[image: image1.png]Windows Hardware and Driver Central




Troubleshooting Device Installation with the SetupAPI Log File - 38

Troubleshooting Device Installation with the SetupAPI Log File
October 6, 2003

Abstract

This paper provides information about debugging device installation for Microsoft® Windows® XP and later versions of the operating system. Specifically, the paper provides guidelines for driver developers and testers to interpret the SetupAPI log file.

Contents

31
Introduction


32
How Is the SetupAPI Log File Organized?


33
Windows Installation Header Section


44
Device-Setup Class Installation Sections


55
Driver-Installation Sections


65.1
Initiating Driver Installation


85.2
Finding the Drivers That Match the Device


95.3
Loading Class Installers and Co-Installers


105.4
Selecting the Best Compatible Driver


115.5
Allowing Installation


115.6
Installing Files


135.7
Verifying Files and Pruning the File Queue


145.8
Committing the File Queue


165.9
Registering and Reloading Co-Installers


165.10
Installing Device Interfaces


175.11
Installing the Device


195.12
Finishing the Install Wizard


195.13
Cleaning Up


206
Device-Removal Sections


207
Common Device-Installation Problems


207.1
INF File Modified but Not Re-Signed


257.2
Driver Not Found


267.3
Rebooting Required


267.4
Device Vetoes Removal


277.5
Test Certificate Not Installed


287.6
Authenticode Certificate Not Installed


297.7
Driver File Unsigned


297.8
Service Deletion Pending


307.9
Protected System File Replaced


318
Appendix A: Setting the SetupAPI Logging Level


349
Appendix B: Message Formats


3510
Appendix C: Section Markers


3611
Appendix D: Definition of Example Placeholders


3812
Call to Action and Resources




Disclaimer

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. 

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

 2003 Microsoft Corporation. All rights reserved.

Microsoft, Authenticode, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

This paper provides information about debugging device installation for Microsoft® Windows® XP and later versions of the operating system.

Windows XP and later versions log system operations more extensively than previous versions of Windows do. One of the most useful log files for debugging is the SetupAPI log file (setupapi.log). This plain-text file maintains the information that SetupAPI records about device installation, service-pack installation, and hotfix installation. Specifically, the file maintains a record of device and driver changes, as well as major system changes, beginning from the most recent Windows installation. This paper focuses on using the SetupAPI log file to troubleshoot device installation; the paper does not describe the log-file sections that are associated with service-pack and hotfix installations.

Note

SetupAPI consists of the Windows Setup functions and the Windows device-installation functions. For information about these functions, see “Setup API” in the Platform SDK documentation and “Using SetupAPI Functions” in the Windows Driver Development Kit (DDK) documentation. For general information about device installation, see “Device Installation Overview” in the DDK documentation. For information in the DDK documentation about SetupAPI logging, see “Using SetupAPI Logging.”

1 How Is the SetupAPI Log File Organized?

Each section of the SetupAPI log file begins with a section marker and contains the messages that pertain to a specific system operation. This paper describes the following types of sections, which are the ones that relate to device installation:

· Windows installation header

· Device-setup class installation

· Driver installation

· Device removal

You can control the amount of information that is logged. How to do so is discussed later in this paper.

2 Windows Installation Header Section

The first section in a SetupAPI log file is the Windows installation header section, which specifies the platform and the system architecture. Here is an example of this type of section:

[SetupAPI Log]

OS Version = 5.1.2600 Service Pack 1

Platform ID = 2 (NT)

Service Pack = 1.0

Suite = 0x0000

Product Type = 1

Architecture = x86

The first line in the example is the section marker, which also indicates the beginning of the log file. The remaining lines contain information about the operating system and computer architecture.

Note

If anyone deletes the SetupAPI log file after Windows has been installed, Windows creates a new SetupAPI log file and adds a Windows installation header section to it.

3 Device-Setup Class Installation Sections

The device-setup class installation sections, which immediately follow the Windows installation header section, record the installation of the system-supplied device-setup classes. SetupAPI adds these sections to the log file during the GUI-mode setup phase of Windows installation.

The following example contains two sections that illustrate the default messages logged by SetupAPI:

[2003/05/22 16:35:47 336.12]

#-199 Executing "C:\WINDOWS\system32\setup.exe" with command line: setup –newsetup

#I140 Installing Device Class: "1394" {6BDD1FC1-810F-11D0-BEC7-08002BE2092F}.

#I141 Class install completed with no errors.

[2003/05/22 16:35:48 336.15]

#-199 Executing "C:\WINDOWS\system32\setup.exe" with command line: setup –newsetup

#I140 Installing Device Class: "Battery" {72631e54-78a4-11d0-bcf7-00aa00b7b32a}.

#I141 Class install completed with no errors

The two lines in the example that contain the time stamps are the section markers. Each #199 message indicates that SetupAPI installed a device-setup class by executing the setup -newsetup command line, which in turn indicates that the device-setup class was installed during the GUI-mode setup phase of Windows installation. The #I140 messages specify the GUIDs of the device-setup classes.

If an error occurs, SetupAPI does not log a #I141 message. Instead, it logs a #E142 error message that identifies the device-setup class GUID and the cause of the error. Here is an example of such an error message:

#E142 Class: {FFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFF}. Install failed. Error 1168: Element not found.

Note 
If anyone deletes the SetupAPI log file after Windows has been installed, Windows creates a new SetupAPI log file and adds a Windows installation header section to it. Therefore, the new log file will not contain any of the sections that SetupAPI added during the GUI-mode setup phase of Windows installation.

Note 
Many of the examples in this paper contain placeholders, which appear in italics. For the definitions of these placeholders, see Appendix D: Definition of Example Placeholders.

4 Driver-Installation Sections

SetupAPI adds a driver-installation section for every device that it installs—both during the GUI-mode setup phase of Windows installation and after Windows has been installed. In the former case, the driver-installation sections immediately follow the device-setup class installation sections. In the latter case, the driver-installation sections can appear anywhere after the sections that were added during the Windows installation. Each driver-installation section in a SetupAPI log file contains all the messages that relate to both detecting a device and installing the best compatible driver for that device.

The following example (for a fictitious Oven device) illustrates the main driver-installation messages that SetupAPI typically logs during the GUI-mode setup phase of Windows installation.

[2003/05/22 16:37:16 336.1808 Driver Install]

#-019 Searching for hardware ID(s): Oven_Hardware_ID
#-199 Executing "C:\WINDOWS\system32\setup.exe" with command line: setup –newsetup

#I022 Found "Oven_Hardware_ID" in C:\WINDOWS\inf\Oven_INF_File_Name.inf; Device: "Oven_Device_Description"; Driver: "Oven_Driver_Description"; Provider: "Oven_Provider_Name"; Mfg: "Oven_Manufacturer_Name"; Section name: "Oven_install-section-name".

#I023 Actual install section: [Oven_install-section-name]. Rank: 0x00000000. Effective driver date: 03/15/2003.

#-166 Device install function: DIF_SELECTBESTCOMPATDRV.

. . .

#I121 Device install of "Oven_Device_Instance_ID" finished successfully.

The first line in the example is the section marker, which indicates that the Plug and Play Manager is initiating the installation of a driver for a device. The next line, which contains a #-019 message, reports that the hardware identifier of the device is Oven_Hardware_ID. (The hardware identifier applies either to a root-enumerated device or to a device that was reported to the Plug and Play Manager by the device’s bus driver.)

Continuing on, the #-199 message reports that SetupAPI installed the driver by executing the setup –newsetup command line, which, in turn, indicates that the driver was installed during the GUI-mode setup phase of Windows installation. The #I022 and #I023 messages state the INF file and the particular installation section that supports the device. (In this example, only one INF file matches the device. If more than one file matched the device, they would be stated here.) The #-166 message reports that SetupAPI is processing a DIF_SELECTBESTCOMPATDRV request and, finally, the #I121 message indicates that SetupAPI successfully installed the device.

The previous example provides a broad overview of a driver-installation section. However, each of these sections actually consists of a number of subsections, which correspond to the stages that occur during driver installation. These stages are:

· Initiating driver installation

· Finding the drivers that match the device

· Loading class installers and co-installers

· Selecting the best compatible driver

· Allowing installation

· Installing files

· Verifying files and pruning the file queue

· Committing the file queue

· Registering and reloading co-installers

· Installing device interfaces

· Installing the device

· Finishing the Install Wizard

· Cleaning up

The following sections in this paper describe each driver-installation subsection in detail. For each subsection, examples of default logging and of the most verbose logging are included. The former apply to the fictitious Oven device, while the latter apply to a fictitious Blender device.

Note

In addition to default logging and the most verbose logging, other logging levels exist that you can set. How to set all the levels is discussed in Appendix A: Setting the SetupAPI Logging Level.

4.1 Initiating Driver Installation

The first driver-installation subsection in a SetupAPI log file contains messages that indicate the device’s hardware identifiers, the device’s compatible identifiers, and the type of driver installation. Four types of driver installations exist: GUI-mode, server-side, client-side, and application-specific. A GUI-mode driver installation occurs during the GUI-mode setup phase of Windows installation; the other three driver-installation types occur after the Windows installation.

The following example illustrates what this initiating-driver-installation subsection looks like for a GUI-mode installation of an Oven device, if the default logging level is set.

[2003/05/22 16:37:39 336.1964 Driver Install]

#-019 Searching for hardware ID(s): Oven_Hardware_ID_1,Oven_Hardware_ID_2,Oven_Hardware_ID_3,Oven_Hardware_ID_4
#-018 Searching for compatible ID(s): Oven_Compatible_ID_1,Oven_Compatible_ID_2,Oven_Compatible_ID_3,Oven_Compatible_ID_4
#-199 Executing "C:\WINDOWS\system32\setup.exe" with command line: setup –newsetup

In the previous example, the first line is the marker that designates this section as a driver-installation section. The #-019 message indicates that the Oven device’s parent bus driver reported four hardware identifiers to the Plug and Play Manager, while the #-018 message indicates that the parent bus driver reported four compatible identifiers. The #-199 message indicates that SetupAPI executed the setup –newsetup command line to install the driver, which, in turn, indicates that the driver installation occurred during the GUI-mode setup phase of Windows installation.

For a server-side driver installation, SetupAPI does not log a #-199 message, as shown in the previous example. Instead, it logs a #-198 message, which states that SetupAPI executed services.exe to install the driver, as shown here:

#-198 Command line processed: E:\WINDOWS\system32\services.exe

For a client-side driver installation, SetupAPI logs a #-199 message stating that Windows executed newdev.dll to install the driver, as shown here:

#-199 Executing "E:\WINDOWS\system32\rundll32.exe" with command line: rundll32.exe newdev.dll,ClientSideInstall \\.\pipe\PNP_Device_Install_Pipe_0.{FC06A736-DFBF-4579-A96B-95FCF040BE47}

Finally, if the driver installation is application-specific (in other words, initiated by an installation program), the entire initiating-driver-installation subsection looks a bit different than the previous examples show. This type of driver installation occurs when the installation program calls the UpdateDriverForPlugAndPlayDevices function, which updates the driver for a Plug and Play device. In the following example, the #-199 message reveals that devcon.exe was the installation program that called UpdateDriverForPlugAndPlayDevices; however, any installation program can call this function, and the #-199 message will contain the name of the corresponding executable program.

[2003/05/19 14:41:58 3136.127]

#-199 Executing "y:\idw\devcon.exe" with command line: devcon update E:\WINDOWS\inf\Oven_INF_File_Name.inf Oven_Hardware_ID
@ 14:41:58.318 #I060 Set selected driver.

#-019 Searching for hardware ID(s): Oven_Hardware_ID

Note

For more information on the UpdateDriverForPlugAndPlayDevices function, see “UpdateDriverForPlugAndPlayDevices” in the Windows DDK documentation.

4.1.1 Initiating Driver Installation: Verbose Logging

The following example illustrates what the initiating-driver-installation subsection looks like for a Blender device—if the most verbose logging level is set.

[2003/02/18 10:18:56 568.2675 Driver Install]

#-019 Searching for hardware ID(s): Blender_Hardware_ID
#-199 Executing "E:\WINDOWS\system32\setup.exe" with command line: setup -newsetup

@ 10:18:56.437 #V017 Enumerating files "E:\WINDOWS\inf". 

@ 10:18:56.437 #V392 Using INF cache "E:\WINDOWS\inf\INFCACHE.1".

@ 10:18:56.437 #V073 Cache: Excluding INF "accessor.inf". 

You can check entries of this type to determine if Setup excludes an INF file.

@ 10:18:56.437 #V073 Cache: Excluding INF "activeds.inf".

@ 10:18:56.437 #V073 Cache: Excluding INF "agtinst.inf".

@ 10:18:56.437 #V073 Cache: Excluding INF "apcompat.inf".

…

@ 10:18:56.609 #T075 Enumerating files: Directory pass completed.

In the previous example, the #V017 through #T075 messages are associated with finding the INF files that match the device.

4.2 Finding the Drivers That Match the Device
The second driver-installation subsection in a SetupAPI log file contains messages related to finding the device’s matching INF files—in other words, those that include hardware identifiers that match the device. SetupAPI parses each compatible INF file and loads its corresponding PNF file. The following example illustrates what this subsection looks like for an Oven device, if the default logging level is set. 

#I022 Found "Oven_Compatible_ID_1" in C:\WINDOWS\inf\Oven_INF_File_Name_1.inf; Device: "Device_Description_1"; Driver: "Oven_Driver_Description_1"; Provider: "Oven_Provider_Name_1"; Mfg: "Oven_Manufacturer_Name_1"; Section name: "Oven_install-section-name_1.HW".

#I023 Actual install section: [Oven_install-section-name_1.HW]. Rank: 0x00002005. Effective driver date: 03/15/2003.

#I022 Found "Oven_Hardware_ID_2" in C:\WINDOWS\inf\Oven_INF_File_Name_2.inf; Device: "Device_Description_2"; Driver: "Oven_Driver_Description_2"; Provider: "Oven_Provider_Name_2"; Mfg: "Oven_Manufacturer_Name_2"; Section name: "Oven_install-section-name_1.HW".

#I023 Actual install section: [Oven_install-section-name_1.HW]. Rank: 0x00000002. Effective driver date: 03/15/2003.

In the previous example, the #I022 messages specify the two matching INF files. One file matches a compatible identifier, and the other matches a hardware identifier. Each #I023 message specifies the matching installation section in the INF file as well as the rank of the match. Because Oven_INF_File_Name_2.inf has the best rank, SetupAPI selects it for the Oven device.

For information about how SetupAPI selects drivers and about driver rank, see “How Setup Selects Drivers” in the Windows DDK documentation.

4.2.1 Finding the Drivers That Match the Device: Verbose Logging

The following example illustrates what the finding-the-drivers subsection looks like for a Blender device—if the most verbose logging level is set.

@ 10:18:56.437 #V017 Enumerating files "E:\WINDOWS\inf". 

@ 10:18:56.437 #V392 Using INF cache "E:\WINDOWS\inf\INFCACHE.1".

@ 10:18:56.437 #V073 Cache: Excluding INF "accessor.inf". 

@ 10:18:56.437 #V073 Cache: Excluding INF "activeds.inf".

@ 10:18:56.437 #V073 Cache: Excluding INF "agtinst.inf".

@ 10:18:56.437 #V073 Cache: Excluding INF "apcompat.inf".

…

@ 10:18:56.609 #T075 Enumerating files: Directory pass completed.

@ 10:18:56.625 #V005 Opened the PNF file of "E:\WINDOWS\inf\Blender_INF_File_Name.inf" (Language = 0409).

@ 10:18:56.625 #I022 Found "Blender_Hardware_ID" in E:\WINDOWS\inf\Blender_INF_File_Name.inf; Device: "Blender_Device_Description"; Driver: "Blender_Driver_Description"; Provider: "Blender_Provider_Name"; Mfg: "Blender_Manufacturer_Name"; Section name: "Blender_install-section-name.HW".

@ 10:18:56.625 #I023 Actual install section: [Blender_install-section-name.HW]. Rank: 0x00000000. Driver date: 07/01/2003. Version: 5.1.3604.0.

@ 10:18:56.625 #T076 Enumerating files: Cache pass completed.

In the previous example, the #V017, #V392, #T075, and #T076 messages indicate the INF directory and the INF cache that SetupAPI enumerated, while the #V073 messages identify the INF files in the INF cache that SetupAPI enumerated. The #I022 and #I023 messages are the ones that specify the matching INF file, the matching installation section in the INF file, and the rank of the INF file.

If you do not see an INF file that you expected a match for, one of the following conditions is most likely the cause:

· SetupAPI did not find the INF file in the directories that it searched.

During a GUI-mode or server-side driver installation, SetupAPI searches the default system INF directory, which is specified by the value of the HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\DevicePath registry entry. During a client-side driver installation, SetupAPI searches the directories that the user specifies, all inserted CD-ROMs and floppy disks, the Windows Update Web site, and the default system INF directory. For an application-specific driver installation, SetupAPI searches the default system INF directory. 

· SetupAPI did not find a matching hardware identifier.

· The INF cache is invalid.

Regenerate the INF cache (infcache.xxx) by deleting it from the directory that contains the INF file. Note that the system manages the INF cache, so it rarely becomes invalid.

4.3 Loading Class Installers and Co-Installers

SetupAPI logs messages that relate to loading class installers and co-installers only if an error occurs or if one of the verbose logging levels is set. For example, the following error message is logged if a co-installer for an Oven device is not a valid DLL—which can result from the co-installer file having been inadvertently overwritten.

#E144 Loading module "Oven_File_Path\Oven_Co-installer_File_Name.dll" failed. Error 193: %1 is not a valid Win32 application.

Note

SetupAPI writes %n in an error message if it does not have the corresponding substitution text when it logs the message.

4.3.1 Loading Class Installers and Co-Installers: Verbose Logging

The following example illustrates what the loading-class-installers subsection looks like for a Blender device—if the most verbose logging level is set. By reviewing these messages in the SetupAPI log file, you can determine whether the correct installers are loaded.

#-148 Loading coinstaller modules for "Blender_Device_Description".

@ 10:18:56.718 #V132 File "Blender_CoInstaller_File_Path\Blender_CoInstaller_File_Name.dll" (key "Blender_CoInstaller_File_Name.dll") is signed in catalog "Blender_Catalog_File_Path\Blender_Catalog_File_Name.cat".

@ 10:18:56.718 #V146 Using exported function "Blender_CoInstaller_Exported_Function_Name" in module "Blender_CoInstaller_File_Path\Blender_CoInstaller_File_Name.dll".

In this previous example, the #148 message indicates that SetupAPI is loading a co-installer. The #V132 and #V146 messages specify the particular co-installer, indicate that it is signed, and specify its entry point.

Note

Do not attempt to update a co-installer that is currently in use with another version of the co-installer that has the same name. For information about how to correctly update co-installers, see the “Updating Driver Files” section in the Windows DDK documentation.

4.4 Selecting the Best Compatible Driver
After loading the class installers and co-installers, the next stage of driver installation involves selecting the best compatible driver. In this stage, the class installer processes the DIF_SELECTBESTCOMPATDRV request, and some class co-installers also process it. The following example illustrates what the subsection that is associated with this stage looks like for an Oven device, if the default logging level is set.

#-166 Device install function: DIF_SELECTBESTCOMPATDRV.

#I063 Selected driver installs from section [Oven_Install_Section_Name_2] in "c:\windows\inf\Oven_INF_File_Name_2.inf".

#I320 Class GUID of device remains {Device_Setup_Class_GUID}.

#I060 Set selected driver.

#I058 Selected best compatible driver.

In the previous example, the #-166 message indicates that SetupAPI initiated the processing of the DIF_SELECTBESTCOMPATDRV request for the device. The #I320 message indicates that SetupAPI did not change the device-setup class. However, note that SetupAPI will change the class and log this fact if the device-setup class GUID of the best compatible driver is different than that of the currently installed class. Lastly, the #I058 message indicates that the best compatible driver was selected.

For more information about how SetupAPI selects the best compatible driver for a device, see “How Setup Selects Drivers” in the Windows DDK documentation.

4.4.1 Selecting the Best Compatible Driver: Verbose Logging

The following example illustrates what the messages that relate to selecting the best compatible driver look like for a Blender device—if the most verbose logging level is set.

@ 10:18:56.718 #V166 Device install function: DIF_SELECTBESTCOMPATDRV.

@ 10:18:56.718 #T149 Executing coinstaller 1 of 1.

@ 10:18:56.734 #V150 Completed coinstaller 1 of 1.

@ 10:18:56.734 #V155 Executing default installer.

@ 10:18:56.734 #I063 Selected driver installs from section [Blender_install-section-name_1.HW] in "e:\windows\inf\Blender_INF_File_Name.inf".

@ 10:18:56.734 #I062 Class GUID of device changed to: {Device_Setup_Class_GUID}.

@ 10:18:56.734 #I060 Set selected driver.

@ 10:18:56.734 #I058 Selected best compatible driver.

@ 10:18:56.734 #V156 Completed default installer.

In the previous example, the #V166 message indicates that SetupAPI initiated the processing of the DIF_SELECTBESTCOMPATDRV request for the device. The #T149 and #V150 messages indicate that a co-installer processed the request, and the #V155 message indicates that the default installer was called to process the request. Next, the #I063 message specifies the installation section in the INF file for the device, and the #I062 message states that the class GUID of the device was changed. The #I160 and #I058 messages indicate that the best compatible driver was selected and, finally, the #156 message indicates that the default installer completed processing the request.

4.5 Allowing Installation

SetupAPI logs messages that are associated with a DIF_ALLOW_INSTALL request only if an error occurs or if one of the verbose logging levels is set. For example, the following error message is logged if a class installer does not allow driver installation.

#E154 Class installer failed. Error 0xe000022d: The driver selected for this device does not support Windows XP.

4.5.1 Allowing Installation: Verbose Logging

The following example illustrates what the allowing-installation subsection in a SetupAPI log file looks like for a Blender device—if the most verbose logging level is set.

@ 10:18:56.953 #V166 Device install function: DIF_ALLOW_INSTALL.

@ 10:18:56.953 #T149 Executing coinstaller 1 of 1.

@ 10:18:56.953 #V150 Completed coinstaller 1 of 1.

@ 10:18:56.953 #V155 Executing default installer.

@ 10:18:56.953 #V156 Completed default installer.

In the previous example, the #V166 message indicates that SetupAPI initiated the processing of the DIF_ALLOW_INSTALL request for the device. The remaining messages indicate that both a co-installer and the default installer successfully completed.

4.6 Installing Files

During the installing-files stage of driver installation, SetupAPI logs messages that are associated with a DIF_INSTALLDEVICEFILES request. The installers process the CopyFiles, DelFiles, and RenFiles directives from an INF file to generate a list of the files to copy, delete, and rename. SetupAPI adds device files, co-installer files, and interface files to the file queue. (In general, SetupAPI copies files before any irreversible installation actions occur.)The following example illustrates what the subsection that is associated with this stage looks like for an Oven device, if the default logging level is set.

#-166 Device install function: DIF_INSTALLDEVICEFILES.

#-124 Doing copy-only install of "Oven_Device_Instance_ID_2".

In the previous example, the #-166 message indicates that SetupAPI initiated the processing of the DIF_INSTALLDEVICEFILES request for the device, while the #-124 message indicates that SetupAPI is doing a copy-only installation for the device. 

4.6.1 Installing Files: Verbose Logging

By examining the verbose messages in the installing-files subsection, you can determine whether a problem exists in an INF file’s file-list-section, DestinationDirs section, SourceDisksFiles section, or SourceDisksNames section. The following example illustrates what the first part of this subsection looks like for a Blender device; this part includes messages that specify the INF files and installation sections that SetupAPI processes to determine the files to add to the file queue. 

@ 10:18:25.781 #V166 Device install function: DIF_INSTALLDEVICEFILES.

@ 10:18:25.781 #T152 Executing class installer.

@ 10:18:25.781 #V153 Completed class installer.

@ 10:18:25.781 #V155 Executing default installer.

@ 10:18:25.781 #T200 Install Device: Begin.

@ 10:18:25.781 #V124 Doing copy-only install of 

"Blender_Device_Instance_ID".

@ 10:18:25.781 #V005 Opened the PNF file of…

@ 10:18:25.781 #V005 Opened the PNF file of…

@ 10:18:25.796 #V011 Installing section [Blender_install-section-name] from "e:\windows\inf\Blender_INF_File_Name.inf".

@ 10:18:25.796 #T203 Install Device: Queuing files from INF(s).

@ 10:18:25.796 #V005 Opened the PNF file of…

In the previous example, the #V166 message indicates that SetupAPI initiated the processing of the DIF_INSTALLDEVICEFILES request for the device. The #T153 message indicates that a class installer completed the request, the #V155 message indicates that the default installer is processing the request, and the #V124 message indicates that a copy-only installation of the Blender device is occurring. The remaining messages indicate that the default installer is queuing the files that are specified by the INF files for the Blender device.

The following example contains the next sequence of messages in the installing-files subsection; these messages indicate the specific device files (in this case, only blender.sys) that SetupAPI is queuing for copying.

@ 10:18:25.796 #V094 Queued copy from section [Blender_install-section-name.CopyFiles] in "e:\windows\inf\Blender_INF_File_Name.inf: "blender.sys" to "blender.sys" with flags 0x80000024, target directory is "E:\WINDOWS\System32\DRIVERS".

@ 10:18:25.796 #V096 Source in section [sourcedisksfiles] in "e:\windows\inf\layout.inf"; Media=1 Description="Windows XP Professional CD-ROM" Tag="\win51ip" Path="\i386". Driver cache will be used.

@ 10:18:25.796 #T204 Install Device: Queuing coinstaller files from INF(s).

@ 10:18:25.796 #V005 Opened the PNF file of "e:\windows\inf\Blender_INF_File_Name.inf" (Language = 0409).

@ 10:18:25.796 #V005 Opened the PNF file of "e:\windows\inf\layout.inf" (Language = 0409).

In the previous example, the #V094 message identifies the CopyFiles section, the INF file, the blender.sys file, and the target directory. The #V096 message contains the location of the source file, and the #T204 through #V005 messages indicate that the queuing of the co-installer files is starting.

The following example illustrates the final sequence of messages that SetupAPI adds to an installing-files subsection. These messages indicate the co-installer and interface sections that SetupAPI processes to determine the files to queue for copying.

#-046 Processing Coinstaller registration section [Blender_install-section-name.CoInstallers].

@ 10:18:25.812 #V056 Coinstallers registered.

@ 10:18:25.812 #V011 Installing section [Blender_install-section-name.Interfaces] from "e:\windows\inf\Blender_INF_File_Name.inf".

@ 10:18:25.812 #V054 Interfaces installed.

@ 10:18:25.812 #V121 Device install of "Blender_Device_Instance_ID" finished successfully.

@ 10:18:25.812 #T201 Install Device: End.

@ 10:18:25.812 #V156 Completed default installer.

In the previous example, the #-046 message indicates the Blender_install-section-name.CoInstallers section, and the #V011 message indicates the Blender_install-section-name.Interfaces section.

4.7 Verifying Files and Pruning the File Queue

During the verifying-and-pruning stage of driver installation, SetupAPI logs messages that pertain to verifying and pruning (in other words, deleting) file-copy operations from the file queue. SetupAPI performs these tasks before it commits the file queue. 

SetupAPI logs messages for this stage only if an error occurs or if one of the verbose logging levels is set.

If SetupAPI verifies a file, it deletes the file’s corresponding copy operation from the file queue; when SetupAPI subsequently commits the file queue, it does not copy the file to the system. 

SetupAPI verifies a file if and only if the following conditions are true:

· The driver package has a Windows Hardware Quality Labs (WHQL) catalog, a Microsoft Authenticode® catalog, or a test catalog.

· All the INF files that are associated with the file’s driver package are installed in the default system INF file directory, and the catalog files that are associated with these INF files are installed in the crypto catalog store.

· The signatures of all the INF files that are associated with the file’s driver package are validated by their respective catalog files. 

· The signature of the file is validated by the catalog file that is associated with a particular INF file—the one that specifies the source media layout for the file. (This INF file is the one containing the SourceDisksFiles and SourceDisksNames sections that identify the source media and the source file for the file to be verified.)

· The file exists in a particular destination directory—the one specified by the DestinationDirs section in the INF file that specifies the source media layout for the file.

If SetupAPI does not verify a file, it leaves the file’s copy operation in the file queue. When SetupAPI subsequently commits the file queue, it copies the file to the system—unless the existing file on the system is in use and a reboot is not required. In this case, SetupAPI compares the file in the driver package with the existing file. If they are identical, SetupAPI does not copy the file, and it logs the following type of message:

#I193 File "…\SET87.tmp" is identical to existing "…\Some_File_Name_And_Extension", delayed copy skipped.

4.7.1 Verifying Files and Pruning the File Queue: Verbose Logging

The following example illustrates what the verifying-and-pruning subsection in a SetupAPI log file looks like for a Blender device—if the most verbose logging level is set.

@ 10:18:25.843 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 10:18:25.890 #V132 File "e:\windows\inf\Blender_INF_File_Name.inf" (key "Blender_INF_File_Name.inf") is signed in catalog "Blender_Catalog_File_Path\Blender_Catalog_File_Name.cat".

@ 10:18:25.890 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 10:18:25.906 #V132 File "e:\windows\inf\layout.inf" (key "layout.inf") is signed in catalog "E:\WINDOWS\System32\CatRoot\{F750E6C3-38EE-11D1-85E5-00C04FC295EE}\NT5INF.CAT".

@ 10:18:25.906 #T185 Pruning Files: Verifying catalogs/INFs.

@ 10:18:25.906 #T186 Pruning Files: Verifying catalogs/INFs completed.

@ 10:18:25.906 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 10:18:25.921 #V132 File "E:\WINDOWS\System32\DRIVERS\blender.sys" (key "blender.sys") is signed in catalog "Blender_Catalog_File_Path\Blender_Catalog_File_Name.cat".

@ 10:18:25.921 #V191 File "E:\WINDOWS\System32\DRIVERS\blender.sys" pruned from copy.

In the previous example, the #V286 through #T186 messages relate to verifying the catalog and INF files. The #V132 and #V191 messages indicate that the blender.sys file is signed in its corresponding Blender_Catalog_File_Name.cat file and that SetupAPI pruned the corresponding file-copy operation from the file queue.

4.8 Committing the File Queue

SetupAPI logs messages that are associated with committing the file queue only if an error occurs or if one of the verbose logging levels is set. 

The following example applies to an Oven device and illustrates the messages that result from a FILEOP_ABORT error.

#-167 SPFILENOTIFY_NEEDMEDIA: Tag = "Disk1", Description= "Oven_Media_Description", SourcePath = "Oven_Source_Path", SourceFile = "oven.sys", Flags = 0x00000000.

#E169 SPFILENOTIFY_NEEDMEDIA: returned FILEOP_ABORT. Error 1223: The operation was canceled by the user.

#W187 Install failed, attempting to restore original files.

SetupAPI logs a FILEOP_ABORT error if the correct removable media is not present or if a file is missing. A FILEOP_ABORT error message in the log file means that the FILEOP_ABORT error occurred during a server-side (or other noninteractive) installation or that a user canceled the driver installation.

4.8.1 Committing the File Queue: Verbose Logging

The examples in this section illustrate what the committing-the-file-queue messages in a SetupAPI log file look like for a Blender device—if the most verbose logging level is set.

If the file queue is empty when it is committed, SetupAPI logs only the following messages:

@ 10:18:25.921 #T183 Install Files (nothing in queue): Verifying catalogs/INFs.

@ 10:18:25.921 #T184 Install Files (nothing in queue): Verifying catalogs/INFs completed.

If the file queue contains file-copy operations when it is committed, SetupAPI logs messages that indicate which files were copied. In the following example, pruning the file-copy operation for the blender.sys file failed, and the blender.sys is in the Windows driver cabinet.

@ 10:18:22.406 #I180 Verifying file "E:\WINDOWS\System32\DRIVERS\blender.sys" (key "blender.sys") against catalog "" failed. Error 1168: Element not found.

@ 10:18:22.406 #I180 Verifying file "E:\WINDOWS\System32\DRIVERS\blender.sys" (key "blender.sys") against catalog "" failed. Error 1168: Element not found.

@ 10:18:22.406 #T181 Install Files: Verifying catalogs/INFs.

@ 10:18:22.406 #T182 Install Files: Verifying catalogs/INFs completed.

@ 10:18:22.406 #I167 SPFILENOTIFY_NEEDMEDIA: Tag = "driver.cab", Description= "windows driver cabinet", SourcePath = "E:\WINDOWS\Driver Cache\i386", SourceFile = "blender.sys", Flags = 0x00000000.

@ 10:18:22.406 #V168 SPFILENOTIFY_NEEDMEDIA: skipped callback.

In the previous example, the #I180 messages report that the INF file for blender.sys does not specify a catalog file and that blender.sys is not signed in any catalog file installed on the system. The #I167 message indicates that blender.sys is in the Windows driver cabinet, and the #V168 message indicates that the SPFILENOTIFY_NEEDMEDIA callback was not called, because the file is in the Windows driver cabinet. (This situation is the only one in which the callback is not called.)

The final example illustrates the messages that pertain to extracting blender.sys from the Windows driver cabinet:

@ 10:18:22.750 #I340 Extracted file "blender.sys" from cabinet "…\driver.cab" to "…\SET86.tmp" (target is "…\blender.sys").

#-024 Copying file "…\SET86.tmp" to "…\blender.sys".

@ 10:18:22.765 #I336 Copying file "…\SET86.tmp" to "…\blender.sys" via temporary file "…\SET87.tmp".

@ 10:18:22.765 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 10:18:22.765 #V132 File "…\SET87.tmp" (key "Blender_Driver_Name.sys") is signed in catalog "…\Blender_Catalog_File_Name.cat".

@ 10:18:22.781 #V250 Applied security to file "…\blender.sys".

In the previous example, the #I340 and #I336 messages indicate that the file was extracted and that its contents were saved in a SET87.tmp file. The #V132 message indicates that the contents of the file are signed in the Blender_Catalog_File_Name.cat file, and the #V250 message reports that the blender.sys file was copied to the system.

4.9 Registering and Reloading Co-Installers

During the registering-and-reloading stage of driver installation, SetupAPI logs messages that are associated with a DIF_REGISTER_COINSTALLERS request. The class installers and class co-installers process this request to register any new device co-installers and to reload all the co-installers. The following example illustrates what the log-file subsection that is associated with this stage looks like for an Oven device, if the default logging level is set.

#-166 Device install function: DIF_REGISTER_COINSTALLERS.

#I056 Coinstallers registered

In the previous example, the #-166 message indicates that SetupAPI initiated the processing of the DIF_REGISTER_COINSTALLERS request, while the #I056 message indicates that the installers successfully registered the new co-installers and that SetupAPI reloaded all the co-installers. 

4.9.1 Registering and Reloading Co-Installers: Verbose Logging

The following example illustrates what the registering-and-reloading subsection in a SetupAPI log file looks like for a Blender device—if the most verbose logging level is set.

@ 10:18:24.156 #V166 Device install function: DIF_REGISTER_COINSTALLERS.

@ 10:18:24.156 #T152 Executing class installer.

@ 10:18:24.156 #V153 Completed class installer.

@ 10:18:24.156 #V155 Executing default installer.

@ 10:18:24.156 #V005 Opened the PNF file of "e:\windows\inf\Blender_INF_File_Name.inf" (Language = 0409).

@ 10:18:24.156 #I056 Coinstallers registered.

@ 10:18:24.156 #V156 Completed default installer.

In the previous example, the #V166 message indicates that SetupAPI initiated the processing of the DIF_REGISTER_COINSTALLERS request. The remaining messages indicate that the installers registered the new co-installers and that SetupAPI reloaded all the co-installers. The #V005 message also contains the name of the INF file.

Note

Do not attempt to update a co-installer that is currently in use with another version of the co-installer that has the same name. For information about how to correctly update co-installers, see the “Updating Driver Files” section in the Windows DDK documentation.

4.10 Installing Device Interfaces

During the installing-device-interfaces stage of driver installation, SetupAPI logs messages that are associated with a DIF_INSTALLINTERFACES request. The following example illustrates what the log-file subsection that is associated with this stage looks like for an Oven device, if the default logging level is set.

#-166 Device install function: DIF_INSTALLINTERFACES.

#-011 Installing section [Oven_install-section-name.Interfaces] from "c:\windows\inf\Oven_INF_File_Name_2.inf".

#I054 Interfaces installed

In the previous example, the #-166 message indicates that SetupAPI initiated the processing of the DIF_INSTALLINTERFACES request, and the #I054 message indicates that the device interfaces were installed.

4.10.1 Installing Device Interfaces: Verbose Logging

The following example illustrates what the installing-device-interfaces subsection in a SetupAPI log file looks like for a Blender device—if the most verbose logging level is set.

@ 10:18:24.187 #V166 Device install function: DIF_INSTALLINTERFACES.

@ 10:18:24.187 #T152 Executing class installer.

@ 10:18:24.187 #V153 Completed class installer.

@ 10:18:24.187 #V155 Executing default installer.

@ 10:18:24.187 #V005 Opened the PNF file of "e:\windows\inf\Blender_INF_File_Name.inf" (Language = 0409).

@ 10:18:24.187 #V011 Installing section [Blender_install-section-name.Interfaces] from "e:\windows\inf\Blender_INF_File_Name.inf".

@ 10:18:24.187 #I054 Interfaces installed.

@ 10:18:24.203 #V156 Completed default installer.

In the previous example, the #V166 message indicates that SetupAPI initiated the processing of the DIF_INSTALLINTERFACES request, the #V011 message specifies the INF section that installed the device interface, and the remaining messages indicate that the installers processed the request.

4.11 Installing the Device

During the installing-the-device stage of driver installation, SetupAPI logs messages that are associated with a DIF_INSTALLDEVICE request. The following example illustrates what the log-file subsection that is associated with this stage looks like for an Oven device, if the default logging level is set.

#-166 Device install function: DIF_INSTALLDEVICE.

#I123 Doing full install of "Oven_Device_Instance_ID_2".

#I121 Device install of "Oven_Device_Instance_ID_2" finished successfully.

In the previous example, the #-166 message indicates that SetupAPI initiated the processing of the DIF_INSTALLDEVICE request, and the #I121 message reports that SetupAPI successfully installed the device.

4.11.1 Installing the Device: Verbose Logging

The examples in this section illustrate what the installing-the-device messages in a SetupAPI log file looks like for a Blender device—if the most verbose logging level is set.

The following messages are those associated with executing the class installer, writing basic logical configurations, setting registry values, and adding the Blender service:

@ 10:18:24.218 #V166 Device install function: DIF_INSTALLDEVICE.

@ 10:18:24.218 #T152 Executing class installer.

@ 10:18:24.234 #T200 Install Device: Begin.

@ 10:18:24.234 #I123 Doing full install of "Blender_Device_Instance_ID".

@ 10:18:24.250 #V005 Opened the PNF file of…

@ 10:18:24.250 #T209 Install Device: Writing BASIC Logical Configurations.

@ 10:18:24.250 #T211 Install Device: Changing registry settings as specified by the INF(s).

@ 10:18:24.250 #T212 Install Device: Writing driver specific registry settings.

@ 10:18:24.250 #T213 Install Device: Installing required Windows services.

#-035 Processing service Add/Delete section [Blender_install-section-name.Services].

@ 10:18:24.640 #V282 Add Service: Modified existing service "Blender".

@ 10:18:24.656 #T214 Install Device: Writing driver descriptive registry settings.

In the previous example, the #V166 message indicates that SetupAPI initiated the processing of the DIF_INSTALLDEVICE request. The #T152 through #V005 messages are associated with the start of the installation by the class installer. The #T209 message reports the time that SetupAPI checked for those hardware resources specified by any LogConfig directive in the INF file. In this case, no resources were logged, so none were in specified in the INF file. The #T211 and #T212 messages show that the class installer set some registry values. Finally, the #T213, #-035, #V282, and #T214 messages outline the changing of the existing Blender service.

If an installer changes an existing service, SetupAPI must restart all the devices that depend on that service. Furthermore, if any device vetoes a restart, a reboot is required. For example, the following messages illustrate removing and restarting the devices that depend on the Blender service:

@ 10:18:24.656 #T398 Install Device: Removing device "Blender_Device_Instance_ID" sub-tree.

@ 10:18:24.718 #T399 Install Device: Removing device "Blender_Device_Instance_ID" sub-tree completed.

@ 10:18:24.734 #T398 Install Device: Removing device "Some_Device_Instance_ID" sub-tree.

@ 10:18:24.781 #T399 Install Device: Removing device "Some_Device_Instance_ID" sub-tree completed.

…

@ 10:18:24.937 #T396 Install Device: Restarting device "Blender_Device_Instance_ID".

@ 10:18:24.968 #T397 Install Device: Restarting device "Blender_Device_Instance_ID" completed.

@ 10:18:24.968 #T396 Install Device: Restarting device "Some_Device_Instance_ID".

@ 10:18:24.984 #T397 Install Device: Restarting device "Some_Device_Instance_ID" completed.

In the previous example, the #T398 and #T399 messages show that a device was removed, and the #T396 and #T397 messages show that a device was restarted. 

If SetupAPI restarts all the devices without a reboot, the class installer completes the DIF_INSTALLDEVICE request, as shown by the following messages:

@ 10:18:25.000 #T396 Install Device: Restarting device "Some_Device_Instance_ID".

@ 10:18:25.000 #T397 Install Device: Restarting device "Some_Device_Instance_ID" completed.

@ 10:18:25.015 #I121 Device install of "Some_Device_Instance_ID" finished successfully.

@ 10:18:25.015 #T201 Install Device: End.

@ 10:18:25.015 #V153 Completed class installer.

In the previous example, the #I121, #T201, and #V153 messages indicate that the device installation successfully completed without a reboot.

If a device restart requires a reboot, SetupAPI logs messages that are similar to the following:

@ 10:18:25.000 #W100 Query-removal during install of "Blender_Device_Instance_ID" was vetoed by "Some_Device_Instance_ID" (veto type 1: PNP_VetoLegacyDevice).

@ 10:18:25.000 #W104 Device "Blender_Device_Instance_ID" required reboot: Query remove failed (install) CfgMgr32 returned: 0x17: CR_REMOVE_VETOED.

The messages indicating that rebooting is required are discussed in more detail later in this paper.

4.12 Finishing the Install Wizard

During the finishing-install-wizard stage of driver installation, SetupAPI logs messages that are associated with a DIF_NEWDEVICEWIZARD_FINISHINSTALL request. SetupAPI logs messages during this stage only if an error occurs or if one of the verbose logging levels is set. 

4.12.1 Finishing the Install Wizard: Verbose Logging

The following example illustrates what the finishing-install-wizard subsection in a SetupAPI log file looks like for a Blender device—if the most verbose logging level is set.

@ 10:18:25.656 #V166 Device install function: DIF_NEWDEVICEWIZARD_FINISHINSTALL.

@ 10:18:25.656 #V150 Completed coinstaller 1 of 1.

@ 10:18:25.656 #V153 Completed class installer.

@ 10:18:25.656 #V155 Executing default installer.

…

In the previous example, the #V166 message indicates that SetupAPI initiated the processing of the DIF_NEWDEVICEWIZARD_FINISHINSTALL request. The #V150 and #V153 messages indicate that both a co-installer and the class installer completed the request, and the #V155 message indicates that the default installer is processing the request. 

These messages imply that pages were displayed; SetupAPI does not log messages to indicate that fact.

4.13 Cleaning Up

During the cleaning-up stage of driver installation, the class installer processes the DIF_DESTROYPRIVATEDATA request, which SetupAPI initiates before it unloads co-installers. (Only the class installer can handle this request.)

SetupAPI logs messages during this stage only if an error occurs or if one of the verbose logging levels is set.

4.13.1 Cleaning Up: Verbose Logging

The following example shows the initial messages of a cleaning-up subsection in a SetupAPI log file—if the most verbose logging level is set.

@ 10:18:25.968 #V166 Device install function: DIF_DESTROYPRIVATEDATA.

@ 10:18:25.968 #V150 Completed coinstaller 1 of 1.

@ 10:18:25.968 #V153 Completed class installer.

@ 10:18:25.968 #V155 Executing default installer.

…

In the previous example, the #-V166 message indicates that SetupAPI initiated the processing of the DIF_DESTROYPRIVATEDATA request. The #V150 and #V153 messages indicate that both a co-installer and the class installer completed the request, and the #V155 message indicates that the default installer is processing the request.

5 Device-Removal Sections

A device-removal section contains a section marker followed by the messages that SetupAPI logs when it removes a device.

Note

If an installer removes a device before it is fully installed, SetupAPI does not create a device-removal section. Instead, it adds the device-removal messages to the current driver-installation section. This indicates a bug in the installer, because an installer should never remove a device before it is fully installed—even if an installation error occurs.

SetupAPI logs device-removal messages only if an error occurs or if one of the verbose logging levels is set. If the default logging level is set and an error occurs, SetupAPI logs the following message, followed by the error messages:

-166 Device install function: DIF_REMOVE.

If one of the verbose logging levels is set, SetupAPI logs the following message, followed by any error messages:

@ 11:18:01.111 #V166 Device install function: DIF_REMOVE. 

6 Common Device-Installation Problems

This section provides examples of the messages that appear in the SetupAPI log file—when the most verbose logging level is set—as a result of the following common device-installation problems:

· The device’s INF file has been modified but not re-signed

· SetupAPI cannot find a driver for the device

· Rebooting the system is required

· A device vetoes its removal

· The test certificate for a driver package is not installed

· The certificate for a driver package that has a Authenticode signature is not installed

· A driver file is unsigned

· A service deletion is pending

· A protected system file was replaced

Unless stated otherwise, all the examples apply to a Blender device.

6.1 INF File Modified but Not Re-Signed

The example in this section illustrates the messages that SetupAPI logs when it re-installs the Blender device and determines that the blender.inf file has been modified but not re-signed. The driver installation begins as a server-side installation and fails. It then continues as a client-side installation and succeeds. 

Because the example is rather long, it is presented in sections—each of which contains messages that reveal the following information:

· The driver installation was initiated

· The INF cache needs to be updated

· The server-side installation failed

· The client-side installation was initiated

· Verifying files and pruning the file queue failed

· The first attempt to commit the file queue failed

· The second attempt to commit the file queue succeeded

6.1.1.1.1.1 Driver Installation Initiated

SetupAPI logs the following messages during the initiating-driver-installation stage of driver installation.

[2003/05/09 20:41:05 548.105 Driver Install]

#-019 Searching for hardware ID(s): Blender_Hardware_ID.

#-018 Searching for compatible ID(s): Blender_Compatible_ID.

#-198 Command line processed: E:\WINDOWS\system32\services.exe.

@ 20:41:05.217 #V017 Enumerating files "E:\WINDOWS\inf".

@ 20:41:05.327 #V392 Using INF cache "E:\WINDOWS\inf\INFCACHE.1".

@ 20:41:05.358 #V073 Cache: Excluding INF "accessor.inf".

@ 20:41:05.358 #V073 Cache: Excluding INF "activeds.inf".

@ 20:41:05.358 #V073 Cache: Excluding INF "agtinst.inf".

@ 20:41:05.358 #V073 Cache: Excluding INF "apcompat.inf".

In the previous example, the #-198 message indicates that a server-side installation is occurring, and the #V017, #V392, and #V073 messages are associated with finding matching INF files for the Blender device.

6.1.1.1.1.2 INF Cache Needs Updating

SetupAPI logs the following messages during the finding-the-drivers stage of driver installation. These messages are associated with locating the modified blender.inf file.

@ 20:41:06.656 #I382 "blender.PNF" migrate: INF may have been modified.

@ 20:41:07.813 #V042 Opened INF "E:\WINDOWS\inf\blender.inf", PNF created (Languge = 0409).

@ 20:41:07.829 #I022 Found "Blender_Hardware_ID" in E:\WINDOWS\inf\blender.inf; Device: "Blender_Device_Description
"; Driver: "Blender_Driver_Description"; Provider: "Blender_Provider_Name"; Mfg: "Blender_Manufacturer_Name"; Section name: "Blender_install-section-name".

@ 20:41:07.829 #I087 Driver node not trusted, rank changed from 0x00000001 to 0x00008001.

@ 20:41:07.829 #I023 Actual install section: Blender_install-section-name.NT]. Rank: 0x00008001. Driver date: 07/01/2003. Version: 5.1.3604.0.

In the previous example, the #I382 through #I023 messages indicate that the dates of the INF and PNF files do not match and that the INF file is unsigned. Due to the former condition, SetupAPI regenerates the PNF file. Due to the latter condition, SetupAPI changes the INF file’s rank to 0x00008001. (The date of the INF file is specified by its DriverVer directive.)

If the log file contains a #I087 message for a signed INF file, perform the following steps: 

1. If the INF file is not in the default system INF file directory, delete only the PNF file.

2. If the INF file is in the default system INF file directory, and its name is oem*.inf, delete the INF file and the PNF file.

3. Re-install the device.

6.1.1.1.1.3 Server-Side Installation Failed

The following messages are associated with the failure of the server-side driver installation. However, this failure is not fatal. SetupAPI cleans up the server-side installation and defers to a client-side installation.

@ 20:41:13.443 #T205 Install Device: Verifying catalogs/INFs.

@ 20:41:13.443 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 20:41:13.475 #I180 Verifying file "e:\windows\inf\blender.inf" (key "blender.inf") against catalog "" failed. Error 1168: Element not found.

@ 20:41:13.475 #E358 An unsigned or incorrectly signed file "e:\windows\inf\blender.inf" for driver "Blender_Driver_Description" blocked (server install). Error 1168: Element not found.

@ 20:41:13.490 #T206 Install Device: Verifying catalogs/INFs completed.

@ 20:41:13.490 #T224 Install Device: Cleaning up failed device.

@ 20:41:13.490 #E122 Device install failed. Error 1168: Element not found.

@ 20:41:13.490 #T201 Install Device: End.

@ 20:41:13.490 #E157 Default installer failed. Error 1168: Element not found.

@ 20:41:13.490 #V166 Device install function: DIF_DESTROYPRIVATEDATA.

@ 20:41:13.490 #T152 Executing class installer.

@ 20:41:13.506 #V153 Completed class installer.

@ 20:41:13.506 #V155 Executing default installer.

@ 20:41:13.506 #V156 Completed default installer.

In the previous example, the #T205 through #T206 messages pertain to verifying the INF file in the catalog file. Specifically, the #I180 and #E358 messages indicate that SetupAPI could not verify the INF file in the catalog file; SetupAPI logs this as an error because the installation is server-side. Finally, the #V166 through #V156 messages indicate that the installers processed the DIF_DESTROYPRIVATEDATA request.

Tip

To find all the messages in a SetupAPI log file that indicate unsigned drivers, search for the word unsigned—as long as the log file is an English-language one! 

6.1.1.1.1.4 Client-Side Installation Initiated

Just before the server-side installation completes, it initiates a client-side installation which, in turn, runs the Found New Hardware Wizard. The wizard allows the user to participate in the driver installation.

The following example shows the types of messages that SetupAPI logs at the beginning of a client-side installation.

[2003/05/09 20:41:13 3920.2]

#-199 Executing "E:\WINDOWS\system32\rundll32.exe" with command line: rundll32.exe newdev.dll,ClientSideInstall \\.\pipe\PNP_Device_Install_Pipe_0.{FC06A736-DFBF-4579-A96B-95FCF040BE47}

@ 20:41:13.537 #I060 Set selected driver.

#-019 Searching for hardware ID(s): Blender_Hardware_ID
#-018 Searching for compatible ID(s): Blender_Compatible_ID
@ 20:41:13.537 #V017 Enumerating files "E:\WINDOWS\inf".

@ 20:41:13.568 #V392 Using INF cache "E:\WINDOWS\inf\INFCACHE.1".

@ 20:41:13.584 #V073 Cache: Excluding INF "accessor.inf".

@ 20:41:13.584 #V073 Cache: Excluding INF "activeds.inf".

In the previous example, the #-199 message indicates that the system is running the Found New Hardware Wizard for a client-side installation. The #-019 and #-018 messages specify the hardware identifiers and compatible identifiers of the Blender device. Finally, the #V017 through #V073 messages are associated with searching for INF files that match the device.

6.1.1.1.1.5 Verifying Files and Pruning the File Queue Failed

SetupAPI logs the following messages during the verifying-and-pruning stage of driver installation. Note that SetupAPI will not prune the file queue if the INF file is unsigned.

@ 20:41:29.317 #T185 Pruning Files: Verifying catalogs/INFs.

@ 20:41:29.332 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 20:41:29.332 #I180 Verifying file "e:\windows\inf\blender.inf" (key "blender.inf") against catalog "" failed. Error 1168: Element not found.

@ 20:41:29.332 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 20:41:29.504 #V132 File "e:\windows\inf\layout.inf" (key "layout.inf") is signed in catalog "E:\WINDOWS\System32\CatRoot\{F750E6C3-38EE-11D1-85E5-00C04FC295EE}\NT5INF.CAT".

@ 20:41:29.504 #T186 Pruning Files: Verifying catalogs/INFs completed.

@ 20:41:29.504 #W334 Failed to verify catalog when scanning file queue. Error 1168: Element not found.

In the previous example, the #T185 through #I180 messages indicate that SetupAPI could not verify the INF file against the catalog file. The later #T186 and #W334 messages indicate that SetupAPI completed the pruning operation; however, SetupAPI did not prune any files because it could not verify them against the catalog file. Note that the #W334 message indicates that error 1168 occurred. In the context of verifying a file against a catalog, this error usually means that the file’s signature was not verified by the catalog.

6.1.1.1.1.6 Committing the File Queue Failed

It is not a fatal error to fail to prune the file queue due to an unsigned INF file. SetupAPI therefore attempts to commit the file queue after the failure occurs. As part of its first attempt, SetupAPI applies the Driver Signing option, which the system administrator can set from Device Manager. If the option is set to Warn, SetupAPI offers the user a choice between continuing and canceling the installation. The following messages are associated with this first attempt and are logged during the committing-the-file-queue stage of driver installation:

@ 20:41:29.504 #T181 Install Files: Verifying catalogs/INFs.

@ 20:41:29.504 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 20:41:29.520 #I180 Verifying file "e:\windows\inf\blender.inf" (key "blender.inf") against catalog "" failed. Error 1168: Element not found.

@ 20:41:31.272 #E366 An unsigned or incorrectly signed file "e:\windows\inf\blender.inf" for driver "Blender_Driver_Description" will be installed (Policy=Warn, user said ok). Error 1168: Element not found.

@ 20:41:31.272 #T182 Install Files: Verifying catalogs/INFs completed.

@ 20:41:31.272 #W187 Install failed, attempting to restore original files

In the previous example, the #I180 message states that the INF file was not verified against the catalog file. The #E366 message reveals two facts: the Driver Signing option was set to Warn, and the user clicked OK when warned by a dialog box that the driver was unsigned. This is the choice that causes SetupAPI to make a second attempt to commit the file queue. Finally, the #W187 message indicates that the first attempt failed and that SetupAPI has reset the system restore point. Note that this message is only a warning, not a fatal error.

6.1.1.1.1.7 Committing the File Queue Succeeded

Because the user elected to install the Blender device, SetupAPI continues with a second attempt to commit the file queue. SetupAPI does not warn the user again. The following messages are associated with this second attempt and are logged during the committing-the-file-queue stage of driver installation. After the file queue is committed, the rest of the device installation proceeds in a normal fashion.

@ 20:42:04.019 #T181 Install Files: Verifying catalogs/INFs.

@ 20:42:04.097 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 20:42:04.129 #I180 Verifying file "e:\windows\inf\blender.inf" (key "blender.inf") against catalog "" failed. Error 1168: Element not found.

@ 20:42:04.129 #E362 An unsigned or incorrectly signed file "e:\windows\inf\blender.inf" for driver "Blender_Driver_Description" will be installed (Policy=Warn). Error 1168: Element not found.

@ 20:42:04.129 #V286 Verification using alternate platform (Platform = 2, High Version = 5.1, Low Version = 5.0).

@ 20:42:04.348 #V132 File "e:\windows\inf\layout.inf" (key "layout.inf") is signed in catalog "E:\WINDOWS\System32\CatRoot\{F750E6C3-38EE-11D1-85E5-00C04FC295EE}\NT5INF.CAT".

@ 20:42:04.348 #T182 Install Files: Verifying catalogs/INFs completed.

In the previous example, the #I180 message indicates that SetupAPI could not verify the INF file against the catalog file, and the #E362 message indicates that SetupAPI installed the driver package.

6.2 Driver Not Found

If SetupAPI does not find a driver for a device, it installs a null driver. How it does so depends on whether the installation is occurring during the GUI-mode setup phase of Windows installation or after the Windows installation.

During the GUI-mode setup phase of Windows installation, SetupAPI first sends a DIF_INSTALLDEVICE request to install a null driver for devices that can be operated in raw mode. If the installers fail this request, SetupAPI sets the DI_FLAGSEX_SETFAILEDINSTALL flag for the device, and it sends another DIF_INSTALLDEVICE request to install a null driver. SetupAPI sends the second request so that the Plug and Play Manager will stop prompting the user to install a driver for the device. The installers must not fail the second request.

After the Windows installation, SetupAPI sets the DI_FLAGSEX_SETFAILEDINSTALL flag for the device, and it sends a single DIF_INSTALLDEVICE request to install a null driver. SetupAPI installs the null driver so that the Plug and Play Manager will stop prompting the user to install a driver for the device. The installers must not fail this request. 

Note

For more information about installing null drivers, see “DIF_INSTALLDEVICE” and “SetupDiInstallDevice” in the Windows DDK documentation.

The following example contains the log-file messages that are associated with successfully installing a null driver:

@ 19:00:08.907 #V166 Device install function: DIF_SELECTBESTCOMPATDRV.

@ 19:00:08.937 #V155 Executing default installer.

@ 19:00:08.967 #W059 Selecting best compatible driver failed. Error 0xe0000228: There are no compatible drivers for this device.

@ 19:00:09.007 #W157 Default installer failed. Error 0xe0000228: There are no compatible drivers for this device.

@ 19:00:10.219 #I060 Set selected driver.

@ 19:00:10.259 #V166 Device install function: DIF_ALLOW_INSTALL.

@ 19:00:10.289 #V155 Executing default installer.

@ 19:00:10.329 #V156 Completed default installer.

@ 19:00:10.359 #V166 Device install function: DIF_INSTALLDEVICE.

@ 19:00:10.389 #V155 Executing default installer.

@ 19:00:10.429 #T200 Install Device: Begin.

@ 19:00:10.460 #I125 Installing NULL driver for "Blender_Device_Instance_ID".

@ 19:00:10.500 #T214 Install Device: Writing driver descriptive registry settings.

@ 19:00:10.530 #T396 Install Device: Restarting device "Blender_Device_Instance_ID".

@ 19:00:10.560 #T397 Install Device: Restarting device "Blender_Device_Instance_ID" completed. 

@ 19:00:10.870 #I121 Device install of "Blender_Device_Instance_ID" finished successfully.

@ 19:00:10.900 #T201 Install Device: End.

@ 19:00:10.940 #V156 Completed default installer.

In the previous example, the #V166 messages indicate the sequence of DIF_XXX requests that are processed by the installers. Each pair of #V155 and #V156 messages indicates that the default installer processed the preceding DIF_XXX request. Finally, the #T200 through #T201 messages are associated with processing the DIF_INSTALLDEVICE request for a null driver.

6.3 Rebooting Required

Problems that require rebooting are common. For example, an installation might appear to complete successfully but, when the Plug and Play Manager attempts to start the device, the device reports that it cannot start. The following example contains messages indicating that a resource conflict exists and that rebooting is required.

@ 13:45:17.176 #T396 Install Device: Restarting device "Blender_Device_Instance_ID".

@ 13:45:21.993 #T397 Install Device: Restarting device "Blender_Device_Instance_ID" completed.

@ 13:45:22.063 #W114 Device "Blender_Device_Instance_ID" required reboot: Device has problem: 0x0c: CM_PROB_NORMAL_CONFLICT.

@ 13:45:22.103 #T222 Install Device: Calling 'RUNONCE'/'GRPCONV' items.

@ 13:45:22.163 #I138 Executing 'RUNONCE' to process 26 'RUNONCE' entries.

@ 13:46:27.847 #I121 Device install of "Blender_Device_Instance_ID" finished successfully.

In the previous example, the #W114 message is the one that states that a resource conflict exists and that rebooting is required. The #T222 and #I138 messages then report that the system executed runonce.exe and grpconv.exe, which must run before the system is rebooted.

Note

Rebooting might not solve a problem, but it is the first thing to try. For help with troubleshooting device installation, see “Troubleshooting Device Installation” in the Windows DDK documentation.

Tip

To find all the messages that state that rebooting is required, search for the word reboot in an English-language SetupAPI log file.

Tip

No message explicitly identifies the fact that the system is being booted. However, you can infer that the system was rebooted if the time that elapses between sections or time-stamped messages indicates a delay that is consistent with rebooting.

6.4 Device Vetoes Removal

SetupAPI must reboot the system before it can remove certain devices—for example, a storage device that is in the paging path. Additionally, if a device’s driver stack does not support Plug and Play, the Plug and Play manager will automatically veto the stopping and restarting of the device.

A veto results in a reboot request, which SetupAPI makes by setting the DI_NEEDREBOOT flag. If this request is made either during a client-side installation or during a server-side installation when an interactive user is logged on, SetupAPI displays a dialog box informing the user that rebooting is required. Otherwise, SetupAPI displays the dialog box the next time an interactive user logs on to the system.

The following example contains messages indicating that a storage device in the paging path vetoed its own removal.

@ 11:47:25.167 #W100 Query-removal during install of "Device_Instance_ID" was vetoed by "Device_Instance_ID" (veto type 6: PNP_VetoDevice).

@ 11:47:25.187 #W104 Device "Device_Instance_ID" required reboot: Query remove failed (install) CfgMgr32 returned: 0x17: CR_REMOVE_VETOED.

@ 11:47:25.207 #I121 Device install of "Device_Instance_ID" finished successfully.

In the previous example, the #W100 message indicates that the storage device vetoed its own removal. The message also indicates that the veto type is PNP_VetoDevice, which means that, although the device supports the specified operation, it rejected that operation for device-specific reasons.

Tip

Additional veto types exist. To locate all the veto messages in a SetupAPI log file, search for PNP_Veto to find all the PNP_Veto* words. For more information about veto types, see “PNP_VETO_TYPE” in the Windows DDK documentation.

6.5 Test Certificate Not Installed

SetupAPI logs an error if a driver package has a test signature but no corresponding test certificate is installed on the system. To fix this problem, install the test certificate and reboot. The following example contains the types of messages that are logged if this error occurs.

@ 11:50:31.325 #T181 Install Files: Verifying catalogs/INFs.

@ 11:50:31.385 #I329 Verifying catalog "Blender_Catalog_Path\blender.cat" failed. Error 0x800b0109: A certificate chain processed, but terminated in a root certificate which is not trusted by the trust provider.

@ 11:50:31.425 #E364 An unsigned or incorrectly signed file "Blender_Catalog_Path\blender.cat" for driver "Blender_Driver_Description" blocked (unattended, Policy=Warn). Error 0x800b0109: A certificate chain processed, but terminated in a root certificate which is not trusted by the trust provider.

@ 11:50:31.565 #T182 Install Files: Verifying catalogs/INFs completed.

@ 11:50:31.595 #W187 Install failed, attempting to restore original files.

In the previous example, the #I329 and #E364 messages report that the test certificate for the blender.cat file is not installed.

Tip

To locate all the messages that indicate unsigned drivers, search for the word unsigned in an English-language SetupAPI log file.

6.6 Authenticode Certificate Not Installed

SetupAPI logs certain messages that pertain to Authenticode signatures and certificates. On Windows XP, SetupAPI only logs an error message if an Authenticode signature’s corresponding certificate is not installed in the trusted publisher certificates store. On Microsoft Windows Server™ 2003 and later versions of the operating system, SetupAPI logs messages for all the following conditions: 

· The driver has an Authenticode signature, but the corresponding certificate is not installed in the trusted publisher certificates store.

· The driver has an Authenticode signature, and the corresponding certificate is installed in the trusted publisher certificates store.

· The driver has an Authenticode signature, but the corresponding certificate is not installed in the trusted publisher certificates store. Furthermore, when SetupAPI warned the user that the driver has an Authenticode signature, the user chose not to install the driver.

6.6.1.1.1.1 Windows XP

SetupAPI logs the following error message if an Authenticode certificate is not installed in the trusted publisher certificates store. 

@ 11:16:09.078 #I329 Verifying catalog "Blender_Catalog_File_Path\blender.cat" failed. Error 0x800b0109: A certificate chain processed, but terminated in a root certificate which is not trusted by the trust provider.

6.6.1.1.1.2 Windows Server 2003 and Later

The following example illustrates the types of messages that SetupAPI logs when an Authenticode certificate is not installed in the trusted publisher certificates store.

@ 11:16:09.078 #I329 Verifying catalog "Blender_Catalog_File_Path\blender.cat" failed. Error 0x800b0109: A certificate chain processed, but terminated in a root certificate which is not trusted by the trust provider.

@ 11:16:09.125 #I440 File "Blender_INF_File_Path\blender.inf" (key "blender.inf") is signed in Authenticode(tm) catalog "Blender_Catalog_File_Path.cat". Error 0xe0000242: The publisher of an Authenticode(tm) signed catalog has not yet been established as trusted.

In the previous example, the #I329 message indicates that the driver does not have a Windows Hardware Quality Labs (WHQL) certificate. The #I440 message indicates that the driver has an Authenticode signature, but the corresponding certificate is not installed in the trusted publisher certificates store.

The following example illustrates the types of messages that SetupAPI logs when an Authenticode certificate is installed in the trusted publish certificates store.

@ 11:19:27.453 #I433 Verifying file "Blender_INF_File_Path\blender.inf" (key "blender.inf") against an installed catalog "Blender_Catalog_File_Path\Blender_Catalog_File_Name.CAT" failed. Error 0x800b0109: A certificate chain processed, but terminated in a root certificate which is not trusted by the trust provider.

@ 11:19:27.484 #I442 A valid signature for file "Blender_INF_File_Path\blender.inf" (key "blender.inf") was found in an installed Authenticode(tm) catalog "Blender_Catalog_File_Path\Blender_Catalog_File_Name.CAT". Error 0xe0000241: The INF was signed with an Authenticode(tm) catalog from a trusted publisher.

In the previous example, the #I433 message indicates that the driver does not have a WHQL catalog or a test catalog. The #I442 message indicates that the driver has an Authenticode signature, and the corresponding certificate is installed in the trusted publisher certificates store.

SetupAPI logs the following message if a driver has an Authenticode signature, the corresponding certificate is not installed, and the user chose not to install the driver when warned by SetupAPI.

#E368 An unsigned, incorrectly signed, or Authenticode(tm) signed file "Blender_Catalog_File_Name.CAT" for driver "Blender_Driver_Description" blocked (Policy=Warn, user said no). Error 0xe0000242: The publisher of an Authenticode(tm) signed catalog has not yet been established as trusted.

6.7 Driver File Unsigned

SetupAPI logs an error if it detects an unsigned or incorrectly signed driver file prior to committing the file queue. This occurs if the driver does not have a catalog file or if the file’s signature and the corresponding signature in the driver’s catalog file do not match. The following example contains the messages that SetupAPI logs in this case. To correct the error, determine the driver’s catalog file and verify the file’s signature.

@ 12:32:12.370 #I340 Extracted file "blender.dll" from cabinet "Cabinet_File_Path\Cabinet_File_Name.cab" to "C:\WINDOWS\System32\SET62.tmp" (target is "C:\WINDOWS\System32\blender.dll").

@ 12:32:12.390 #I336 Copying file "C:\WINDOWS\System32\SET62.tmp" to "C:\WINDOWS\System32\blender.dll" via temporary file "C:\WINDOWS\System32\SET63.tmp".

@ 12:32:12.410 #E361 An unsigned or incorrectly signed file "C:\WINDOWS\System32\SET62.tmp" will be installed (Policy=Ignore). Error 1168: Element not found.

In the previous example, the #I336 and #E361 messages report that the blender.dll file was either unsigned or incorrectly signed.

6.8 Service Deletion Pending

If an INF file deletes a service by using a DelService directive, and then it attempts to add the same service by using an AddService directive, SetupAPI will log an error. The following example illustrates the messages that SetupAPI will log under these conditions for a fictitious Blender service. Note that the only way to correct this error is to reboot.

#-035 Processing service Add/Delete section [Blender_Install_Section.Services].

@ 18:28:34.955 #E279 Add Service: Failed to create service "Blender". Error 1072: The specified service has been marked for deletion.

@ 18:28:34.965 #E033 Error 1072: The specified service has been marked for deletion.

@ 18:28:34.975 #E275 Error while installing services. Error 1072: The specified service has been marked for deletion.

@ 18:28:34.985 #T224 Install Device: Cleaning up failed device.

@ 18:28:35.025 #E122 Device install failed. Error 1072: The specified service has been marked for deletion.

@ 18:28:35.035 #T201 Install Device: End.

@ 18:28:35.146 #E154 Class installer failed. Error 1072: The specified service has been marked for deletion.

In the previous example, the #-035 and #E279 messages relate to the INF file adding the Blender service. The #E033 message indicates that the service was previously marked for deletion. Finally, the #E275 through #E154 messages report that device-installation failed and that the service was previously marked for deletion.

6.9 Protected System File Replaced 

If a device-installation program attempts to replace a protected system file, SetupAPI performs one of the following actions, depending on how the Driver Signing option is set in Device Manager.

· If Block is set, SetupAPI informs the user that the driver package cannot be installed because it is unsigned.

· If Warn is set, SetupAPI informs the user that the driver package is unsigned, and it allows the user to cancel the installation.

· If Ignore is set, SetupAPI changes the Driver Signing option that is applied to the installation from Ignore to Warn. SetupAPI then performs the actions just mentioned for the Warn setting.

SetupAPI logs the following message if it successfully negotiates with Windows File Protection to replace a protected system file.

@ 18:28:35.146 #E243 Exemption obtained for protected system file "…\Some_System_File_Name_And_Extension".

SetupAPI logs the following message if it changes the Driver Signing option that is applied to the installation from Ignore to Warn.

@ 18:28:35.200 #E245 The device installation digital signature failure policy has been elevated from Ignore to Warn due to a proposed replacement of a protected system file.

7 Appendix A: Setting the SetupAPI Logging Level

The amount of information that SetupAPI records in the SetupAPI log file depends on the logging level. You can choose the types of errors to log, the verbosity of the messages, and whether to log information to a debugger as well as to the log file. (You can also turn off logging altogether.) You can set the logging level for all device-installation programs or for individual ones.

To set the logging level for all device-installation programs

1. If the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup registry subkey does not contain a LogLevel entry, create one as a new REG_DWORD value.
2. Set the value of the LogLevel entry to the logging level that you want.
To set the logging level for an individual device-installation program

1. If the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup\AppLogLevels registry subkey does not exist, create it.

2. In the subkey, create a new entry as a REG_DWORD value, and name it with the file name of the application's executable program.

3. Set the value of the entry to the logging level that you want.

The logging level is composed of three parts: the general logging level, the device-installation logging level, and a set of special flags. You can think of the logging level as represented by 0xSSSSDDGG. The lowest 8 bits(GG) contain the general logging level, which controls the types of messages that are logged by the Windows Setup functions. The next higher 8 bits (DD) contain the device-installation logging level, which controls the types of messages that are logged by the device-installation functions. The highest 16 bits (SSSS) contain the special flags, which apply to logging by both the Windows Setup functions and the device-installation functions.

The following table describes the general logging levels.

	General logging level
	Meaning

	0x00000000 
	Set default logging (currently equivalent to the 0x00000020 logging level).

	0x00000001 
	Turn off logging by the Windows Setup functions.

	0x00000010 
	Log error messages.

	0x00000020 
	Log error and warning messages.

	0x00000030 
	Log error, warning, and information messages.

	0x00000040 
	Log error, warning, information, and verbose messages.

	0x00000050 
	Log error, warning, information, verbose, and timing messages.

	0x00000060
	Log error, warning, information, verbose, and timing messages. Include time stamps in all messages.

	0x00000070
	Log error, warning, information, verbose, and timing messages. Include time stamps in all messages. Include additional messages that can slow down the system, such as those for cache hits.

	0x000000FF 
	Set the most verbose logging. (Currently, log the same messages as the 0x00000070 logging level does.)


The following table describes the device-installation logging levels.

	Device-installation logging level
	Meaning

	0x00000000 
	Set default logging (currently equivalent to the 0x00003000 level).

	0x00000100 
	Turn off logging by the device-installation functions.

	0x00001000 
	Log error messages.

	0x00002000 
	Log error and warning messages.

	0x00003000 
	Log error, warning, and information messages.

	0x00003100 
	Log error, warning, and information messages. Include information about matching driver nodes.

	0x00004000 
	Log error, warning, information, and verbose messages. Include information about matching driver nodes.

	0x00004100 
	Log error, warning, information, and verbose messages. Include information about matching driver nodes and about co-installers.

	0x00005000 
	Log error, warning, information, verbose, and timing messages. Include information about matching driver nodes and about co-installers.

	0x00006000 
	Log error, warning, information, verbose, and timing messages. Include time stamps in all messages. Include information about matching driver nodes and about co-installers.

	0x00007000
	Log error, warning, information, verbose, and timing messages. Include time stamps in all messages. Include information about matching driver nodes and about co-installers. Include additional messages that can slow down the system, such as those for cache hits.

	0x0000FF00 
	Set the most verbose logging. (Currently, log the same messages as the 0x00007000 logging level does.)


The following table describes the special flags.

	Special flag
	Meaning

	0x08000000 
	Add a time stamp to all messages.

	0x10000000 
	Log context messages that are normally discarded if the operation does not succeed. Because these messages are normally logged only if the operation does succeed, the use of this flag can cause confusion.

	0x20000000 
	Do not flush the logging information to disk after writing each message. Setting this flag increases the logging speed but, if the system crashes, information can be lost. Due to the increase in speed, setting this flag is recommended for use with the verbose logging levels.

	0x40000000 
	Do not group messages by section before writing them to the log file. If this flag is set, SetupAPI writes all the messages in chronological order—regardless of the sections that they pertain to—and prefixes each message with its section header. By default, SetupAPI groups all the messages that pertain to a particular section, and then adds the messages in that group to the log file in chronological order. This flag is often confusing, but it can be useful for detecting synchronization problems among SetupAPI operations.

	0x80000000 
	Send all the messages to the debugger as well as to the log file.


The most commonly used logging levels are the following:

· 0x00000000—which specifies default logging with no special flags. This is the level that generated the default-logging examples in this paper.

· 0x00006060—which causes most messages to be logged. However, this level does not log all the INF files that are included in a search for matching INF files.

· 0x2000FFFF—which specifies that everything should be logged and that the log file should not be flushed to disk after each message is written. This level is recommended for verbose logging. Note that the 0x0000FFFF logging level was used to generate the verbose-logging examples in this paper.


Caution

Do not use 0xFFFFFFFF. This level turns on all logging, which results in an unreadable log file and some very slow installations.

For more information about the SetupAPI logging levels, see “Using SetupAPI Logging” in the Windows DDK documentation.

8 Appendix B: Message Formats

Here is the message format for default logging:

message_type_ID message_text
Here is the format for any message that contains a time stamp: 

time_stamp message_type_ID message_text
The following table defines the message fields. (Currently, the message_text field is translated into the appropriate human language.)

	Field
	Definition

	Message_type_ID
	A string that identifies the message type: context, error, warning, information, timing, or verbose

	Message_text
	A message-specific string

	time_stamp
	The local time, based on a 24-hour clock and formatted as follows:

@ hh:mm:ss.sss
where hh is the 2-digit hour, mm is the 2-digit minute, ss is the 2-digit number of seconds, and sss is the 3-digit number of milliseconds.


The following table lists the possibilities for the message_type_ID string. The nnn subfield is an integer that identifies the message subtype.

	Message type
	Message_type_ID

	Context
	#-nnn

	Error
	#Ennn

	Warning
	#Wnnn

	Information
	#Innn

	Verbose
	#Vnnn

	Timing
	#Tnnn


A consecutive sequence of one or more context messages establishes an operational context Any other messages that follow such a sequence record information about that operational context. However, if there are no error, warning, information, verbose, or timing messages to log for a particular operational context, SetupAPI will not log the context messages either.

The following table shows the correspondence between the device-installation logging levels and the types of messages that appear in the SetupAPI log file.

	Device-installation logging level
	Types of messages recorded
	Time stamps recorded?

	0x00001000
	Context and error
	No

	0x00002000
	Context, error, and warning
	No

	0x00003000
	Context, error, warning, and information
	No

	0x00004000
	Context, error, warning, information, and verbose
	No

	0x00005000
	Context, error, warning, information, verbose, and timing
	Only in timing messages

	0x00006000
	Context, error, warning, information, and verbose
	Yes

	0x00007000
	Context, error, warning, information, verbose, and timing
	Yes


Note that you can use the 0x08000000 special flag to add time stamps to all messages.

9 Appendix C: Section Markers

In an English-language log file, the section marker for the Windows installation header section looks like this:

[SetupAPI Log]

The format of the section marker for a device-setup class installation section, for some driver-installation sections, and for some device-removal sections looks like this:

[date time process-id.instance]

Here is an alternative format for the section marker of a driver-installation or device-removal section:

[date time process-id.instance suffix]

The following table defines the section-marker fields.

	Field
	Definition

	Date
	The date, formatted as yyyy/mm/dd, where yyyy is the 4-digit year, mm is the 2-digit month, and dd is the 2-digit day.

	Time
	The local time, based on a 24-hour clock and formatted as hh:mm:ss, where hh is the 2-digit hour, mm is the 2-digit minute, and ss is the 2-digit number of seconds.

	process-id
	The process identifier (PID) of the service.

	Instance
	An integer that uniquely identifies a driver-installation section. For example, two driver-installation sections that are created at the same time by the same process will have different Instance values.

	Suffix
	The string “Driver Install”. Note that some section markers include this suffix and some do not. The absence of a suffix is not significant.


10 Appendix D: Definition of Example Placeholders 

The examples in this paper contain placeholders that appear in italics. In a real SetupAPI log file, the placeholders would be replaced. The real text depends on the actual device, driver, or device-setup class, as described in the following table.

	Placeholder
	Definition

	Catalog_File_Name
	The file name of a catalog file for a driver package, excluding the .cat extension.

	CoInstaller_Exported_Function_Name
	The name of the entry point in a co-installer for a device.

	CoInstaller_File_Name
	The file name of a co-installer for a device, excluding the .dll extension.

	Compatible_ID
	One of the device’s compatible identifiers. The format is the same as that of a hardware identifier.

	Device_Description
	The device description, as specified by a device-description entry in a Models section of an INF file.

	Device_Instance_ID
	A device-instance identifier. The format is:

hardware-ID\instance-specific-ID

	Device_Setup_Class_GUID
	A device-setup class’s GUID, as specified by the ClassGuid entry in a Version section of an INF file.

	Driver_Description
	The driver description, as specified by a DisplayName entry in a service-install section of an INF file.

	File_Name
	The name of a file, excluding its path and file name extension.

	File_Name_And_Extension
	The name of a file, including its file name extension but excluding its path.

	File_Path
	The path of a file, excluding the final backslash and file name.

	Hardware_ID
	One of the device’s hardware identifiers. The most common format is:

enumerator\enumerator-specific-device-ID

	INF_File_Name
	The name of an INF file for a device, excluding the .inf extension.

	install-section-name
	The name of a device-driver installation section in an INF file. This placeholder can also have suffix decorations, such as .HW and .NT.HW.

	Manufacturer_Name
	The device manufacturer’s name, as specified by a manufacturer-identifier entry in a Manufacturer section of an INF file.

	Provider_Name
	The device provider’s name, as specified by a Provider entry in a Version section of an INF file.


A placeholder can also have a prefix and a suffix. A prefix consists of text that is followed by an underscore. For example, the Oven_ prefix can be used to form Oven_Manufacturer_Name, which represents the name of a manufacturer of an Oven device.

A suffix consists of an underscore followed by a number. Multiple instances of the placeholder that differ only by this number identify different strings of replacement text for the same device. For example, Oven_Device_Description_1 and Oven_Device_Description_2 define two different device descriptions for an Oven device.

Note

For more information about the placeholder definitions in the previous table, see “Summary of INF Sections,” “INF File Sections and Directives,” “Device Identification Strings,” and “The Catalog File” in the Windows DDK documentation.

11 Call to Action and Resources

Call to Action

For driver developers and testers: Use the SetupAPI log file to familiarize yourself with the kinds of information that SetupAPI records about device installation and to troubleshoot device installation.

For questions about troubleshooting device installation by examining the SetupAPI log file, send an e-mail message to pattye @ microsoft.com.

Resources

Designed for Windows XP Application Specification

http://www.microsoft.com/winlogo/software/windowsxp-sw.mspx 

Windows Hardware and Driver Central

http://www.microsoft.com/whdc/hwdev/default.mspx 

Windows Driver Development Kit (DDK)

http://www.microsoft.com/whdc/ddk/winddk.mspx 

Windows Logo Program System and Device Requirements

http://www.microsoft.com/whdc/winlogo/downloads.mspx
Windows XP Hardware Compatibility Test Kit

http://www.microsoft.com/whdc/hwtest/default.mspx
© 2003 Microsoft Corporation. All rights reserved. 

[image: image1.png]