprogramming the BIOS or using the checked ACPI driver and populating the registry with new AML code that does not define the _PRW object for the controller. The use of a checked ACPI driver is for debugging purposes only. For more details about this, refer to the documentation on a tool called the ASL complier at [5].

This problem can also be addressed with participation of drivers for all devices on the companion controller. The resolution is to have all drivers not arm their devices for wake.

References

1.
Enhanced Host Controller Interface Specification for Universal Serial Bus, Revision 1.0
http://www.intel.com/technology/usb/ehcispec.htm

2.
PCI Bus Power Management Interface Specification, Revision 1.1
http://www.pcisig.com/

3.
Intel ICH4 BIOS Specification, Revision 1.0
http://www.intel.com/

4.
Advanced Configuration and Power Interface Specification, Revision 2.0c
http://www.acpi.info/

5.
ASL compiler and documentation: http://www.microsoft.com/whdc/system/pnppwr/powermgmt/default.mspx

Appendix A: EHCI Core Logic Powered from Auxiliary Source

Please refer to [1] above for complete information on EHCI core logic powered from an auxiliary source on removal of VCC in order to support wake from D3cold.

Unless specified, the offsets are in the PCI Configuration Space.

EHCI Core Logic Powered from Auxiliary Source

	Offset
	Mnemonic
	Register Name

	61h
	FLADJ
	Frame Length Adjustment Register

	62-63h
	PORTWAKECAP
	Port wake capabilities register (OPTIONAL)

	EECP+0h
	USBLEGSUP
	USB Legacy Support EHCI Extended Capability Register

	EECP+4h
	USBLEGCTLSTS
	USB Legacy Support Control and Status Register

	Base Address + CAPLENGTH + 40h
	CONFIGFLAG
	Configured Flag Register

	Base Address + CAPLENGTH + 44h
	PORTSC
(1-N_PORTS)
	Port Status/Control

August 30, 2004

[image: image1.png]