[image: image4.png]Windows Hardware and Driver Central

Locked Operations on PCI Express - 10

Locked Operations on PCI Express
Version .08 — July 28, 2004
Abstract

This paper provides information about locked operations on PCI Express. A locked operation is the mechanism used to execute a sequence of transactions atomically on a PCI Express Link. This paper also discusses the impact of using locked operations with PCI Express for the Microsoft® Windows® family of operating systems.

The information in this paper applies to the following operating systems:

Microsoft Windows codenamed “Longhorn”

Microsoft Windows Server™ 2003

Microsoft Windows XP

Microsoft Windows 2000

This paper provides device, driver, and system design recommendations to help device manufacturers, driver developers, firmware engineers, and system manufacturers understand the proper handling of locked operations and the impact locked operations have on device, driver, and system design.

For the purposes of this paper, the term “system” refers to the core chipset, the CPU, and the system’s firmware code which is also known as the basic input/output system (BIOS).

This paper assumes that the reader has a good understanding of PCI and PCI Express. All PCI specifications referenced in this paper are available on the PCI Special Interest Group (PCI-SIG) Web site at:
http://www.pcisig.com/home
For the purposes of this paper, PCI Local Bus Specification Revision 2.3 is referred to as “PCI Local Bus Specification,” and PCI Express Base Specification Revision 1.0a is referred to as “PCI Express Base Specification.”
Contents
2Overview

Effect of Locked Operations
2
Locking the System Bus
3
Locking the PCI Buses and PCI Express Links
3
Further Problems with Locked Operations
5
Locked Operations and PCI Express
5
Device, Driver, and System Design Recommendations
6
Device Design Recommendations
6
Device Driver Design Recommendations
6
System and Firmware Design Recommendations
7
Error Handling in Firmware
7
Advanced Error Reporting Capability in PCI Express
8
Resources and More Information
8
Call to Action
8
Feedback
8
References
8
Glossary
9

Disclaimer
This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows NT, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Overview

The PCI Local Bus Specification Revision 2.3 defines a synchronization mechanism that allows the CPU to perform locked operations on PCI device registers. However, using this mechanism can severely affect system performance, so the PCI Local Bus Specification strongly discourages its use. The mechanism for locked operations is maintained solely for compatibility with legacy devices.

The PCI Express Base Specification Revision 1.0a is even more restrictive with regard to locked operations. PCI Express restricts the use of some advanced features of PCI Express devices whose drivers use this mechanism.

For Microsoft Windows codenamed “Longhorn”, locked operations to PCI or PCI Express devices are strongly discouraged. This paper discusses the problems, such as performance impact, of locked operations and the design methods to detect and avoid locked operations.
Effect of Locked Operations

Locked operations on both PCI and PCI Express occur as a result of device drivers requesting atomic access to registers on a PCI device. A device driver, for example, can atomically read, modify, and then write to a device register. To accomplish this, the device driver causes the CPU to execute an instruction or set of instructions. The Root Complex converts these CPU instructions into a sequence of PCI or PCI Express transactions, which perform individual read and write requests for the device driver. If these transactions must be executed atomically, the Root Complex locks the PCI bus or the PCI Express Link while executing the transactions. This locking prevents transactions that are not part of the sequence from occurring. This sequence of transactions is called a locked operation.

The particular set of CPU instructions that can cause a locked operation to occur depends on the system chip set and CPU architecture. These CPU instructions include any instruction that atomically accesses an address in the memory address space. These instructions are typically used to atomically access system memory, but because most PCI device registers are mapped into the memory address space, any of these instructions can be used to target PCI device registers as well. For example, on the x86 platform, a locked operation could be the result of an xchg instruction, or an instruction that specifically uses the lock prefix, among others.
When a locked operation occurs, many hardware components are affected. This section describes how a locked operation affects the system bus, the PCI bus, the PCI Express Link, the CPU, and the devices.

Locking the System Bus

When the CPU executes an instruction that must be completed atomically, it locks the system bus that connects the CPU, the system memory, and the Root Complex. The mechanism used for locking this bus is system specific. The effect of locking the system bus is that the CPU cannot access system memory for the duration of the locked operation, as shown in Figure 1. This means that any subsequent instructions that target system memory will be delayed until the locked operation is completed.
Note that during a locked operation, only the target device can be accessed by the CPU. The bold line in the following figure indicates the data path that is available between the CPU and the target device.
[image: image1.png]cPy

System Bus

Root X_| System
Complex Memory
PCI Device 3

‘ PCI Devica 1

| PCIDavics 2

(Target Device)

Figure 1. Lock operation from CPU to device

Locking the PCI Buses and PCI Express Links

On the PCI bus, a locked operation is initiated when the Root Complex asserts the LOCK# signal on the PCI bus. If the device that is the target of the locked operation is on the secondary side of a PCI-to-PCI Bridge, this Bridge also asserts the LOCK# signal on its secondary bus. While a PCI bus is locked, only the Bridge initiating the lock can perform transactions. While the lock operation is active, the Bridge can issue multiple reads and writes to a target device. For example, during a locked operation, an atomic access can read a byte from a device register, change a single bit within that byte, and then write the modified byte back to the device register. Note that transactions targeting all other devices on the secondary side of that Bridge cannot occur, as shown in Figure 2. The bold line in the following figure indicates the data path that is available between the CPU and the target device during the locked operation.

[image: image2.png]cPy

System Bus

PCI Davica 1

Root X_| Sysem
Complex Memory
PCHo-PCI
Bridge
PO Device 2
PCI Device 3

‘ (Target Dvice)

PCI Device 4

Figure 2. Lock operation from CPU, through a PCI-to-PCI Bridge, to a device

On a PCI Express Link, a locked operation is initiated when the Root Complex executes a PCI Express read transaction that uses the “locked memory read” transaction type. This operation locks the PCI Express Link until a PCI Express message transaction is executed with the “unlock” message type. If the device that is the target of the locked operation is attached to a PCI Express switch, this switch locks the Link to the targeted device. While the lock operation is active, the Root Complex can atomically issue multiple reads and writes to the target device. Note that transactions targeting all other devices attached to this switch cannot occur, as shown in Figure 3. After the Root Complex issues an unlocked memory transaction, the switch unlocks the Link. The bold line in the following figure indicates the data path that is available between the CPU and the target device during the locked operation.

[image: image3.png]cPy

System Bus

Root X_| Sysem

Complex Memory

POl Express Pl Express
Device | Devico2

X

PCI Bxpross
‘ Device 3

(Target Device) Devies

‘ POl Expross

Figure 3. Lock operation from CPU, through a PCI Express Switch, to a device

Further Problems with Locked Operations

Locked operations can cause dramatic, system-wide performance problems because during the entire locked operation, only transactions that are part of the locked operation can be executed on the PCI bus or the PCI Express Link. This situation causes Direct Memory Access (DMA) to halt system-wide, which can cause data loss as device buffers overrun or underrun.

Even worse, the system bus connecting the CPU, system memory, and the Root Complex is also locked. As a result, software that has requested access to system memory, which would normally require only nanoseconds of CPU time, must wait for the locked operation to complete, which can take many milliseconds.

Locked Operations and PCI Express

Although locked operations work for legacy PCI Express Endpoints, device manufacturers should carefully consider whether to support them. It is also important to note that locked operations do not work on native PCI Express Endpoints.

PCI Express Endpoints whose usage models require locked operations must be marked as legacy PCI Express Endpoints, a designation that prevents these Endpoints from using some advanced features of PCI Express. Specifically, the PCI Express Base Specification allows the operating system to prevent device drivers for legacy Endpoints from accessing extended Configuration Space. The PCI Local Bus Specification compatibility region is only 256 bytes in size, and this region must include standard registers that fill over one-third of its space. Therefore, the legacy Endpoint restriction may severely limit the number of device-specific registers a legacy Endpoint can use, and the limited number of available device-specific registers may severely limit the features that a legacy Endpoint is able to include. As a result, the PCI Express Base Specification strongly discourages using legacy Endpoints that require locked operations.

A native PCI Express Endpoint will treat a transaction that is part of a locked operation as an error and complete it as an Unsupported Request. After one transaction has failed in this way, the locked operation as a whole is stopped. Because of this, subsequent PCI Express read and write transactions will not occur.

Device, Driver, and System Design Recommendations

This section provides device, driver, and system and firmware design recommendations to help device manufacturers, device driver developers, firmware engineers, and system manufacturers understand the proper handling of locked operations and what impact they have on device, driver, and system design.

Device Design Recommendations

Device manufacturers should design PCI Express Endpoints that follow the requirements for native PCI Express Endpoints and that handle locked operations as Unsupported Requests. Following these recommendations has two advantages: first, it enables the Endpoints to use the PCI Express extended Configuration Space; second, it improves the system performance issues mentioned earlier. The drawback of limiting which operations software can issue to PCI Express Endpoints can be overcome if driver developers create device drivers that use software locks to achieve atomicity, rather than relying on hardware locking.

PCI Express devices that are designed for use in high-end systems should include the Advanced Error Reporting Capability of PCI Express. This capability helps the error handling code in the system firmware or operating system to determine whether an Unsupported Request should be handled as a fatal error. This subject is described in more detail in the next section.

Device manufacturers that use Microsoft-supplied drivers, such as the Windows video graphics array (VGA) driver, should follow these same device design recommendations. Note that Microsoft testing on PCI Express systems has not shown any locked operation usage in Microsoft-supplied drivers for later operating systems such as Windows 2000, Windows XP, and Windows Server 2003.

Device Driver Design Recommendations

Any device driver that uses the Windows Device Register Access Routines to access its memory-mapped device registers will work properly with native PCI Express Endpoints. This is because the CPU instructions that these routines use do not result in locked operations to the device register in question. Device driver developers should ensure that their device drivers are using these routines when accessing device registers, rather than simply mapping the device register and then dereferencing the resulting virtual memory address. If the Windows Device Register Access Routines are not used, the instruction sequence produced by the driver code will be compiler specific, which can cause device drivers to issue locked operations inadvertently.

Some device usage models may exist that do not differentiate between system memory and memory-mapped device registers. Some device drivers may, for example, map the physical address of device registers and expose this virtual address to a user-mode application. Doing so allows the user-mode application to modify the memory location directly, as if it were system memory. In these cases, the rules for how an application uses the device driver interface must explicitly state that the physical address being targeted is for a device register and is not to be a RAM location. These rules must also specify that CPU instructions that atomically access this memory location are not supported and may not work properly.

System and Firmware Design Recommendations

By following the hardware design recommendations provided in “Device Design Recommendations” above, designers can ensure that a locked operation occurring on a PCI Express Link will result in a transaction that is completed as an Unsupported Request. This section provides information about how PCI Express typically handles Unsupported Requests on Windows operating systems, and it describes two techniques for improving the handling of Unsupported Requests.

A PCI Express Unsupported Request is the equivalent of the PCI master abort. Both mechanisms indicate that software attempted an operation that the target Endpoint could not handle. Many high-end systems today will signal a non-maskable interrupt (NMI) or a machine check exception event on PCI master aborts to memory locations. Windows handles both NMIs and machine check exception events as fatal errors, and the PC will halt if they occur.

Note:

It is expected that manufacturers of high-end systems will signal a PCI Express Unsupported Request in the same manner that they would handle a master abort, which allows the PC to halt.

Allowing a PC to halt due to an Unsupported Request is a security risk. Any user-mode application that is given a mapping to a set of device registers can issue a locked operation; therefore, any application that is run in this mode can cause an Unsupported Request to occur, as discussed in the “Device Driver Design Recommendations” section of this paper. If the system treats this condition as a fatal error, it allows applications running in the context of an unprivileged user to halt the PC.

As a result, system manufacturers must not signal a system error or a machine check event due to an Unsupported Request that occurs as a result of a locked operation. At the same time, it is expected that hardware manufacturers will not want to give up the ability to signal fatal errors on other kinds of Unsupported Requests. System manufacturers can use one of the following techniques to determine whether an Unsupported Request occurred during a locked operation and handle it accordingly.

Error Handling in Firmware

This technique describes how system manufacturers can design custom hardware that allows robust firmware error handling of Unsupported Requests. If a PCI Express device does not contain an Advanced Error Reporting Capability, the error handling code will be able to determine whether the Unsupported Request was a result of a locked operation only with the custom hardware described in this technique.

The chipset manufacturer can build hardware that tracks outstanding transactions and sets a chipset-specific register to indicate whether an Unsupported Request was the result of a locked operation. If the register indicates that the Unsupported Request was the result of a locked operation, this error should be signaled, but as a nonfatal error. Otherwise, the error should be signaled based on the system’s error handling policies, potentially as a non-maskable interrupt or a machine check exception event.

Error handling code on systems that do not have this special hardware must handle all Unsupported Requests as nonfatal to avoid allowing unprivileged applications to halt the system. As a result, system manufacturers that want to implement robust error reporting of Unsupported Requests should strongly encourage device manufacturers in the use of the Advanced Error Reporting Capability in PCI Express and should include devices that have this capability in their systems.
Advanced Error Reporting Capability in PCI Express

This technique describes how system manufacturers and firmware engineers can use the Advanced Error Reporting Capability of PCI Express to handle all Unsupported Requests as nonfatal to avoid allowing unprivileged applications to halt the system.

The system’s firmware error handling code should configure all devices in the system to report an error when an Unsupported Request occurs. Then, when a locked operation occurs, the Unsupported Request causes the target Endpoint to send a PCI Express error message to the Root Complex. This message should cause an event, such as an ACPI General Purpose Event (GPE) or System Management Interrupt (SMI), to occur. This event causes the firmware error handling code to run.

To handle this event, the error handling code should examine the Header Log register. This register is defined in the Advanced Error Reporting Capability in the Root Complex’s Root Port. The error handling code can use this register to identify the Endpoint that sent the error message. If the Endpoint contains an Advanced Error Reporting Capability, the error handling code can then access this capability structure to determine the specific cause of the Unsupported Request. If this register indicates that an Unsupported Request was returned because of a locked operation, the error handling code must treat this error as nonfatal. Otherwise, the error should be signaled based on the system’s error handling policies, potentially as a non-maskable interrupt or a machine check exception event.

Resources and More Information

Call to Action

· For system manufacturers: Include PCI Express devices that support the Advanced Error Reporting Capability of PCI Express in your system designs. Build chip-set hardware for tracking locked operations, so that Unsupported Requests that occur as a result of locked operations can be differentiated from other Unsupported Requests.

· For firmware engineers: Design error reporting code that does not signal a fatal error on an Unsupported Request that occurs as a result of a locked operation.

· For device manufacturers: Design native PCI Express Endpoints that follow the rules for handling locked operations. Design PCI Express devices that support the Advanced Error Reporting Capability of PCI Express.

· For driver developers: Implement drivers that use the Windows Device Register Access Routines to access device registers. If device usage models that expose memory-mapped device registers to user mode exist, provide appropriate documentation to explain that locked operations to these memory locations will not work properly.

Feedback

To provide feedback about this paper, please send e-mail to: pciesup@microsoft.com
References

Specifications
PCI Bus Power Management Interface Specification Revision 1.1
http://www.pcisig.com/specifications/conventional/

PCI Express Base Specification Revision 1.0a
http://www.pcisig.com/specifications/pciexpress/base/
PCI Local Bus Specification Revision 2.3
http://www.pcisig.com/specifications/conventional/
Windows Hardware and Driver Central - white papers and resources

http://www.microsoft.com/whdc/default.mspx
Windows Driver Development Kit

http://www.microsoft.com/whdc/ddk/default.mspx
Windows Logo Program for Hardware

http://www.microsoft.com/whdc/winlogo/default.mspx
WHQL Test Specifications, hardware compatibility tests, and testing notes

http://www.microsoft.com/whdc/hwtest/pages/specs.mspx

Glossary

The following terms are used in this paper.

Advanced Error Reporting Capability

A set of registers defined by the PCI Express Base Specification that may be implemented in PCI Express devices and Root Complexes. It enables PCI Express to have granular control over the signaling of errors.
Atomic access
Generically refers to an uninterruptible access operation to a memory location or device register. The atomic access operation may contain multiple, independent transactions that must be executed without interruption.
Capability

In PCI and PCI Express, a “capability” is a set of registers in Configuration Space that control a feature. See also Advanced Error Reporting Capability.
Device Register Access Routines

A set of routines in Windows provided to device drivers for the purpose of accessing device registers. (Examples of these routines include: READ_REGISTER_UCHAR, READ_REGISTER_USHORT, WRITE_REGISTER_UCHAR, and WRITE_REGISTER_USHORT_BUFFER.)

Extended Configuration Space

The portion of the 4-kilobyte (KB) Configuration Space of a PCI Express device that is outside the PCI 2.3 compatibility region.

Legacy PCI Express Endpoint

A PCI Express Endpoint that implements one or more of the features considered by the PCI Express Base Specification to be undesirable but allowed for backward compatibility. A legacy PCI Express Endpoint is restricted from using some of the advanced features of PCI Express.

Locked operation

One or more CPU instructions that must be executed atomically. These instructions result in the Root Complex creating a sequence of PCI or PCI Express transactions that are atomically executed on a PCI bus or the PCI Express Link, respectively.

Machine check exception

An exception that the CPU delivers to the operating system to indicate that a system error has occurred. The handler for these exceptions can read information from hardware memory locations to determine the cause of the exception.

Memory address space

The sum of all physical memory addresses available on a system. System memory and PCI device registers can be mapped into this memory address space.
Native PCI Express Endpoint
A PCI Express Endpoint that is not a legacy PCI Express Endpoint. See also Legacy PCI Express Endpoint.

Non-maskable interrupt (NMI)

An interrupt that the CPU delivers to the operating system, regardless of the CPU’s current priority level. This type of interrupt is usually signaled when system hardware detects a fatal error. The operating system generally handles these interrupts by halting the system.

PCI 2.3 compatibility region
The registers in the first 256 bytes of the Configuration Space of a PCI Express device. This region contains standard registers defined for both PCI and PCI Express devices, and it contains additional space for device-specific registers.

PCI Express Endpoint
A PCI Express device that is not a Root Port or a switch, and that does not provide fan-out to other PCI Express Links. See also Legacy PCI Express Endpoint, Native PCI Express Endpoint.

PCI master abort

The mechanism by which the initiator of a PCI transaction signals that the transaction has ended unsuccessfully.

Transaction

An individual request on PCI or PCI Express that targets a PCI or PCI Express device, such as a “memory read” or “memory write.”

Unsupported Request

The mechanism by which a PCI Express device indicates that a transaction cannot be handled. The PCI Express Base Specification defines the conditions under which a PCI Express device must complete a transaction as an Unsupported Request.

Virtual address

A memory address that allows software to access the underlying physical memory. The hardware and the operating system use system page tables to map a virtual address (representing a location in the memory address space) to a physical address.

Version .08 — July 28, 2004

[image: image4.png]