6 - Simple Boot Flag Specification

Simple Boot Flag Specification
Version 2.1
Contents
21
Introduction

32
Overview

33
Detailed Specification

	Copyright © 2001-2005 Microsoft Corp. All Rights Reserved.

Your use of this specification is subject to the terms and conditions set forth in the Simple Boot Flag Version 2.1 Specification License. By referencing or otherwise using this specification you agree to the terms set forth in the Simple Boot Flag Version 2.1 Specification License, which can be found at http://www.microsoft.com/whdc/resources/respec/specs/simp_boot.mspx

Questions about this specification should be sent to onnow@microsoft.com

[image: image1.png]

1 Introduction

This specification provides a very simple boot flag register or variable that can be used by an operating system to communicate boot options to the system firmware and add-in card option ROMs. This allows firmware and operating systems to automatically optimize their behavior and boot performance based on the installed operating system and previous boots. Two uses of this mechanism are defined by this specification:
· Determining when to run diagnostic tests during boot
· Determining whether to configure hardware resources for devices.

Increasingly, end users are demanding that their computers behave more appliance-like and boot very quickly. Much of BIOS POST time is spent running diagnostic tests. However, modern hardware implementations fail only rarely, so it is not necessary to run these tests every time the machine boots. Ideally, these tests only run when a problem arises, and do not run the remainder of the time. This specification uses the boot flag register for BIOS or EFI firmware, to allow the platform firmware and operating system to detect when failures have occurred, and thus determine that diagnostic tests should be run on the next boot. System firmware and add-in card option ROMs alike can make use of this register or variable.

A second use for this register is to allow a Plug and Play capable operating system to communicate its presence to the system firmware. With the advent of Plug and Play, system firmware does not need to configure hardware resources (interrupts, memory windows, I/O port ranges, etc.) for all the devices in the system. In fact, doing so may cause a Plug and Play operating system to assume that those devices can only be configured at those specific resource assignments. If the system firmware knows that a Plug and Play operating system is installed, it only needs to configure devices required to boot the computer. This specification uses the boot flag register or variable to provide a general mechanism for the OS or its setup program to inform the firmware of its capabilities.

NOTE: The Plug and Play flag is primarily given to the firmware for informational purposes. This specification does not seek to completely solve all multi-boot scenarios. Many of those scenarios are inherently intractable — the information about which OS will be booted is needed before the BIOS starts booting the OS, yet that information cannot be determined until after the OS has been booted and the user makes a selection in the boot loader. This specification merely gives a better indication that a Plug and Play OS is installed than previously published schemes.

1.1 Related Documents

Advanced Configuration and Power Interface Specification, Revision 3.0, by Hewlett-Packard, Intel, Microsoft, Phoenix Technologies, and Toshiba. This specification is available on the web at http://www.acpi.info.

Extensible Firmware Interface Specification v1.02. This document is available on the web at http://developer.intel.com/technology/efi/index.htm.

2 Overview

The mechanism defined here is very simple. On PC-AT BIOS computer, a BOOT register is defined in main CMOS memory (typically accessed through I/O ports 70h/71h on Intel Architecture platforms). The location of the BOOT register in CMOS is indicated by a BOOT table found via the ACPI RSDT table.
On an EFI system, a SimpleBootFlag global variable is defined which is available both during boot and runtime.
In either the PC-AT BIOS or EFI case, the operating system writes to the BOOT register or SimpleBootFlag variable, as appropriate, to set options for subsequent boots. The system BIOS firmware and option ROM firmware read from the register or variable during POST to determine what actions to take.

3 Detailed Specification

3.1 BOOT Table

For PC-AT BIOS-based systems, the BOOT table provides the location of the BOOT register in CMOS. This table exists in ACPI reclaimable memory, and is located via the RSDT table using the “BOOT” signature. If this table is present on an EFI based system it is ignored by the EFI aware OS, EFI applications, EFI drivers and EFI Option ROMs and any other EFI executables other than any designed for legacy BIOS compatibility.

The structure of the BOOT table follows ACPI conventions
 and contains the following:

Table 3-1: BOOT Table Structure

	Field
	Byte Length
	Byte Offset
	Description

	Header
	
	
	

	 Signature
	4
	0
	‘BOOT’. Signature for the Boot Optimization Options Table.

	 Length
	4
	4
	Length, in bytes, of the entire BOOT Table

	 Revision
	1
	8
	1

	 Checksum
	1
	9
	Entire table must sum to zero.

	 OEMID
	6
	10
	OEM ID.

	 OEM Table ID
	8
	16
	For the BOOT Table, the table ID is the manufacture model ID.

	 OEM Revision
	4
	24
	OEM revision of BOOT table for supplied OEM Table ID.

	 Creator ID
	4
	28
	Vendor ID of utility that created the table.

	 Creator Revision
	4
	32
	Revision of utility that created the table.

	 CMOS_Index
	1
	36
	This value indicates at which offset in CMOS memory the BOOT register is located

	Reserved
	3
	37
	This value is zero

3.2 BOOT Register and SimpleBootFlag Variable
On a PC-AT BIOS-based system, the BOOT register exists in main CMOS memory (accessed by ports 70h/71h). On an EFI-based system, the SimpleBootFlag variable is stored in NVRAM as an 8-bit globally-defined variable with the standard VendorGuid for a globally-defined variable, per section 17.2 of the EFI 1.02 specification.
{8BE4DF61-93CA-11d2-AA0D-00E098032B8C}

Both the BOOT register and SimpleBootFlag variable provide a mechanism for the operating system to communicate back to the firmware about what actions need to be taken on the next boot. If an EFI firmware system maintains a legacy BIOS for backwards compatibility, it is responsible for maintaining congruency between the CMOS BOOT register and NVRAM variable. All EFI-aware operating systems and EFI executables, such as drivers, applications, or Option ROMs, must use the EFI SimpleBootFlag variable only.
The format of both the register and variable is defined in Table 3-2.
Table 3-2: BOOT Register and SimpleBootFlag Variable Structure
	Bit
	Name
	Description

	0
	PNPOS
	Indicates that a Plug-and-Play capable OS is installed on the system. The system firmware must check the state of this bit during its initialization. If this bit is not set, the system firmware must assume a legacy operating system and configure the resources of all devices it controls. If the bit is set, the system firmware must assume a Plug and Play operating system and only configure devices required for boot as per the PC98 specification.

	1
	BOOTING
	Indicates whether or not the previous boot was not completed. The system firmware must check the state of this flag at the beginning of POST. If this bit is set, the system firmware will set DIAG to 1 to inform it and other components to run a full diagnostic suite. If this bit is not set, DIAG will be cleared to inform components to skip all tests and to begin loading the boot sector as soon as possible.

This bit is set by the system firmware at the earliest possible moment of POST.

This bit is cleared by the OS after it has completed its boot procedure.

	2
	DIAG
	Indicates whether or not to run diagnostics. This bit is set based on the state of BOOTING at the beginning of POST, or by the operating system during the previous boot. If set at the beginning of POST, this bit must remain set to allow the operating system to request diagnostic boots. If set during POST, the system firmware, option ROMs, and operating systems should run diagnostic tests. If not set, these components must not run diagnostic tests and should boot the machine as quickly as possible.

	3
	SUPPRESSBOOTDISPLAY
	Indicates whether or not the OS loader should update the display after POST. This bit may be set by the system BIOS at the beginning of POST. Optionally, this bit may be set by the BIOS in the S4 shutdown handler, and in this case should remain set during system POST.

If set during POST, the OS loader may choose not to alter the display output provided by the BIOS until program control has been transferred to the operating system. If this bit is set, the system BIOS is responsible for setting the desired display image after POST, until the OS boot or hibernate resume process is completed by the OS loader, and handoff to the OS resume vector occurs.

Under some circumstances (e.g., error conditions), the OS may still need to provide status or error messages to the user, and so may opt to regain control of the display.

If this bit is clear during POST, the OS loader is responsible for updating the display during read of the hibernate image off of the disk. This bit is owned by the BIOS, and not reset by the OS.

	4-6
	Reserved
	Reserved. Must be 0.

	7
	PARITY
	A parity bit used to check used to verify the integrity of this register or variable. This bit should be set with ODD parity based on the contents of the rest of the register. If the system firmware detects that the PARITY bit is not set correctly, it must assume the register or variable is corrupted.

During POST, the platform firmware owns the boot register or SimpleBootFlag variable, and can read and write to them as described below. On a PC-AT BIOS system, once the firmware has handed execution to the OS boot sector, the BOOT register is owned by the operating system and can only be read or written to by the operating system.
On an EFI-based system, once ExitBootServices() has been called the SimpleBootFlag variable is owned by the operating system, and can only be read or written to by the operating system. If the SimpleBootFlag variable is changed by the operating system the firmware must update the BOOT register (if one exists) for legacy compatibility. The firmware must not alter this register or variable while the operating system owns it, with the exception of updating the CMOS BOOT register if necessary when an EFI-aware OS or executable writes to the SimpleBootFlag environment variable. It is not required to update the SimpleBootFlag environment variable if the CMOS BOOT register is updated.

3.3 SUPPRESSBOOTDISPLAY and Controlling The Boot Display User Experience

The SUPPRESSBOOTDISPLAY flag is used by the BIOS to indicate to the operating system a platform preference for ownership of the display after POST. This duration of the influence of this flag is limited to the period that the OS loader is running, prior to handoff to the OS for normal operation. Once the OS loader code gives control to the normal OS and terminates, the state of this flag no longer applies.

This flag allows the platform to retain control of the display as the OS loader boots the OS or resumes from the hibernate (S4) sleep state, and enables the presentation of a BIOS-provided display screen that will be uninterrupted by the OS loader, including display mode changes or screen blanking. This allows for a more seamless user experience, and enables the platform to provide differing user displays based on the wake or power on source of the system boot or resume instance.

This flag expresses a platform preference only, and is intended to apply for the normal, error-free boot or resume OS loader sequence. Should an error or other condition occur that the OS loader may need to display to a user, the OS loader may at any time regain control of the display, including any blanking or switching of display modes as required in order to present error or diagnostic information to the user.

The algorithm for both the operating system and BIOSes is as follows:

1. At the earliest possible point in POST, the system BIOS sets the SUPPRESSBOOTDISPLAY flag to 1.
2. Alternatively, the BIOS may choose to set the SUPPRESSBOOTDISPLAY flag in the BIOS S4 shutdown handler, to optionally present this flag as set to the OS loader only during an S4 resume.

3. The BIOS may set the display mode as appropriate, and paint the display with the graphics image of its choice retrieved from BIOS ROM.

4. The system BIOS loads and executes the OS boot sector.

5. At the earliest possible point in the OS loader code, the OS loader examines the state of the SUPPRESSBOOTDISPLAY flag. If SUPPRESSBOOTDISPLAY is set to 1, the OS loader may optionally elect to leave the system display unaltered, including display mode, blanking, or display of any OS loader user interface.

6. If an error occurs that must be surfaced to the user, the OS loader may assume control of the display from the BIOS, and use the display as required to present error or diagnostic messages. This includes any display mode switches or clearing.

� See sections 5.1-5.2 of the ACPI specification.

Page 2
Simple Boot Flag Specification
1/28/2005
Copyright © 2001-2005 Microsoft Corp. All Rights Reserved. Your use of this specification is subject to the terms and conditions set forth in the Simple Boot Flag Version 2.1 Specification License.

Copyright © 2001-2005 Microsoft Corp. All Rights Reserved. Your use of this specification is subject to the terms and conditions set forth in the Simple Boot Flag Version 2.1 Specification License, found at http://www.microsoft.com/whdc/resources/respec/specs/simp_boot.mspx.

