[image: image1.png]Windows Hardware and Driver Central

Device Installation FAQ - 18

Device Installation FAQ
October 29, 2004
Abstract

This article provides answers to frequently asked questions about Plug and Play and device installation on the Microsoft® Windows® family of operating systems.

This information applies for the following operating systems:

Microsoft Windows Code Name “Longhorn”

Microsoft Windows Server™ 2003

Microsoft Windows XP

Microsoft Windows 2000

The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/driver/install/default.mspx

Contents

3General Questions

4Inbox Drivers

4INF Files

7Configuration Manager and SetupDi Routines

8Coinstallers

10User Interaction

12System-File Protection

14Digital Signatures

15Server-side Installation

15Troubleshooting Installation

16Windows 9x

17Miscellaneous

Disclaimer
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

General Questions

What's the difference between Plug and Play and Universal Plug and Play?

Plug and Play (PnP) provides automatic configuration of PC hardware and devices in Windows 2000 and later versions of Windows. Plug and Play technologies are defined for 1394, PCI, PC Card/CardBus, USB, SCSI, ATA, ISA, LPT, and COM.

Universal Plug and Play (UPnP) technology is a distributed, open networking architecture that leverages TCP/IP and the Web to enable peer-to-peer network connectivity for PCs, intelligent appliances, and wireless devices.

More information

Windows DDK: Kernel-Mode Driver Architecture: Plug and Play
Plug and Play - Architecture and Driver Support
http://www.microsoft.com/whdc/system/pnppwr/pnp/default.mspx
Universal Plug and Play
http://www.microsoft.com/technet/prodtechnol/winxppro/evaluate/upnpxp.mspx
Can I use a Windows NT legacy driver as a software-only driver?

Except for file system filter drivers and minidrivers, which have their own rules, you should use WDM drivers even when there is no hardware.
Can I install a non-Plug and Play legacy driver using an INF file?

Yes you can, but this is not recommended because the Device Manager doesn’t allow the device to be stopped, started, or removed without rebooting the system. Rebooting during installation causes significant problems for system manufacturers who preinstall drivers and applications in a factory environment and for system administrators who perform script-based installations of software over corporate networks; it is also inconvenient for end-users who install the device. Installation of non-Plug and Play legacy drivers can also affect system reliability between reboots.

You must use Service Control Manager APIs (net start/net stop) to install non-Plug and Play drivers.

If there are two filters listed in the registry, which filter is loaded first?

Installed filter drivers are listed under HKEY_LOCAL_MACHINE\SYSTEM\ControlSetXxx\ in the Windows registry, in the UpperFilters and LowerFilters MULTI_SZ value of the Class and Device node keys. Generally, filter drivers are loaded in the order they are listed, but this behavior is not guaranteed in future versions of Windows. Driver writers should never make assumptions about filter load order or create any dependency about filters.

How do I preinstall a driver?

Copy files in the driver package to a directory on the target system, then call SetupCopyOEMInf.

More information

Windows DDK: Device Installation: Writing a Device Installation Application - Preinstalling Driver Files

Platform SDK: Setup API: SetupCopyOEMInf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/setupapi/setup/setupcopyoeminf.asp
How do I disable or enable a device driver from an application?

For Plug and Play device drivers, issue a DIF_PROPERTYCHANGE request to enable or disable the individual devices that are using a driver, not the driver itself. A Plug and Play driver is automatically unloaded when no started devices require it.

See the DevCon sample in the Windows DDK for an example of how to enable and disable devices programmatically.

More information

Windows DDK: Device Installation: DIF_PROPERTYCHANGE
Windows DDK sample: %winddk%\src\setup\devcon\
Inbox Drivers

What is an inbox driver?

“Inbox” simply means that Microsoft ships the driver on the Windows distribution media. For this reason, the Layout.inf file contains entries for the inbox drivers. The INF files for inbox drivers are also slightly modified.
How do I install an inbox file from my third-party INF?

Use Include and Needs directives and refer to CopyINF sections contained in the inbox INF.
How do I update an inbox driver?

Construct a self-contained driver package and submit it to WHQL. You can update only device-specific driver files in this way. You cannot update "infrastructure" driver files such as an export driver that acts like a DLL, providing services to multiple drivers, like a port or class driver.

INF Files

How do I write an INF that replaces an existing file only if the file already exists on the system?

Use the COPYFLG_REPLACEONLY flag in an INF CopyFiles directive to specify that a file be copied only if it is replacing an existing file at the destination location.

More information

Windows DDK: Device Installation: INF CopyFiles Directive

How do I persist existing registry settings from an INF?

Use the FLG_ADDREG_NOCLOBBER flag in an INF AddReg directive to prevent a given value from replacing the value of an existing value entry.

Note that FLG_ADDREG_NOCLOBBER does create the registry key.

More information

Windows DDK: Device Installation: INF AddReg Directive

How do I distinguish between Windows XP and Windows 2000 when an INF is called through an Includes or Need section?

Use TargetOSVersion decorations in the INF [Manufacturer] section.

More information

Windows DDK: Device Installation: Creating INF Files for Multiple Platforms and Operating Systems

Can I have a decorated Strings section for a multi-platform INF file?

No. Platform information in the strings is not recommended. However, it is possible to have decorated INF [Manufacturer] sections with different descriptions for the same install section.
More information

Windows DDK: Device Installation: Creating INF Files for Multiple Platforms and Operating Systems

Is there an easy way to find all the OEM*.INF files that match a device?

If the user installs an updated version of a driver before uninstalling the older version, there can be more than one OEM*.INF for the device. To find all of these files, it is necessary to open each INF to see if it matches the hardware IDs.

For Windows 2000, it is also necessary to enumerate all devices to see if any devices are still using the INF before uninstalling it and any driver files. On Windows XP and later, this is handled by the Setup API function SetupUninstallOEMInf.

More information

KB 813449: HOWTO: Remove .inf Files from the System
http://support.microsoft.com/default.aspx?scid=kb;en-us;813449
Why are drivers and INF files installed in different directories?
It is beneficial to install drivers and INF files in different directories for several reasons:

· The operating system can track where the INF came from (that is, preserve source path information), and hence prompt for files at the right location later.

· The operating system generates a unique name (such as oem<n>.inf), to prevent namespace collisions in which one INF overwrites another that happens to have the same name.

Why can't I copy an INF file directly to %systemroot$\inf?
The operating system must install the associated CAT file so that subsequent installations using that INF will be validated as signed. This is one reason a driver package isn't considered signed when it is installed from an illegally copied INF—its CAT file was never installed.

More information

Windows DDK: Device Installation: Writing a Device Installation Application - Preinstalling Driver Files

The DDK states that the use of NTx86 in the [Manufacturers] section is specific to Windows XP. However, for OS decorated sections, it states that NTx86 is for NT4 and later versions of Windows. Why?

The ability to add decorations in the entries in the [Manufacturers] section (for example, "XYZ Corp." = XYZMfg, NTx86) was added in Windows XP, so it is available in XP and later. The goal of this feature to supersede the install section name decoration mechanism.

The ability to add decorations to the install section (for example, "[install-section-name.ntx86]") has been available since NT4.0

More information

Windows DDK: Device Installation: INF Manufacturer Section
Should I list compatible IDs in a particular order in the INF?

Yes, list them in the order you prefer them to be used. Assuming that all IDs listed in the INF match hardware IDs or compatible IDs of the hardware, the operating system will match the first compatible ID before the next compatible ID in the list.

More information

Windows DDK: Device Installation: How Setup Selects Drivers

Why do some vendors use four-part Plug and Play IDs and other vendors use IDs that have fewer parts or are nonstandard in some other way?

It depends whether they want to match a specific piece of hardware on a given system, or if they want a more generic match. This really depends on what the driver was written for.

More information

Windows DDK: Device Installation: Device Identification Strings

How do I find the OS-renamed INF ("OEMnnn.inf") for my original INF?

If you have the original INF (for example, in C:\OEMDIR\MyDevice.INF), then you can do the following:

TCHAR InstalledInfFullPath[MAX_PATH];

DWORD InstalledInfFullPathSize;

PTSTR InstalledInfFileName;

SetupCopyOEMInf("C:\OEMDIR\MyDevice.INF",

 NULL,

 SPOST_PATH,

 SP_COPY_REPLACEONLY,

 InstalledInfFullPath,

 MAX_PATH,

 &InstalledInfFullPathSize,

 &InstalledInfFileName

);

If this API succeeds, then InstalledInfFullPath will contain the full path to the INF as installed in %windir%\Inf\.

More information

Platform SDK: Setup API: SetupCopyOEMInf
What is a PNF file?

A PNF file contains some additional information about the INF file, such as the supported languages and the source path for the INF.

Configuration Manager and SetupDi Routines

How do I find the Plug and Play status of my device?

In a class installer, co-installer, or installation application, use CM_Get_DevNode_Status to get the status of a device instance from its device node in the local machine's device tree. CM_Get_DevNode_Status reports device status such as failed installation of driver, failed after initialization, or disabled by the user.

More information

Windows DDK: Device Installation: CM_Get_DevNode_Status
Windows DDK sample: %winddk%\src\setup\devcon\
Can I call SetupDiChangeState from an application to change the state of a device?

You should never call SetupDiChangeState directly unless you're the class installer, and you are doing so in your default handler during processing of DIF_PROPERTYCHANGE. Anyone else wishing to effect a state change should use SetupDiCallClassInstaller for the DIF_PROPERTYCHANGE request.
Can I call SetupDiXxx functions from within a service?

You must be very careful when calling SetupDiXxx functions from a service. Many SetupDiXxx functions that affect the state of a device cause device events to be sent to any services that have registered for them, and the SetupDiXxx function does not return until all such events have been delivered. If your service calls any SetupDiXxx functions within its service control handler that require synchronous notification events to be delivered to itself or any other services in the same process, or if any other system components have sent synchronous service controls in the meantime, no service in your process will be able to respond, which causes the system to appear unresponsive. If your service must use any SetupDiXxx functions that might change the state of a device, you must perform these actions on a separate thread that does not block the service's control handler thread.
Can I call SetupDiXxx function from within a window message handler?

You must be very careful when calling SetupDiXxx functions from a window message handler. Many SetupDiXxx functions that affect the state of a device will cause device events to be sent to any windows that have registered for them, and the SetupDiXxx function does not return until all such events have been delivered. If your application calls any SetupDiXxx functions within its message handler that require synchronous notification events to be delivered to itself or any other windows controlled by the message handler thread, it can cause lengthy delays in the system, and cause the application to appear unresponsive. If your application must use any SetupDiXxx functions that might change the state of a device, you must perform these actions on a separate thread that does not block the window's message handler thread.

Given an interface class, how do I get the devnode ID of all devices that registered the interface?

If you are looking for a particular device interface class, use the Setup API to get from a device interface to the device instance that it is registered against:

· SetupDiGetClassDevs (using DIGCF_DEVICEINTERFACE) gets a set of all interfaces registered for a specific device interface class GUID.

· SetupDiEnumDeviceInterfaces enumerates all interfaces in the set.

· For each interface in the set, SetupDiGetDeviceInterfaceDetail gets the corresponding SP_DEVINFO_DATA for the device.

· SetupDiGetDeviceInstanceId gets the device instance path.

How do I enumerate all the devices in the system and build a tree-like device manager?
To build the tree, use the PnP Configuration Manager functions CM_Get_Child_Ex, CM_Get_Sibling_Ex, and CM_Get_Parent_Ex.

The DevCon sample in the Windows DDK shows how to get from HDEVINFO+SP_DEVINFO_DATA to a “HMACHINE/PDEVINST” pair.

After using CM_Get_Child_Ex or CM_Get_Sibling_Ex, you can convert the PDEVINST into a SP_DEVINFO_DATA structure by using CM_Get_Device_ID_Ex and SetupDiOpenDeviceInfo. (Look for SetupDiOpenDeviceInfo and SetupDiGetDeviceInfoListDetail in the DevCon sample.)

More information

Windows DDK: Device Installation: PnP Configuration Manager Functions
Windows DDK sample: %winddk%\src\setup\devcon\
What is a root-enumerated driver and how do I install one programmatically?

A root-enumerated driver is a driver for a child of the system root device.

To install a root-enumerated driver programmatically:

1.
Call SetupDiCreateDeviceInfoList to create an HDEVINFO handle.

2.
Call SetupDiCreateDeviceInfo with the ClassGuid of the devnode you want to create to create a SP_DEVINFO_DATA.

3.
Call SetupDiSetDeviceRegistryProperty with SPDRP_HARDWAREID on the HDEVINFO and SP_DEVINFO_DATA to give your device a hardware ID.

4.
Call SetupDiCallClassInstaller with DIF_REGISTERDEVICE to register your device.

5.
Call UpdateDriverForPlugAndPlayDevices with the INF containing the driver for the device and the hardware ID used in step 3 to install drivers on the devnode.

Coinstallers

Which versions of Windows support co-installers?

Windows 2000 and later versions of Windows support co-installers.

The Windows 9x family of operating systems (Windows 95, Windows 98, and Windows Me) use SetupXxx, which uses 16-bit class installers and has no notion of co-installers.

WinNT 4.0 uses 32-bit class installers but does not use co-installers.

Does a class installer or co-installer run when you uninstall a device driver using the Device Manager?

Yes, it does. The co-installer is called to act on DIF_REMOVE and DIF_DESTROYPRIVATEDATA requests.

More information

Windows DDK: Device Installation: DIF_REMOVE

Will updating a loaded co-installer cause the system to prompt for reboot?

Yes, unless you give the new version a different file name.

When updating a class installer, class co-installer, or service DLL, you should give the new version a different file name. This is necessary because the old DLL is loaded and involved in the device removal process during the update. As a result, Plug and Play is unable to copy the new DLL file over the old one and must prompt for a reboot. By using a new name for the DLL you can avoid the reboot.

Can I root-enumerate a driver from the co-installer of another driver?

You can create a root device through a co-installer. However, you should seriously consider using a bus driver that exposes children instead (for example, using the system-supplied multifunction driver mf.sys), because then the system manages the child devices.

The only safe root device is one that doesn't consume resources and that can work with the absence of the primary device. If you create a root device, you are responsible for the following:

· Ensuring correct behavior when the primary device is removed. For example, the root device must not access this device directly. A child device of a bus driver would not be started, so this issue wouldn't arise.

· The root device cannot access resources of the primary device. A child device can access primary device resources.

· The root device must implement its own power management, hot unplug, rebalance, and other functionality. A bus driver can handle these operations on behalf of its child devices.

More information

Windows DDK: Multifunction Devices: Supporting Multifunction Devices
How can I find the path of the original installation media from my co-installer?

Plug and Play stores the source path information for third-party INF files, but it is not directly accessible. However, there is an INF DIRID that corresponds to this path, so it is possible to retrieve the value of that DIRID from the INF in order to ascertain the media root directory.

Take a look at the GetMediaRootDirectory routine in the following sample in the Windows DDK:

%winddk%\Src\General\Toaster\Toastpkg\Toastco\Toastco.c

It illustrates how to get this information. The INF must have a custom section with the following entry:

OriginalInfSourcePath = %1%

[ToastCoInfo]

; This is used by the toaster co-installer to determine

; where the original media is located

; (so that it can start value-added setup programs)

OriginalInfSourcePath = %1%

More information

Windows DDK: Using Dirids

KB 829645: BUG: The INF Dirid String Substitution Sometimes Does Not Work for DIRID_SRCPATH
http://support.microsoft.com/default.aspx?scid=kb;%5BLN%5D;829645
User Interaction

How do I display the Device Properties dialog box from an application?

Use the DeviceProperties_RunDLL function.

More information

KB 815320: HOW TO: Invoke the Device Properties Dialog Box from the Application or from a Command Prompt
http://support.microsoft.com/default.aspx?scid=kb;en-us;815320
How can I find out whether a class installer is allowed to display UI?

It is never valid to display UI during the following core device install DIF codes:

DIF_SELECTBESTCOMPATDRV
DIF_ALLOWINSTALL
DIF_INSTALLDEVICEFILES
DIF_INSTALLDEVICE
DIF_REGISTER_COINSTALLERS
DIF_INSTALLINTERFACES
DIF_NEWDEVICEWIZARD_FINISHINSTALL.
If you need to show UI, then show it in a finish install wizard page.

How can I suppress the "New Hardware Found" dialog box during silent installation of a device?

The Windows DDK topic "Writing a Device Installation Application" provides guidelines for handling hardware-first and software-first installations of a device.

If the user inserts the hardware first and then inserts your distribution media, follow the guidelines for "System-supplied in-box drivers do not support the device." If your media has an Autorun-invoked application, it should first detect whether a device installation is in progress, as described in "Checking for In-Progress Installations" and shown in the code example in that section. This technique is for applications intended for Windows 2000 and later (not Windows 9x).

If a device installation is in progress, the user most likely inserted your media to find the drivers for that device. In this case, you should suppress any Autorun UI so that your UI does not obscure the Found New Hardware wizard, which would be confusing to the user. Just allow the Found New Hardware wizard to find the drivers on your media and install the device. Your software should not cancel the dialog box; instead, it should allow it to be a part of the process.

To install device-specific applications during the Found New Hardware installation process, follow the guidelines for the hardware-first scenario in Installing Device-Specific Applications. Specifically, your driver package can include a device-specific co-installer that responds to the Found New Hardware wizard DIF_NEWDEVICEWIZARD_FINISHINSTALL install code to launch your application setup program.

If no device installation is in progress, your software Autorun can invoke the device-specific application setup program itself.

The function for detecting whether a device installation is in progress does not exist for Windows 9x. You will have to special-case those systems and do the best you can with your UI.

Can I suppress the "Found New Hardware" wizard when installing a new instance of a driver package with unsigned drivers in Windows XP?

This wizard appears when installing any unsigned driver package on Windows XP, but it appears on Windows 2000 only if the device class is eligible for WHQL testing. This difference in behavior is due to a change in the ranking policy of unsigned drivers between Windows 2000 and Windows XP. It is not possible to change this behavior.

If a driver package for any device class is unsigned, the system aborts the server side installation. When the user logs in, the system retries the installation in the context of the logged-in user.

At that point on Windows XP, if the setup class of the INF is eligible for WHQL testing, the system displays the "Found New hardware" wizard. If the user continues, the system displays a digital signature warning. If the setup class is not eligible for WHQL testing, the system displays only the "Found New Hardware" wizard and does not display a digital signature warning.

On Windows 2000, if the setup class is not eligible for WHQL testing and the driver package is preinstalled on the system, the system will silently install the device without displaying the wizard or digital signature warning. Otherwise, if the setup class is eligible for WHQL testing or the driver package is not preinstalled on the system, the system will display the wizard and the digital signature warning.

Can I launch an executable program from a device installation?

During a client-side (interactive) installation, the user can interact with a finish-install page and select optional value-added software components. It is possible for the code behind the finish-install page (typically, a device-specific co-installer) to launch one or more setup programs in XP for that value-added software, but this is not recommended because you should never show UI outside of finish install pages for the device install DIF codes.

See the ToastPkg sample in the Windows DDK for the recommended way to install value-added software for a device during installation.

More information

Windows DDK: Device Installation: Writing a Device Installation Application
Windows DDK Sample: %winddk%\src\general\toaster\toastpkg
How do I hide a device in Device Manager?

For devices enumerated through ACPI, a device may be dynamically shown or hidden in Device Manager. This determination is made by the system designer and implemented in the ACPI BIOS through the ACPI _STA (Status) method. _STA is evaluated by the operating system at various times to determine which devices are present, enabled, decoding resources, and functioning properly. _STA also allows the platform to indicate to the operating system if a device should be shown or hidden in the operating system UI. For details about _STA and ACPI, see the ACPI specification.
A kernel-mode device driver in the driver stack for the device can set or modify whether a device is shown. If your device installs under a custom device setup class that you have created, you can set the NoDisplayClass value when you install that class to indicate that no devices in that class should be displayed in Device Manager, by default. (The user can override this by checking the Show Hidden Devices option.)

Otherwise, you could write a device-specific filter driver to modify these values using one of the following techniques:

· Set the NoDisplayInUI bit in the DEVICE_CAPABILITIES structure in response to an IRP_MN_QUERY_CAPABILITIES request for the device.

· Add the PNP_DEVICE_DONT_DISPLAY_IN_UI flag to the PNP_DEVICE_STATE bit mask in response to an IRP_MN_QUERY_PNP_DEVICE_STATE request.

More information

Advanced Configuration and Power Interface Specification
http://www.acpi.info/spec.htm
Windows DDK: Device Installation:
INF ClassInstall32 Section (NoDisplayClass)
DEVICE_CAPABILITIES (NoDisplayInUI, PNP_DEVICE_DONT_DISPLAY_IN_UI)
PNP_DEVICE_STATE (PNP_DEVICE_DONT_DISPLAY_IN_UI)
How do I find out whether my driver is being disabled or removed from Device Manager so I can notify users to take certain actions?

Register for Plug and Play notifications in your user-mode application. See the Notify sample in the Windows DDK for an example of how to do this.

More information

Windows DDK sample: %winddk%\src\general\toaster\exe\notify\

System-File Protection

What's the difference between Windows File Protection and System File Protection (WFP and SFP)?

WFP and SFP perform the same service, but differ slightly in the way they monitor protected files, which files are protected, and what mechanisms can be used to replace protected files.

WFP is the system-file protection feature on Windows 2000, Windows XP, and later versions of Windows.

SFP is the system-file protection feature on Windows Millennium Edition (Windows Me).

More information

Windows File Protection and Windows
http://www.microsoft.com/whdc/winlogo/drvsign/wfp.mspx
How does device installation interact with WFP?

Microsoft ships drivers that are part of the RTM CD. These binaries are stored on the user's machine in the system32\dllcache directory or in the Driver Cache/{arch}\driver.cab file.

All inbox driver files, which are identified by virtue of being copied through a device INF, are contained in driver.cab in the Driver Cache/{arch} location. The dllcache is used by WFP as a cache for system files (driver files or other kinds of files) that may be drawn from if it is necessary to restore a protected file, for example, because it's been tampered with or replaced with an unsigned version.

When the system detects a change to a watched file, WFP grabs a saved copy of the file and puts the saved version back to overwrite the change. WFP may draw from the dllcache location, the driver cache location, or as a last resort from the source media location where the operating system was originally installed.

Does WFP protect signed third-party driver files like it does inbox files?

When a signed third-party driver from an outside vendor is installed, replacing an inbox driver, WFP verifies the digital signature of the new file. If the file is signed, WFP leaves it on the disk. If those files are removed or tampered with, the WFP facility can replace the files, but only with the saved version (that is, the original files, not the ones that were installed later).
How do I disable WFP to replace an inbox driver for debugging purposes?

You can disable WFP by setting the value SFCDisable (REG_DWORD) in the following registry key:

HKEY_LOCAL_MACHINE\ SOFTWARE\ Microsoft\ Windows NT\ CurrentVersion\ Winlogon

By default, SFCDisable is set to 0, which means WFP is active. Setting SFCDisable to 1 will disable WFP. Setting SFCDisable to 2 will disable WFP for the next system restart only (without a prompt to re-enable it).

You must have a kernel debugger such as I386kd.exe or Windbg.exe attached to the system via a null modem cable to use SFCDisable = 1 or SFCDisable = 2.

After WFP is disabled using the SFCDisable = 1 setting, the following message will appear after logon:

Warning! Windows File Protection is not active on this system. Would you like to enable Windows File Protection now? This will enable Windows File Protection until the next system restart. <Yes> <No>.

You must be logged in as an administrator to see this message.

Click Yes to reactivate WFP until the next system restart. This message will appear at every successful logon until SFCDisable is set to 0.

Is there an easy way for end users to disable WFP on their systems?

No, the kernel debugger must be enabled in order to disable WFP. Try to find out why drivers are not being updated, and address that problem rather than disabling WFP.

Digital Signatures

How does Plug and Play use digital signatures?

Plug and Play uses digital signatures to authenticate drivers before it installs them. If WHQL has a test program for a device setup class, it digitally signs the driver package when it passes WHQL testing. Plug and Play checks the digital signature when it uses the driver's INF file to install the driver.

For Windows Server 2003, Plug and Play can use a vendor-supplied Authenticode signature for device setup classes for which WHQL does not have a test program. Like a digital signature from WHQL, an Authenticode signature ensures that a driver package came from its publisher, and it protects the package from alteration after publication. However, an Authenticode digital signature only implies authenticity, it does not imply that the driver package passed Microsoft-defined test criteria.

More information

Windows DDK: Device Installation: How Setup Uses Digital Signatures

Are there any plans to backport Authenticode driver signing to Windows XP?

No, Microsoft has no plans to backport Authenticode driver signing to Windows XP.

Do I need to delete the catalog file when I'm uninstalling my driver?

No, you should not delete the catalog (CAT) file, just delete the INF and PNF files. The CAT file will be replaced on a future device install.

How do I block installation of an unsigned driver?

An administrator can set the Driver Signing policy setting in the Hardware tab of the System Control Panel to Block, which will prevent users from installing any unsigned drivers. (This can also be done through Group Policy.) Also, users must have administrative rights in order to install new or updated drivers on a system unless all of the following conditions are met:

· The driver installation requires no user interface.

· The driver package, including all files required for installation, is either already installed on the user’s system or it is in the Windows driver cache. The driver package includes the INF file, the catalog file, the driver itself, any co-installers and class installers, and all other related files.

· The driver package has a digital signature.

· No errors are returned from the first pass of installation.

How do I block installation of a signed driver?
If the driver’s INF file is already on the user’s system, you can prevent the driver from being installed by doing one of the following:

· Delete the INF file from %windir%\inf\

· Add a comment to the INF file, which will cause it to appear to be unsigned
· Set permissions on the INF and PNF file to Deny for SYSTEM, which prevents the server side install process running in the system context from reading the appropriate file
Is there any way to install an unsigned INF during server-side installation?

No. Microsoft is actively investigating this capability for a future version of Windows.

Server-side Installation

How does installation behavior differ when it is launched remotely from a terminal service client?

When you're connected remotely, installation will fail if a driver is unsigned, even if you are logged in as an administrator. You must use the Device Manager to install unsigned drivers for a device. In Device Manager, right-click the device and select Update Driver.

The Found New Hardware wizard also doesn't appear in some scenarios:

· Windows 2000. The Found New Hardware wizard is automatically displayed on the physical console session only.

· Windows XP with fast-user switching enabled. This is the default for Windows XP Home Edition and Windows XP Pro when not joined to a domain. The Found New Hardware wizard is automatically displayed for any session currently attached to the physical console, upon logon or reattach of a previously disconnected session to the physical console.

· Windows XP Pro with fast user-switching disabled. (The system joined to a domain or fast user switching is manually disabled through User Accounts in the Control Panel.) The Found New Hardware wizard is automatically displayed both locally and remotely.

· Windows .NET Server. The Found New Hardware wizard is automatically displayed only for the session that is attached to the physical console, but it is also displayed automatically when this session is attached remotely using the /console switch available in the version of the Terminal Services client that ships with Windows XP. (Connecting remotely to session 0 is not available on Windows 2000.)
Troubleshooting Installation

Where can I find the SetupAPI.log file?

SetupAPI.log is a plain text log file in the system root: %windir%\setupAPI.log

More information

Windows DDK: Device Installation: Using SetupAPI Logging
How do I enable verbose logging for SetupAPI.log?

Setting the logging mode to Verbose can help with troubleshooting the Setup process.

To set Verbose logging level, create or modify the following registry value to 0x000000FF:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Setup\LogLevel

More information

Windows DDK: Device Installation: Setting SetupAPI Logging Levels

Does the error ERROR_APP_WRONG_OS mean that a catalog file or INF file is corrupt?

No, this error indicates that the catalog file is signed for the wrong version of the operating system. This can happen if the device class requires a Windows XP or Windows .NET Server signature or a Windows .NET Server-only signature and you are trying to install with a Windows 2000-only catalog file.
What is Certclas.inf?
Certclas.inf is an INF file that lists the device classes that must be digitally signed, and which operating system signatures are valid for those classes. If this file is missing or unsigned, the system raises the driver signing policy to Warn for all classes.
Is it possible to tell from SetupAPI.log which failed server-side installation attempt matches which rundll newdev, ClientSideInstall client side installation attempt?
No, SetupAPI.log reports these as independent events, each attempting to install the same device. You will have to interpret them based on the device ID in the log file.
Windows 9x

More information

Windows DDK: Device Installation: Creating INF Files for Multiple Platforms and Operating Systems

What should I do about signing errors in SetupAPI.log for installation on Windows Me?

Ignore them. For the most part, installation on Windows Me occurs through SetupXxx functions that do not write to SetupAPI.log. This can cause a scenario in which the Windows Me SetupAPI.log seems to indicate that a driver is unsigned, even when Sigverif.exe does not list it as unsigned. If the device is a SWENUM device, it cannot be checked in Device Manager.
How do I prevent the Add Hardware Wizard from offering the Windows 9x INF on my distribution media when the user performs a hardware-first installation on Windows XP?

If you distribute a Windows 9x-only INF and a Windows XP or later INF in the same folder in your driver package, the Add Hardware wizard presents both the Windows XP and Windows 9x options to the customer. The Windows XP or later INF shows up as signed, but the signed Windows 9x INF shows up as unsigned. It is not possible to determine programmatically whether an INF is a Windows 9x INF.

My driver must support both Windows 9x and Windows NT. How do I mimic the NT security reference monitor routines (SeXxx) so I can load the driver?

Write a lower filter driver or VxD that defines the kernel routines omitted by Windows 9x. The lower filter driver is the better technique because it avoids the reboot required by the VxD.

These techniques are described by Walter Oney in Appendix A of Programming the Microsoft® Windows® Driver Model, second edition.

More information

Oney, Walter, Programming the Microsoft® Windows® Driver Model, 2nd ed., 2003, MS-Press, ISBN 0-7356-1803-8

What is the Microsoft recommended solution for Windows 9x/Windows 2000/Windows XP-compatible work items?
It is not possible to use a single binary solution if you are using work items. You can install different binaries depending on target platform, and work off a single source.
See the MultiOS.inf sample in the Windows DDK for an example of how to install different binaries on each target platform.
More information

Device Installation: Windows DDK: Creating INF Files for Multiple Platforms and Operating Systems
Windows DDK sample: %winddk%\src\setup\infs\MultiOS
Miscellaneous

Do I have to follow the same rules for Run registry keys as for RunOnce registry keys?

The Run and RunOnce registry entries cause programs to be run automatically. RunOnce entries behave as follows:

· A RunOnce entry causes a program to run immediately after a device is installed.

· For a client-side installation, all RunOnce entries are executed. No Run, RunEx, or RunOnceEx entries are executed.

· For a server-side installation, Setup looks for RunOnce entries in the INF in the format described on the DDK. The DLLs specified are run in the system context with no UI. Any RunOnce entries that do not follow this format are deferred to a client-side installation and are run in administrator context with UI. This is the primary reason for special requirements on RunOnce entries.

· Run, RunEx, or RunOnceEx entries are executed only in the context of a logged-on user, and are not executed immediately after device is installed.

At this time there are no requirements for Run entries (this can be verified by running ChkInf over the INF). However, consider the following before deciding to use Run entries:

· A RunOnce entry is executed immediately after the driver is installed; Run entries are not executed until the user logs on.

· A Service entry can immediately provide functionality for multiple logged-on users, whereas Run entries provide service to them only when the user next logs on, and also run one instance for each user.

More information

KB 281820: INFO: Specifying RunOnce in Device INF Files
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q281820
KB 137367: Definition of the RunOnce Keys in the Registry
http://support.microsoft.com/default.aspx?scid=kb;EN-US;137367
KB 314866: A Definition of the Run Keys in the Windows XP Registry
http://support.microsoft.com/default.aspx?scid=kb;EN-US;314866
Is there a way to skip adding a display device during GUI mode setup and force VGA?
Press Shift+F10 to open a command window (or switch to Safe Mode) and then try renaming the INF and PNF files in the %windir%\inf directory that corresponds to this driver.

What causes this error: Timed out sending notification of target device change to window of ''"?

This error is a symptom of a badly behaved or hung application. Some application registered one of its windows for device event notification, but then did not respond when the system sent the event the application for which it registered. The system times out after waiting 30 seconds. The event usually logs the title for the window; if the window has no title, it attempts to find the name of the process EXE that owns the window. If neither the window title nor the process EXE can be found, the error shows an empty string.

October 29, 2004

[image: image1.png]