[image: image4.png]4% Windows

I/O Request Flow in WDF Kernel-Mode Drivers - 32

I/O Request Flow in WDF Kernel‑Mode Drivers
Peter G. Viscarola, Open Systems Resources, Inc.
Microsoft DDK Most Valuable Professional

July 2005
Abstract

This paper describes how I/O requests are processed within the Microsoft® Windows® operating system and the Windows Driver Foundation (WDF) kernel-mode driver framework (KMDF), including the overall path of an I/O request from the initial request by an application through completion of the request by a driver and how a typical KMDF driver processes an I/O request in various driver routines.

This information applies for the following operating systems:

Microsoft Windows Vista™

Microsoft Windows Server™ 2003

Microsoft Windows XP
Future versions of this preview information will be provided in the Windows Driver Kit for Windows Vista.
The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/driver/wdf/IOreq_flow.mspx
Contents

3Introduction

4Part 1: The Flow of an I/O Request Through the System

4Application I/O Requests

7I/O Request Path from Application to Driver

12KMDF Driver Processing of I/O Requests

15I/O Completion Path from Driver to Application.

20Part 2: Flow of an I/O Request Within a KMDF Driver

21Framework Receives a Request and Inserts It on a WDFQUEUE

24Framework Invokes the Driver's I/O Event Processing Callback

28Driver's I/O Event Processing Callback Executes

39Driver's I/O Completion Routine Executes

40Driver's Interrupt Event Callback Executes

42Driver's DpcForIsr Callback Executes

45Summary

45Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows NT, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

Every Windows driver must handle I/O requests, even if all the driver does is forward them to another driver. This paper describes how I/O requests are processed within the Microsoft® Windows® operating system and the Windows Driver Foundation (WDF) kernel-mode driver framework (KMDF). In this paper, KMDF driver refers to a kernel-mode WDF driver. Framework refers to the kernel-mode driver framework itself.
I/O flow is a complex topic, so this paper is organized into two parts:

· Part 1 describes the overall path of an I/O request from the initial request by an application through completion of the request by a driver, focusing on the general activities performed by each component that handles the request.
· Part 2 describes in detail how a typical KMDF driver processes an I/O request, focusing on the path of the request through different routines in the driver according to the options and configurations the driver chooses.

This paper does not assume that you are an experienced driver developer who is familiar with the Windows Driver Model (WDM). However, you should be familiar with the following topics:
· Fundamentals of operating systems architecture in general and the Windows operating system architecture in particular.
· Device driver concepts that are common to any operating system, such as how devices are controlled, and what interrupts are and how they are used.

· Basic knowledge of Windows I/O subsystem concepts, including IRPs, IRQLs, and DPCs.

· Basic familiarity with KMDF concepts, including WDFREQUESTs, WDFQUEUEs, and event processing callbacks.

For information about these topics, see Resources at the end of this paper.

Note: Experienced Windows driver developers are probably already familiar with much of the information discussed in Part 1 of this paper. Even so, we recommend that all driver developers read Part 1, because it introduces and describes numerous KMDF concepts.

Part 1: The Flow of an I/O Request Through the System

This section describes the overall path an I/O request takes from the point when it is issued by an application program through the point that the request is completed by a driver.

For the purposes of this paper, we’ll assume that all I/O requests discussed originate from a user mode application, because this is typically the case for most devices. However, it’s important to realize that requests can also originate in kernel mode for some device stacks (such as the storage stack), and that the flow of such requests and the I/O Manager's processing of them differ from the flow and processing of requests from user mode described in this paper.
Application I/O Requests

To be sure that we don’t miss any details, we’ll start with definitions of the various types of I/O requests commonly issued by user-mode applications, and describe how the system handles them both synchronously and asynchronously.
Common I/O Requests Issued by Applications

The most common I/O requests issued by user-mode applications are create, close, read, write, and device control. This section provides a brief summary of each request type.
Create Requests

A create I/O operation is a request to open a file, directory, or device and to instantiate a file object that uniquely represents the new open instance. When a create operation is successful, the system returns a handle to the newly created file object to the caller. Like all handles, this file object handle is specific to the process (not the thread) that created it. The application must provide the file handle in all subsequent I/O requests from the application, to identify the target of the requested operation.
An application typically requests a create operation by calling the Windows CreateFile function.

Close Requests
A close operation returns a file handle to the operating system when an application no longer needs to use it. More specifically, the close operation dereferences the handle count of its associated file object.
An application typically requests a close operations by calling the Windows Close function.

Read and Write Requests
Read and write operations are requests to retrieve data from, or provide data to, a device through a particular open instance of that device. In read and write operations, the application describes the data buffer for the request by specifying a pointer to that buffer and the buffer’s length in bytes. Because some devices can satisfy a read or write request by transferring fewer bytes than the application’s data buffer specifies, the system returns to the application the count of bytes that were transferred as a result of a successful read or write operation.
An application typically requests a read operation by calling the Windows ReadFile function and a write operation by calling the WriteFile function.

Device Control Requests
Drivers for certain devices might allow applications to perform operations on their devices in addition to simply reading from them and writing to them. For example, a driver for a CD-ROM device might allow an application to open or close the drive door. Similarly, a driver for a machine tool might provide an application with a method for controlling the tool’s speed or mode of operation. These types of requests are referred to as device I/O control requests (sometimes called “device controls,” “I/O controls,” or even simply “IOCTLs”). The specific device control operation requested by an application is identified by the control code that is supplied by the caller when it issues the device control request.
Windows defines a set of standard control codes for devices that are commonly found on Windows systems. For example, Windows defines standard control codes for controlling CD and DVD devices, including opening and closing their drive doors. Drivers can also define custom control codes that can be used for control operations on non-standard devices or to control non-standard aspects of a standard device’s behavior. For example:

· The machine tool driver mentioned previously is an example of a driver for a non-standard device that would define custom control codes to allow an application to control of various aspects of its device’s behavior.
· A keyboard driver that provides custom control codes to control a unique set of lights or indicators on a keyboard is an example of a driver for a standard type of device that would use custom control codes.
Device control requests are a bit unusual in terms of Windows I/O functions because, in addition to the control code previously mentioned, the application can specify both an input and an output buffer for each request. Each of these buffers is specified by providing a pointer to the buffer and its length in bytes. Although device control requests always have parameters for both input and output buffers, not every device control request requires both buffers to be specified. In fact, some device control codes (such the standard control code used to close the door on a CD or DVD device) do not require any buffers to be specified at all. A final detail worth mentioning is that in some circumstances, the output buffer provided on a device control request can also be used for input.
Device I/O control requests are typically issued by applications using the Windows DeviceControl function.

Synchronous and Asynchronous Application Requests

Read, write, and device control requests can be issued either synchronously or asynchronously by an application. This choice is typically made as part of the CreateFile call, based on whether a pointer to an OVERLAPPED structure is supplied. (See the documentation for the Windows CreateFile function call for additional details about the specifying and using the OVERLAPPED structure.)

Briefly, here's the difference between synchronous and asynchronous application requests:

· When an application issues a synchronous I/O request, control does not return to the thread from the I/O request call until all processing for that I/O request is complete. Therefore, when an application issues a synchronous read request by calling the ReadFile function, that call does not return until the read operation has been completed and any data returned from the call has been placed in the buffer indicated by the application. Synchronous requests are the default for Windows I/O operations, and are by far the most commonly used.

· When an application issues an asynchronous I/O request, it is indicating that control can be returned immediately to the requesting thread, without waiting for the results of the I/O operation. For example, when an application issues an asynchronous read request by calling the ReadFile function, that call can return immediately. Because the read request was not necessarily completed on return from the ReadFile call, at some later time the application must check whether the request was completed successfully and, if so, determine how many bytes of data the read request actually returned.

Are Asynchronous Requests Always Completed Asynchronously?

It’s important to realize that when an application requests asynchronous processing for a particular I/O operation, it is indicating to the I/O Manager that it does not require that the I/O request be completed before control is returned to the requesting thread. However, whether any given I/O request is actually processed asynchronously or not depends on many factors that are outside of the application’s control. Thus, even though an application requests asynchronous processing for a particular open instance of a device, any given I/O request sent on that open instance might be completed either asynchronously or synchronously.
This makes sense if you consider that an I/O operation can fail for a variety of reasons, and many of those failures can likely be detected before returning from the call to the I/O request function. In this case, the I/O Manager can complete the request synchronously with an error status.
Less obviously, successful I/O requests can sometimes be completed synchronously, even if the application has requested asynchronous processing. Consider an application that is reading from an ordinary disk-based data file. Although the application might issue read requests for small chunks of data, the Windows I/O Manager, working with the Cache Manager, issues larger reads from the actual file and caches the large blocks of data it receives in memory. As a result, an application's read request, using a file handle that has been opened for asynchronous processing, might be completed synchronously because the Cache Manager has the data available to satisfy the application’s request as soon as the read is received, and without having to access the disk.

Are Synchronous Requests Always Completed Synchronously?

Unlike asynchronous requests, when an application requests synchronous I/O request processing, control is always returned to the calling thread after completion of the I/O request. That is, an application will never request synchronous I/O request processing and instead receive asynchronous processing from the system.

I/O Request Path from Application to Driver

We next turn our attention to the path that an I/O request takes after it has been issued by the application. Figure 1 shows the path of an I/O request from an application to a driver.
[image: image1.emf]USBHUB

System Service

Dispatcher

I/O Manager

Kernel Mode

User Mode

1

Application

status = ReadFile(handle,...)

USBPORT

PCI

UsbDev.sys

(KMDF driver)

KMDF Library

(Wdfdynam.sys)

3

5 4

2

1

6

I/O Request Path

Figure 1. I/O Request Path from Application to Driver

The numbers in Figure 1 refer to the following major steps in this path:

1.
When an application issues an I/O request, Windows issues a system service call to the system service dispatcher.

2.
The system service dispatcher calls the corresponding I/O processing function of the Windows I/O Manager.
3.
The I/O Manager builds an I/O request packet (IRP) that describes the I/O request issued by the application and sends it to the framework (the KMDF library, Wdfdynam.sys). The framework sorts incoming requests by major function code and, in the case of a read, write, or device control request, sends it to the framework's I/O package for processing.
The I/O package validates the request parameters and processes the request according to its type and the driver's configuration of its WDFQUEUE(s).
4.
If the KMDF driver is a filter driver and has configured its WDFQUEUE(s) to forward requests of this type to the next-lower driver on the underlying driver stack, the framework forwards the request to the next-lower driver. Otherwise, it forwards the request to the KMDF driver.
5.
If the KMDF driver receives the request, it processes the request and, if necessary, forwards it to the next-lower driver on the underlying stack.
6.
That driver processes the request and, in turn, forwards the request to the next-lower driver and so on down the driver stack, as needed to satisfy the request.
The following sections discuss each of these steps in detail.

I/O Request Path from Application to the Framework
This section describes the path taken by an I/O request from a user-mode application to the framework.
Windows Issues a System Service Call for an Application I/O Request
Windows functions used to issue I/O requests are implemented using system service calls. When an application calls a Windows function to issue an I/O request, Windows issues a system service call that causes a carefully controlled transition from user mode into kernel mode, where control is assumed by the system service dispatcher. Step 1 in Figure 1 shows the path of this operation.

The System Service Dispatcher Calls the I/O Manager

The system service dispatcher calls the appropriate processing function for each system service request that it receives. In this case, the system service request is an I/O request, so the system service dispatcher calls the appropriate I/O processing function that is part of the Windows I/O Manager. Step 2 in Figure 1 shows the path of this operation.
The I/O Manager Builds an IRP and Sends It to the Framework
Next, using the parameters supplied by the application in its system service call, the I/O Manager builds an I/O Request Packet (IRP) that completely describes the I/O request issued by the application.

Validating request parameters. In the process of building the IRP, the I/O Manager validates the parameters that were passed from the user application. Although the checks performed vary according to the type of I/O request, the I/O Manager:

· Always checks to ensure that the handle used is valid.

· Always checks that the user has appropriate access to the device (that is, the user has read access if a read request is being issued, or write access for a write request).
· If the request uses buffers, checks to ensure that the user-supplied data buffer pointers and data buffer lengths are valid.
If the I/O Manager finds any invalid parameters, it completes the system service call and returns an error status, which the system service dispatcher returns to the application.

Building the IRP. An IRP has both a fixed-size part and a variable-sized part:
· The fixed-sized part of the IRP contains information about the I/O request that is unlikely to change based on the driver processing the request.
· The variable-size part of the IRP is referred to as the I/O stack and comprises a specific number of I/O stack locations.
Because Windows uses a layered driver architecture, more than one driver might collaborate to process a single I/O request completely. Therefore, when the I/O Manager allocates an IRP, it provides an I/O stack that is large enough to make one I/O stack location available to each driver that is likely to handle the request.
Each I/O stack location contains storage for I/O request parameters that are likely to change from driver to driver as the request is processed. For example, the I/O stack location for a write request contains the offset in bytes at which to start the write request on the device, and the length in bytes of the data buffer that the user supplied for the write operation. Although you might not expect these parameters to change among the drivers that process this request, it is possible for them to change. Consider a filter driver that implements data encryption. The process of encrypting the data might change the size of the data. In this case, the filter driver would reflect this change in the size parameter when it initializes the I/O stack location for the next driver to process the request.

When building an IRP to describe a given I/O request, the I/O Manager:

· Allocates an IRP of the appropriate size (that is, one with enough I/O stack locations for all drivers in the driver stack).
· Initializes the fixed-size part of the IRP.
· Initializes the first I/O stack location in the I/O stack. This first I/O stack location contains the request parameters that will be used by the first driver to receive the I/O request. Starting with the first driver, each driver in the stack is responsible for initializing the I/O stack location for the next-lower driver before forwarding the IRP to that driver.
Among the information placed in the IRP by the I/O Manager are the following items:

· The IRP major function code. This code identifies the type of I/O operation requested. For example, IRP_MJ_READ is the function code for read requests.

· A description of the user’s data buffer. The I/O Manager can describe the data buffer(s) that accompany an I/O request in a number of different ways. For read and write requests, the particular method chosen by the I/O Manager is dictated by the first driver that will be called to process the request. For device control requests, the buffer description method is encoded as part of the control code that describes the device control operation.

Sending the IRP to the framework. Assuming all the parameters on the application’s request are valid and the IRP is successfully constructed, the I/O Manager passes the IRP to the driver for the target device by calling the kernel-mode function IoCallDriver.
If the driver is a KMDF driver, the framework (the KMDF library Wdfdynam.sys in Figure 1, earlier in this paper) intercepts the request. Step 3 in Figure 1 shows this path.
I/O Request Path from Framework to Driver

The framework is a kernel-mode DLL that can be shared among multiple KMDF drivers. The framework handles a considerable amount of processing on behalf of KMDF drivers.

When a new I/O request for a driver arrives at the framework, it processes the request through its request pipeline. Figure 2 shows a schematic view of the KMDF request processing pipeline.

[image: image2.emf]Driver

Callbacks

IRP_MJ_PNP

IRP_MJ_POWER

IRP_MJ_SYSTEM_CONTROL

 (KMDF only)

I/O Requests

(IRP_MJ_READ

IRP_MJ_WRITE

IRP_MJ_DEVICE_CONTROL)

IRP_MJ_Xxx

Driver

Callbacks

Driver

Callbacks

Dispatcher

I/O Package

Plug and

Play/Power

Package

WMI

Package

I/O Target

Non-power-

managed I/O

Queues

...

Power-managed

I/O Queues

Figure 2. The KMDF Request Processing Pipeline

The Framework Routes the Request to the Appropriate Package
The arriving IRP is first sorted by the framework according to its major function code. IRP_MJ_SYSTEM_CONTROL requests are sent to the framework’s WMI package. IRPs with major function codes IRP_MJ_PNP and IRP_MJ_POWER are sent to the framework's Plug and Play/power package. IRPs with other major function codes (including IRP_MJ_READ, IRP_MJ_WRITE, and IRP_MJ_DEVICE_CONTROL) are sent to the framework’s I/O package.

Each framework package processes the requests it receives according to its particular rules. For example, the Plug and Play/power package utilizes its internal state machine and driver-implemented event processing callbacks to manage the Plug and Play and power management process for the driver. This might involve internally processing and completing an arriving request or forwarding that request on to other drivers in the system for additional processing and ultimate completion.

The I/O Package Checks the I/O Request Type
When the framework's I/O package receives a new request, it first checks to see if the I/O request type is one that is both handled by the driver and supported by the framework. Typically, the framework supports only the following I/O request types:

· Create (IRP_MJ_CREATE)
· Cleanup (IRP_MJ_CLEANUP)

· Close (IRP_MJ_CLOSE)
· Read (IRP_MJ_READ)
· Write (IRP_MJ_WRITE)
· Device control (IRP_MJ_DEVICE_CONTROL)
· Internal device control (IRP_MJ_INTERNAL_DEVICE_CONTROL)
If the arriving I/O request is not supported by the framework or the driver, the framework completes the IRP that describes the arriving request with STATUS_INVALID_DEVICE_REQUEST. This returns the IRP to the I/O Manager, which in turn returns the indicated failure status to the requesting application. See "I/O Completion Path from Driver to Application" later in this paper for details about completion processing.

The I/O Package Further Validates Request Parameters
If the arriving I/O request is supported by the framework or the driver, the I/O package next performs a series of type-specific checks on the request’s parameters. These can include checks for unusual (yet architecturally valid) buffer descriptions or otherwise invalid buffer descriptions, and are performed in addition to the validations already performed by the I/O Manager. Examples of type-specific validation performed by the I/O package include:

· Read and write requests. The framework's I/O package checks if the data buffer described by the application is zero bytes in length. Although a zero-length buffer is considered valid by the I/O Manager, very few drivers need to handle such requests. Therefore, when the framework's I/O package encounters a zero-length buffer for a read or a write operation, by default it completes the request with success, indicating zero bytes actually transferred.
· Device control requests. The framework's I/O package checks the input and output buffers for device control requests that utilize METHOD_NEITHER. For historical reasons, the I/O Manager does not validate these buffers for drivers. However, KMDF drivers take advantage of the I/O package’s automatic validation of these buffers. As is the case with other validation checks performed by the I/O package, if either the device control input or output buffer is found to be invalid, the I/O package completes the associated request with an appropriate error code and indicates zero bytes of data actually transferred.
The Framework Processes the Request
If the arriving request passes the I/O package’s validation checks, the framework processes the request according to its request type and the driver’s configuration of its WDFQUEUE(s) and performs one of the following actions:
· Handles the request on behalf of the driver.

For example, open and close requests are typically handled by the framework on behalf of the driver (although they can optionally be processed directly by the driver if needed).
Whenever an open request arrives for one of the devices under the driver’s control, the framework increments a count of the number of open instances of the device. If the device is accessible and there are no existing open instances of the device, the framework automatically completes the open request with success. If the device is accessible and there are existing open instances of the device, but the driver has configured the device to allow multiple concurrent open instances, the framework completes the open request with success. Otherwise, the framework completes the open request with an error status.
Like open requests, close requests are typically handled automatically by the framework and completed with success as soon as they arrive.

· Forwards the requests to the driver for the next-lower device in the device stack.
Next, if the device object targeted by the arriving request is a filter device object, the framework checks whether the driver has requested that all I/O requests matching the type of the arriving request be forwarded to the driver for the next underlying device in the device stack. Step 4 in Figure 1 earlier in this paper shows this path.

The driver specifies this behavior through the configuration of its WDFQUEUE(s). For example, a filter driver that needs to process only device control requests could configure its WDFQUEUE(s) to cause the framework to automatically forward requests of other types down the stack.

· Creates a WDFREQUEST object that represents the arriving request and passes it to the KMDF driver.

Finally, assuming the request has not been handled or forwarded, the I/O package creates a new WDFREQUEST object to describe the arriving request. The WDFREQUEST is a framework object that is used to describe and control the processing of an I/O request within the framework. The WDFREQUEST represents the data in the IRP to KMDF drivers. Therefore, WDFREQUESTs have the many of the same attributes as IRPs, including I/O stacks and I/O stack locations.

After creating a new WDFREQUEST, the I/O package places the WDFREQUEST on one of the driver’s WDFQUEUEs, according to a driver-specified configuration. Placing the WDFREQUEST on a particular queue might optionally involve calling one of the driver's event processing callbacks.
KMDF Driver Processing of I/O Requests
Whenever it receives a WDFREQUEST, a KMDF driver processes the request as completely as possible. If the request can be processed and completed immediately, the driver will do so. If the request cannot be completed immediately, the driver returns status to the framework with the WDFREQUEST remaining in progress.

A KMDF driver might be able to process a request to its completion internally, without sending the request to any other drivers in the system for processing. On the other hand, a driver might perform little or no internal processing and send the request to another driver for processing. Whether a driver processes a request to completion internally or passes the request to another driver in the system for additional processing depends on the request type as well as the driver’s design and capabilities.

This section describes how a driver processes an arriving WDFREQUEST, concentrating on the basic steps and flow of control. For a detailed discussion of the steps a KMDF driver takes internally to process an arriving WDFREQUEST, see Part 2 of this paper.

Processing a Request Internally

The work required to satisfy a WDFREQUEST might involve processing that takes place entirely within the driver that receives the request. For example:

· For a device control request that returns statistics about the device, the driver can probably just write the statistics information into the user’s data buffer and complete the WDFREQUEST.

· For a read request sent to a PCI-based thermometer device, the driver might immediately read the current temperature from a port on the thermometer device, write the temperature value into the user’s data buffer, and complete the request.

A driver completes a WDFREQUEST by calling a function such as WdfRequestCompleteWithInformation and indicating the status of the request and the number of bytes of data actually transferred.
Processing a Request by Sending It to Another Driver

The work required to satisfy a WDFREQUEST might involve sending the request to another driver in the system or it might require creating and sending one or more new requests to other drivers in the system. A KMDF driver can send a request to another driver written using any method—that is, the receiving driver need not be a KMDF driver.
Processing before sending the request. The sending driver might perform partial processing of the request before sending it to another driver, or it might send the request without first performing any processing. For example:
· Filter drivers typically forward the requests they receive to the driver for the device that they are filtering. The filter driver might forward the request without altering the request or its associated data at all, or it might first perform significant processing to satisfy the overall request. An example might be a disk filter driver that implements encryption, which would encrypt the contents of the data buffer for each write request it receives before passing that request to the underlying disk driver.

· Drivers for USB devices often need to send requests to another driver for processing. Consider a driver for a USB thermometer device. When it receives a read request from an application, the driver formats an appropriate USB request based on the received WDFREQUEST and sends both the received request and the formatted USB request information to the underlying USBHUB driver by calling a function such as WdfRequestSend. Step 5 in Figure 1 earlier in this paper shows this path.
Initializing the next I/O stack location in the request. Whenever a driver sends a request that it received to another driver in the system, the sending driver is responsible for initializing the next I/O stack location in the request. This is the I/O stack location that will be used by the next driver to receives the request.
· If a KMDF driver does not need to modify any of the parameters of the request before forwarding it, the driver simply calls WdfRequestCopyCurrentStackLocationToNext.
· If a KMDF driver must specify new values for various parameters in the I/O stack location that is set up for the next driver, it calls WdfIoTargetFormatRequestForXxxx where Xxxx is the type of request to be forwarded (Read, Write, Ioctl, or InternalIoctl).
In either case, after the I/O stack location for the target driver has been initialized, the driver typically calls WdfRequestSend to forward the request to the target driver.

Creating and sending new requests. A KMDF driver might put the request it receives aside, build and send one or more requests, and then use the results of those requests to satisfy the received request. In this case, the received request does not leave the KMDF driver. Instead, the driver creates one or more new WDFREQUESTs that it sends to other drivers via the framework. The framework supports this operation by building IRPs with the parameters and information contained in the newly created WDFREQUESTS, and forwarding these IRPs to the target driver.
Sending requests synchronously or asynchronously. In all of these cases, the sending driver can choose to send the request synchronously or asynchronously through the parameters chosen when the driver calls WdfRequestSend.
· When a request is sent asynchronously, control returns from the receiving driver to the sending driver as soon as the request is either completed or marked pending.
· When a request is sent synchronously, control does not return to the sending driver until the request is complete. It is important to realize that in processing the request, the receiving driver may in turn forward the request to yet another driver in the system. Step 6 in Figure 1 earlier in this paper, in which the USBHUB driver sends a request on to the USBPORT driver for further processing, shows this path.

Establishing an I/O completion routine callback. If a driver chooses to send a request to another driver asynchronously, the sending driver can establish a callback that will be invoked when the WDFREQUEST that it sends is complete. A driver establishes an I/O completion routine callback for a WDFREQUEST using the WdfRequestSetCompletionRoutine function.
A driver’s I/O completion routine callback is invoked when the WDFREQUEST is complete for all drivers that have processed the request after the current driver. This also means that completion routines for those drivers, if any, have already been called and have returned before the current driver’s I/O completion callback is invoked.

Establishing an I/O completion callback can be particularly useful in cases such as these:

· Driver A sends a request asynchronously to Driver B, but Driver A must perform some tracking or additional processing on the request before the request can ultimately be completed back to the user.
· A disk filter driver that implements encryption receives a read request for previously encrypted data and must decrypt the data before returning it to the user's data buffer.
Before sending the request to the driver for the underlying disk device, the encryption filter establishes an I/O completion callback for the request. After the read request has been completed by the drivers that are logically below the encryption filter (including the disk driver) and the requested data has been read from disk, the encryption filter's I/O completion callback is invoked. Within its completion callback, the encryption driver decrypts the data and then finally completes the request. As a result, the data returned to the user’s data buffer is properly decrypted.

Requests Marked Pending During Processing

As a request is processed, it might be marked pending (“pended”) and placed on a queue for later processing. When a request is pended, a status of pending is returned to the application.
· If the application has requested asynchronous processing for this I/O request, control is returned to the calling thread.
· If the application has requested synchronous processing, the I/O Manager places the thread in a wait state until the request is ultimately completed.

A request might be pended for many reasons. For example:

· The framework’s I/O package places a request on a WDFQUEUE that has been configured for serial dispatching, and a request is already in progress from that queue. In this case, the I/O package pends the incoming request because the WDFQUEUE’s dispatch type specified by the driver does not allow the request to be passed immediately to the driver’s event processing callback.

· A KMDF driver receives a WDFEQUEST in one of its I/O event processing callbacks and, as part of processing the request, programs its device to perform an operation. In this example, the device cannot complete the requested operation immediately and will signal the operation’s completion by generating an interrupt that will be received by the driver. In this case, the driver returns from its event processing callback without having completed the WDFREQUEST with which it was called. As a result, the framework may pend the request.

Except under very special circumstances, a well-written KMDF driver does not make assumptions about whether a request it receives has previously been pended, either by the framework or by another driver that processed the request before it was received by the current driver. This has several important consequences for KMDF drivers:

· If a request has previously been pended, the current driver cannot assume that it is running in the context of the requesting process. Therefore, except for those events that are specifically described as being called in the context of the requesting process, drivers must assume that they are running in an unspecified ("arbitrary") process context.

· Because a KMDF driver typically does not know the process and thread context in which it is running, it should not block while its device processes an I/O operation in an attempt to force synchronous completion of a request.
I/O Completion Path from Driver to Application.
I/O completion processing can be one of the trickiest topics in Windows. This paper limits discussion of I/O completion processing to the general flow of how I/O requests are completed, and the steps required to return data and status to the application program that issued the request.
Figure 3 shows the I/O completion path from driver to application.
[image: image3.emf]USBHUB

System Service

Dispatcher

I/O Manager

Kernel Mode

User Mode

Application

status = ReadFile(handle,...)

USBPORT

PCI

UsbDev.sys

(KMDF driver)

KMDF Library

(Wdfdynam.sys)

3

5 4

2

1

6

E

D

C

B

A

I/O Completion Path

I/O Request Path

I/O status

Completion information

Buffered data

Figure 3. I/O Completion Path from Driver to Application

The letters in Figure 3 refer to the major steps in this path. Assuming that each driver in Figure 1 has registered a completion routine, the steps are as follows:
A.
The lowest driver in the stack (USBPORT) does whatever is necessary to satisfy the request and calls IoCompleteRequest to signal that the request has been completed.
The I/O Manager calls the I/O completion routine of the next-higher driver in the stack (USBHUB).

B.
The next-higher driver (USBHUB) performs any completion processing on the request and returns from its I/O completion routine without reclaiming the IRP that represents the I/O request being completed.
The next-higher driver in the stack is a KMDF driver (UsbDev.sys). Instead of calling the KMDF driver's completion routine directly, the I/O Manager calls the framework (the KMDF Library, Wdfdynam.sys). The framework reclaims the IRP, matches it to the WDFREQUEST that was used to describe this I/O request, and calls the KMDF driver's I/O completion routine callback.

The KMDF driver performs any completion processing on the request and calls WdfRequestComplete to signal that it is finished.

C.
The framework calls IoCompleteRequest, which returns control of the request to the I/O Manager.
D.
The I/O Manager retrieves I/O status from the request, translates the status to a Windows error code, returns completion information and, if necessary, copies data back to the requesting application's data buffer. It then returns control to the system service dispatcher.
E.
The system service dispatcher returns control to the requesting application.
The following sections discuss each of these steps in detail.

Driver Completion of a Request

When an I/O request is fully satisfied, as defined by the driver handling that request, the driver completes the request. When a request is completed, up to three data items are returned to the thread that issued the request, depending on the type of request being completed:

· I/O status. This is expressed by a driver as an NTSTATUS value, and is subsequently translated and returned to a Windows application as a Windows error code.

· Completion information. This information is a ULONG_PTR value defined by the driver and understood by the requestor. When a read, write, or device control request is completed successfully, this information value indicates the number of bytes transferred as a result of the request. This value is returned to a Windows application in the lpNumberOfBytesRead parameter on a ReadFile function call or in the lpNumberOfBytesWritten on a WriteFile function call.

· Requested data. For a read request and certain device control requests, the system returns data in the requesting thread’s data buffer. This data might be returned by the driver directly to the requesting thread’s buffer, or it might be returned to the requesting thread’s buffer by the I/O Manager, depending on the design of the driver.

KMDF drivers specify status and completion information values when they complete a WDFREQUEST by calling a function such as WdfRequestCompleteWithInformation.

I/O Completion Path from Framework to I/O Manager

When a KMDF driver completes a WDFREQUEST, it calls a function such as WdfRequestComplete. As a result of this call, the framework regains ownership of the WDFREQUEST being completed. The framework uses the I/O status and completion information in the request to fill in the corresponding fields in the IRP.
Next, the framework destroys the WDFREQUEST itself, returning any context storage associated with the WDFREQUEST. The framework then completes the IRP associated with the WDFREQUEST by calling IoCompleteRequest. This returns the control and ownership of the IRP to the Windows I/O Manager.

I/O Manager Completion of a Request
The I/O Manager completes I/O requests in two stages:

· Stage 1: Completion processing that might take place in any process and thread context (sometimes called an "arbitrary" process and thread context).

· Stage 2: Completion processing that must take place in the context of the thread that issued the I/O request.

Stage 1: Completion Processing in Arbitrary Context

The first stage of I/O request completion processing comprises all of the work that the I/O manager can perform without being in the context of the thread that issued the I/O request. This stage of processing always takes place within the function IoCompleteRequest.

Completion processing in Windows drivers. During this stage of completion processing, the I/O Manager calls the I/O completion routine for each driver that has registered such a routine. Completion routines are invoked in the reverse of the order in which the request was handled, starting with the driver that handled the request just before the driver that actually completes the request, and ending with the first driver that handled the request. Steps A and B in Figure 3 earlier in this paper show this path.
The driver that completes the request does not need an I/O completion routine because it already "knows" that the request is complete and presumably has done all the processing it needs before calling IoCompleteRequest.)

Several factors can affect how a request travels back up the driver stack during completion processing:

· I/O completion routines are optional. A driver does not have to register an I/O completion routine for any given request. Only drivers that register I/O completion routines for a specific request being completed are called when that request is completed.
· A driver can reclaim ownership of a request in its I/O completion routine. When this happens, completion processing for the request is terminated. The I/O Manager does not call any further completion routines associated with the request, and ownership of the reclaimed request passes to the driver.

Completion processing in the framework and KMDF drivers. The framework serves as an intermediary between a KMDF driver and the I/O Manager for all chores regarding I/O completion routines. Thus, when a KMDF driver calls WdfRequestComplete to complete a KMDF request, the framework calls IoCompleteRequest to inform the I/O Manager that the request is complete. Likewise, when the I/O Manager has an I/O completion routine callback for a KMDF driver, the I/O Manager calls the framework.
The framework in turn always reclaims ownership of the request from the I/O Manager, and calls the I/O completion routine callback registered by the KMDF driver for the request. During that callback, the driver can examine the completion status of the request (as defined by the drivers below it in the stack) and perform further processing of the request if desired.
Eventually, unless the completed request originated with the KMDF driver, that driver must call WdfRequestComplete (or equivalent) to allow completion processing to continue and cause the I/O status, completion information, and request data to be returned to the user.

After all completion routines are finished. When the final completion routine registered for a request has returned, assuming no driver has reclaimed ownership of the request, the request is truly complete in terms of driver processing. The only work remaining for the I/O Manager is that which must be done in the context of the requesting thread:
· If the I/O Manager is already running in the context of the requesting thread it proceeds directly to I/O completion processing in the requestor's context (Stage 2 completion processing, described in detail in the next section).
· If the I/O Manager is in a context other than that of the requesting thread, the I/O Manager queues a special kernel APC, referred to as “the special kernel APC for I/O completion.” The effect of this APC is to return the I/O Manager to executing in the context of the requesting thread and to start I/O completion processing in the requestor's context.

Stage 2: Completion Processing in the Requestor’s Context

Stage 2 of I/O completion processing always takes place in the context of the thread that issued the I/O request. In Figure 3 earlier in this paper, Step C and the associated thin red line indicating the information that is returned to the requesting application show this path. Note that executing in the context of the requesting thread also implies executing in the context of the requesting thread’s processes.

At this point, the only work remaining for the I/O Manager is to return the data items discussed previously (I/O status, completion information, and possibly request data) to the requesting thread, and to wake the thread if the thread is waiting as a result of requesting synchronous processing of an I/O request that was pended:

· First, the I/O Manager retrieves the I/O status from the request being completed, and typically translates that status from a native kernel mode NTSTATUS value to a Windows error code.
For example, during this translation the NTSTATUS STATUS_INVALID_PARAMETER is changed to the Windows error code ERROR_INVALID_PARAMETER.
· Next, the I/O Manager returns the completion information.
· If the driver chose intermediate buffering of data for the completing request, the I/O Manager copies data to satisfy the request back to the requestor’s data buffer.

· After returning the data, the I/O Manager frees any data structures it used to manage this I/O request, including the IRP.
· At this point, if the thread had been waiting as a result of requesting synchronous processing of an I/O request that had pended, the I/O Manager wakes the thread.
· Finally, control is returned from the I/O Manager to the application running in user mode, via the system service dispatcher. Steps D and E in Figure 3 earlier in this paper show this path.

Part 2: Flow of an I/O Request Within a KMDF Driver

Part 1 of this paper discusses the overall path an I/O request takes within the system, starting with an application, going through the I/O Manager, proceeding to the driver, and then possibly being sent to one or more additional drivers, until the request is complete.
As discussed in Part 1, an I/O request that is sent to a KMDF driver arrives first at the framework, which processes the request according to IRP major function code, using the framework’s I/O processing pipeline. WMI, Plug and Play, and power management requests are handled by their own framework processing packages. Although these requests might ultimately cause events to be raised in the driver, the processing of these requests is not the main focus of this paper. This paper focuses on the driver’s flow of control as it processes requests that are handled by the framework’s I/O package—specifically, the I/O requests that transfer data (read, write, and device control).

Part 2 describes the path an I/O request takes during processing within a KMDF driver. Note that this paper focuses on the functions that a typical KMDF driver is likely to implement. Therefore, it does not discuss the impact of functions such as an “in-process” I/O event processing callback function (EvtIoInCallersContext) on the flow of control in a KMDF driver.

Factors that influence the path of an I/O request within a KMDF driver. The path taken by a given I/O request within a KMDF driver is greatly influenced by the following four factors:

· The type of device being supported. The device type significantly impacts the general design of the driver and its options for processing the requests it receives. For example, consider a driver for a PCI-based DMA device. Such a driver will almost certainly handle read and write requests internally (that is, without sending these requests to another driver for processing), using the KMDF DMA objects and methods. On the other hand, a driver for a USB device will almost certainly handle read and write requests using the USBHUB driver.
· The driver’s WDFQUEUE configuration. The configuration of a driver’s queues, including the number of queues, the dispatching method chosen for each, and whether the queues are power managed, is an important factor in the overall flow of control in a KMDF driver.

· The driver’s synchronization scope configuration. Synchronization scope determines how many threads can be active simultaneously within the driver while sharing specific objects. Proper use of synchronization scope can eliminate the need to acquire private locks in many KMDF drivers.

· The overall state of the WDFDEVICE and WDFQUEUE. The state of a queue affects whether a request can be inserted into a queue at a given time and, if it can, whether that insertion causes the driver’s I/O event processing callback to be invoked. If a queue is power managed (which is the default) the framework changes the queue’s state based on the Plug and Play and power state of the device. In addition, the driver can choose to manage the state of one or more of its queues manually.

Sample drivers used in this paper. To facilitate discussion of request processing within a KMDF driver, this paper shows code examples from two sample drivers:

· OSRUSBFX2 supports a simple USB device, and illustrates the general processing involved in supporting any protocol bus-based (USB, IEEE 1394, Bluetooth) device. This sample driver is provided in the KMDF distribution kit as a staged example, with multiple versions of the driver showing the development stages. The sample code shown in this paper is from the "final" version of the sample driver.
· WDFDIO supports a simple bidirectional, 24-bit, digital I/O card and illustrates the general processing undertaken by a driver to support a PCI based device.
For availability of OSRUSBFX2 and WDFDIO source code, see Resources at the end of this paper.
Framework Receives a Request and Inserts It on a WDFQUEUE

Read, write, device control, and internal device control requests are presented to KMDF drivers through WDFQUEUEs. These queues are one of the most powerful features available to KMDF drivers for sorting and pre-processing requests.

WDFQUEUE Insertion Logic
The WDFQUEUE into which an incoming WDFREQUEST will be inserted is chosen according to the following logic:

1.
If the device has previously been defined as a filter device object (by calling WdfFdoInitSetFilter), then:

a.
If the WDFQUEUE configuration for the device does not specify an I/O event processing callback for the arriving I/O function, or if no WDFQUEUEs have been created for the device, the framework forwards the request to the device’s local I/O target. Processing for the request is complete.
b.
If the WDFQUEUE configuration for the device does specify an I/O event processing callback, or if no WDFQUEUEs have been created for the device, processing continues at step 2.

2.
The framework determines the correct WDFQUEUE into which to place the arriving WDFREQUEST:

a.
If the driver has specifically configured forwarding for this I/O request (by calling WdfDeviceConfigureRequestDispatching with the RequestType parameter equal to the type of the arriving request), the framework selects the indicated queue.

b.
If the driver has not configured forwarding, or if the request type does not match any of the request types for which forwarding has been enabled, the framework selects the default WDFQUEUE for the target device.

3.
The framework then checks the dispatch type for the chosen WDFQUEUE:

a.
If the dispatch type for the chosen WDFQUEUE is WdfIoQueueDispatchManual, the selected queue is chosen.

b.
If the dispatch type for the chosen WDFQUEUE is other than WdfIoQueueDispatchManual (that is, the dispatch type is either WdfIoQueueDispatchSequential or WdfIoQueueDispatchParallel) the framework checks to see if an I/O event processing callback that matches the I/O function of the arriving request has been provided for the selected queue.

1.
If a matching I/O event processing callback has been specified, that callback is selected.

2.
If no matching I/O event processing callback has been specified, the framework determines if the default I/O event processing callback has been specified for the selected queue.

a.
If the default I/O event processing callback has been specified, then that callback is selected.

b.
If no default I/O event processing callback has been specified, the framework completes the WDFREQUEST with STATUS_INVALID_DEVICE_REQUEST. Processing for the request is complete.

5.
At this point, both a WDFQUEUE and an I/O event processing callback (if the queue dispatch type is not WdfIoQueueDispatchManual) have been chosen. The framework then checks whether the queue is currently accepting requests:

a.
If the chosen queue is not currently accepting requests (as defined by the queue’s state), the framework completes the arriving WDFREQUEST with STATUS_INVALID_DEVICE_STATE. Processing for the request is complete.
A queue can stop accepting requests for a variety of reasons. For example, a queue would stop accepting requests if the device associated with the queue is has been removed or is in the process of being removed, or if the driver is manually managing the queue and it has set the queue to drain (by calling WdfIoQueueDrain) or purge (by calling WdfIoQueuePurge).

b.
If the chosen queue is currently accepting new requests, the WDFREQUEST is inserted at the end of the WDFQUEUE.

Driver Queue Implementation

The effect of WDFQUEUE insertion logic described in the previous section is much easier to understand in practice.
Example 1: WDFDIO driver queue implementation
Consider the following queue structure provided by the WDFDIO driver:

 WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&ioCallbacks,

 WdfIoQueueDispatchSequential);

 ioCallbacks.EvtIoDeviceControl = DioEvtDeviceControl;

 status = WdfIoQueueCreate(device,

 &ioCallbacks,

 WDF_NO_OBJECT_ATTRIBUTES,

 NULL); // optional pointer for queue handle

In this example:
· The WDFDIO driver creates a single queue for its device. This is the default queue.
· Only one I/O event processing callback is specified for the queue, to handle device control requests. A pointer to this function is stored in the EvtIoDeviceControl member of the WDF_IO_QUEUE_CONFIG structure named ioCallbacks.
· The driver does not configure any other queues or provide any additional I/O event processing callbacks.
· The dispatch type of the queue is set to WdfIoQueueDispatchSequential on the call to WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE.

As a result of this configuration, the framework’s I/O package will insert only device control requests on the driver's queue, and will complete read, write and internal device control requests with no processing required by the driver.

Example 2: OSRUSBFX2 driver queue implementation
The queue configuration used by the OSRUSBFX2 driver is a bit more interesting. The following segment of the relevant code is from that driver’s EvtDeviceAdd function:

 //

 // Create a parallel default queue and register an event
 // callback to receive ioctl requests. We will create separate
 // queues for handling read and write requests. All other
 // requests will be completed with error status automatically by
 // the framework.

 //

 WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&ioQueueConfig,

 WdfIoQueueDispatchParallel);

 ioQueueConfig.EvtIoDeviceControl = OsrFxEvtIoDeviceControl;

 status = WdfIoQueueCreate(device,

 &ioQueueConfig,

 WDF_NO_OBJECT_ATTRIBUTES,

 &queue);// pointer to default queue

 if (!NT_SUCCESS(status)) {

 TraceEvents(TRACE_LEVEL_ERROR, DBG_PNP,

 "WdfIoQueueCreate failed %!STATUS!\n",

 status);

 return status;

 }

 //

 // We will create a separate sequential queue and configure it

 // to receive read requests. We also need to register an
 // EvtIoStop handler so that we can acknowledge requests that
 // are pending at the target driver.

 //

 WDF_IO_QUEUE_CONFIG_INIT(&ioQueueConfig,
 WdfIoQueueDispatchSequential);

 ioQueueConfig.EvtIoRead = OsrFxEvtIoRead;

 ioQueueConfig.EvtIoStop = OsrFxEvtIoStop;

 status = WdfIoQueueCreate(

 device,

 &ioQueueConfig,

 WDF_NO_OBJECT_ATTRIBUTES,

 &queue);

 if (!NT_SUCCESS (status)) {

 TraceEvents(TRACE_LEVEL_ERROR, DBG_PNP,

 "WdfIoQueueCreate failed 0x%x\n", status);

 return status;

 }

 status = WdfDeviceConfigureRequestDispatching(

 device,

 queue,

 WdfRequestTypeRead);
 if(!NT_SUCCESS (status)){

 ASSERT(NT_SUCCESS(status));

 TraceEvents(TRACE_LEVEL_ERROR, DBG_PNP,

 "WdfDeviceConfigureRequestDispatching failed 0x%x\n",
 status);

 return status;

 }

In this example code, the OSRUSBFX2 driver creates two queues:
· A default queue to handling incoming device control requests
· An additional queue to handle read requests.
The driver also creates a third queue (not shown in this example) to handle write requests. The code to configure this third queue is identical to that used to configure the second queue in the example, except for the function type handled.
In the example, the driver calls WdfDeviceConfigureRequestDispatching to cause read requests arriving at its device to be forwarded to the second queue. If the driver did not perform this step, read requests sent to the device would not be forwarded (regardless of the existence of the second queue). Because the driver also did not configure either an EvtIoRead or EvtIoDefault I/O event processing callback on the default queue, read requests would be completed by the framework with the error STATUS_INVALID_DEVICE_REQUEST.

Framework Invokes the Driver's I/O Event Processing Callback

After the request has been inserted on a queue and an I/O event processing callback has been chosen, the framework determines whether to invoke the I/O event processing callback. This depends on the dispatch type of the queue, the queue’s synchronization scope, the number of requests currently in progress, and the state of the queue (which might be automatically affected by power management or manually controlled by the driver). These factors are considered in the following sections.

Dispatch Type of the Queue
A queue’s dispatch type is defined when the queue is created, in the call to the WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE macro. The dispatch type indicates whether the framework will attempt to invoke the driver’s I/O event processing callback when a new request is placed on the queue. The dispatch type also defines whether multiple requests can be outstanding from the same queue simultaneously.
Dispatch Types

The three dispatch types and their meanings are:

· WdfIoQueueDispatchParallel. When a new request is inserted into a WDFQUEUE configured for parallel dispatching, the framework invokes the I/O event processing callback identified for that request through the process described in "WDFQUEUE Insertion Logic" earlier in this paper.
· WdfIoQueueDispatchSequential. WDFQUEUEs configured for sequential dispatching provide for only one WDFREQUEST from the queue to be in progress at a time. When a new request is added to a queue configured for sequential dispatching, the framework invokes the I/O event processing callback that has been identified for that request only if no requests from the queue are already in progress.
If a request is added to a queue configured for sequential dispatching when a request is already in progress from the queue, the framework invokes the appropriate I/O event processing callback when the in-progress request is completed by the driver.

· WdfIoQueueDispatchManual. Inserting a request into a WDFQUEUE configured for manual dispatching never results in the framework calling a type-specific or default I/O event processing callback (as is the case for the other dispatch types). However, WDFQUEUEs configured for manual dispatching can optionally have an associated I/O event processing callback for a queue state change. This callback will be invoked whenever a WDFREQUEST is added to otherwise empty queue configured for manual dispatching (that is, the number of entries on the queue transitions from zero to one as a result of the new request being added).

Impact of Dispatch Type on Driver Design
The number of queues configured by the driver and the dispatch type of each has a major impact on the driver’s overall design, including its flow of control. For example:

· The queue configuration shown earlier for the WDFDIO driver uses a single queue (per device) for all requests, and the dispatch type is set to WdfIoQueueDispatchSequential. Because the sequential dispatch type only allows one request to be in progress at a time, and this driver utilizes a single queue per device, the driver is effectively single-threaded. That is, only one request will ever be active per device at a time. It is important to note that this clean and simple design is achieved in the WDFDIO driver without utilizing any driver-specified locks.

· The queue configuration shown earlier for the OSRUSBFX2 driver uses a considerably more complex queue configuration. This driver has:
A queue for device control requests configured for parallel dispatching
A queue for read requests configured for serial dispatching
A queue for write requests configured for serial dispatching
As a result of this configuration, the driver can have one read request, one write request, and multiple device control requests per device in progress simultaneously. Again, it’s important to note that the driver achieves this complex mix of requests without using any driver-specified locks.

Synchronization Scope for WDFDEVICEs and WDFQUEUEs
The synchronization scope a driver chooses for its WDFDEVICEs and WDFQUEUEs constrains the number of threads that can be actively executing in various functions within the driver at any one time. As a result, synchronization scope also has a significant impact on the driver’s flow of control.

Specifying Synchronization Scope

Synchronization scope is specified as an object attribute of the WDFDEVICE object. The most useful (and thus most commonly used) synchronization scope is WdfSynchronizationScopeDevice.
Specifying WdfSynchronizationScopeDevice causes the framework to allow only one thread to execute code within the driver’s I/O event processing callbacks and (by default) DPCs at a time for a given device, thus serializing the execution of these routines. This effect is achieved by guarding these routines with a spin lock that the framework acquires prior to the routines being invoked.

When a synchronization scope is not specified, the default is that the driver’s I/O event processing callbacks and DPCs are not guarded by any locks, and thus can execute in parallel. Neither WDFDIO or OSRUSBFX2 specifies a synchronization scope. As a result, these drivers rely on the dispatch types they have specified to provide the serialization they require.

How Synchronization Scope Works
To understand how synchronization scope works and how it differs from the serialization that can result from serial dispatching, consider a driver for a modern, high-speed disk interface such as an intelligent SCSI adapter. Such a device might have many hundreds of requests active simultaneously. Therefore, a KMDF driver that supports this device should configure its queues to allow multiple requests to be in progress from the queue simultaneously.
As discussed earlier, one way to do this would be for the driver to configure a single queue for all read and write requests and set that queue's dispatch type to WdfIoQueueDispatchParallel. As requests arrive, the framework delivers each request to the queue and calls the appropriate I/O event processing callback. The driver’s I/O event processing callback code then validates the request, makes the request active on the disk hardware, and returns.
The problem with this scheme is that it could lead to errors if two requests happen to arrive at almost the same time. On a multiprocessing system, two instances of the driver’s I/O event processing callback could be active simultaneously. If these two instances attempt to update the same structures simultaneously—such as statistics kept in the WDFDEVICE’s context structure, for example—the result will be incorrect.

One way to solve this problem is by specifying WdfSynchronizationScopeDevice when the driver creates its WDFDEVICE. If this is done, only one request per device can be active at a time in any of the driver’s I/O event processing callbacks or DPCs. When WdfSynchronizationScopeDevice is combined with WdfIoQueueDispatchParallel, multiple requests from the same queue can be in progress simultaneously, but only one request can actually be executing code in a driver routine at a time.

It’s important to note that, depending on its design and the design of the hardware it supports, this disk driver might have another synchronization problem that is not solved by using WdfSynchronizationScopeDevice: Simultaneous access to the device’s hardware registers.

Using WdfSynchronizationScopeDevice does not serialize execution of the driver’s interrupt event callback with other functions in the driver. Thus, if the driver used any registers in its interrupt event callback that were also used in its I/O event processing callbacks or DPCs, a collision due to improper serialization would result. To fix this problem, the driver would simply use the interrupt lock to guard its accesses to the shared device registers in its I/O event processing callbacks and DPCs. The driver can accomplish this by calling WdfInterruptAcquireLock.

Queue State

The state of a queue is managed by KMDF drivers and the framework using the following flags:

· WdfIoQueueAcceptRequests. When set, this flag indicates that the queue is accepting requests.
· WdfIoQueueDispatchRequests. When set, this flag indicates that the queue is dispatching requests.
· WdfIoQueueNoRequests. When set, this flag indicates that the queue is currently empty.
· WdfioQueueDriverNoRequests. When set, this flag indicates that all requests that have been delivered from this queue to the driver are complete (that is, the driver has no outstanding requests from this queue in progress).
· WdfIoQueuePnPHeld – When set, this flag indicates that the queue is not accepting requests due to a Plug and Play or power management event.
It’s important to note that the queue states are bitmasks, so (for example) both WdfIoQueueAcceptRequests and WdfIoQueueDispatchRequests can be set simultaneously for a given queue.

As described previously, when a queue is accepting requests, WDFREQUESTs that arrive for that queue are inserted into the queue. When a queue is not accepting requests, WDFREQUESTs that arrive for the queue are completed by the framework with STATUS_INVALID_DEVICE_STATE. When a queue is dispatching requests, the associated I/O event processing callback is invoked when a WDFREQUEST is inserted on the queue.

If a queue is power managed, its state is managed by the framework according to the Plug and Play and power state of the queue’s WDFDEVICE. For example, if the WDFDEVICE is marked for removal or is in the process of transitioning to D3, the framework changes the power state of the queue so that it does not accept new requests (and the WdfIoQueuePnPHeld flag is set)..
Is the Callback Called?

As discussed in the previous sections, the interaction of a number of factors determines whether a driver’s I/O event processing callback is invoked when a WDFREQUEST is inserted on a queue. The following steps summarize the decision process used by the framework:

1.
If the queue’s dispatch type is WdfIoQueueDispatchManual:

a.
If a queue state change callback has been registered for the queue, and if the number of requests on the queue after inserting the arriving request is 1, the queue state change I/O event processing callback is invoked. The decision process is complete.

b.
If a queue state change callback has not been registered for the queue, no callback is invoked. The decision process is complete.

2.
If the queue’s dispatch type is either WdfIoQueueDispatchParallel or WdfIoQueueDispatchSequential, the framework checks the state of the queue:
a.
If the queue’s state does not allow it to accept requests (that is, WdfIoQueueAcceptRequests is not set in the queue’s state) the arriving request is completed with STATUS_INVALID_DEVICE_STATE (and no callback is invoked). The decision process is complete.

b.
If the queue's state allows it to accept requests, the process continues with Step 3.

3.
If the queue’s serialization scope is not WdfSynchronizationScopeNone, a lock is identified. The process continues with Step 4.
4.
The framework examines the number of requests in progress from the queue:
a.
If no requests are presently in progress from the queue, the callback is invoked (after acquiring the lock identified in Step 3, if there is one). The decision process is complete.

b.
If the queue’s dispatch type is parallel, the callback is invoked (after acquiring the lock identified in Step 3, if there is one). The decision process is complete.

Driver's I/O Event Processing Callback Executes

When a KMDF driver’s I/O event processing callback is invoked, it receives a handle to a WDFREQUEST that describes an I/O operation to perform. One of the most important things the driver does at this point is to validate the arriving request and complete it with an error if the validation fails.
Validating the Arriving Request

Although both the I/O Manager and the framework have already examined the arriving request for validity, the driver still must evaluate the correctness of the request in terms of its device and the function being requested. For example:

· If the request is asking the driver to transfer data from or to its device, the driver might need to ensure that the size of the requested transfer is appropriate for the device. For most devices, this means enforcing a maximum length for the transfer, but other length-related validations can be required. For example, disk drivers ensuring the request length is appropriate might also require that transfer be an integral multiple of the disk’s sector size.
· The driver might also need to validate the arriving request in terms of the device’s state. Certain operations might not be allowed while the device is in certain states, or when the device is in the process of performing certain operations. If the arriving request is inappropriate with respect to the device’s state, the driver might choose to complete the request with an error or queue it for processing at an appropriate time.

Processing the Arriving Request

After the arriving request has been validated, the driver attempts to process the request as completely as possible.
Satisfying the Request within the I/O Event Processing Callback
If the driver can completely satisfy the request within its I/O event processing callback (without first having to send the request to another driver for processing) it does so and completes the request, returning the request data, I/O status and completion information as described earlier in this paper.

Initiating a Request on the Device
If the driver (such as a driver for a PCI bus device) directly controls its hardware through a set of ports, registers, or shared memory locations, the driver might need to initiate a request on the device and then wait for the device to indicate that the request is complete.
In most cases, the device will inform the driver of the request’s completion by generating an interrupt, though other device-specific methods are also possible. In this case, the driver initiates the request on the device and then returns from its I/O event processing callback to the framework. When the device interrupt occurs, the framework calls the driver’s interrupt event callback.
Sending a Request to Another Driver for Processing
In some cases, a driver might need to send the arriving request to another driver for processing. As mentioned earlier, this is the case for drivers that support devices connected to protocol-based buses (such as USB) and for filter drivers.
Alternatively, a driver might need to create and send one or more requests to another driver (instead of sending the arriving request itself) to satisfy the arriving request. Whenever a request is sent to another driver, the driver can choose to send it in any of three ways:

· Synchronously. The driver sends the request to the driver for the target device and waits for the request to complete. When the request is completed by all lower drivers, control and ownership of the request is returned to the driver within its I/O event processing callback.

· Asynchronously, Specifying a Completion Routine. The driver sends the request to the driver for the target device. Control is returned to the sending driver as soon as the request is “pended” (or is synchronously completed by all lower drivers). When control returns to the sending driver’s I/O event processing callback, the driver typically returns to the framework. When the request is completed by all lower drivers, the sending driver’s I/O completion routine callback is invoked and the sending driver regains ownership of the request.

· Asynchronously, Without Specifying a Completion Routine. The driver sends the request to the driver for the target device. Control is returned to the sending driver as soon the request is pended or is synchronously completed by all lower drivers. In this case, the sending driver performs no additional processing on the request after sending it to the driver for the target device. The driver for the target device is responsible for completing the request and returning any data, status, and information back to the requestor.

I/O Request Completion Examples

The WDFDIO and OSRUSBFX2 drivers provide examples of a few of the different control flows that are commonly implemented by KMDF drivers.
WDFDIO Synchronous Request Completion

Perhaps the simplest example is that of the WDFDIO driver’s synchronous handling of a request to write to its device registers. The device supported by the driver is a PCI 24-bit digital I/O device. The only requests supported by the driver are device controls. The code for processing a write (IOCTL_WDF_OUTPUT) to the DIO device follows:
VOID

DioEvtDeviceControl(WDFQUEUE Queue,

 WDFREQUEST Request,

 size_t OutputBufferLength,

 size_t InputBufferLength,

 ULONG IoControlCode)

{

 NTSTATUS status = STATUS_SUCCESS; // Assume success

 PUCHAR dataBuffer;

 PDIO_DEVICE_CONTEXT devContext;

 WDFDEVICE device;

 UCHAR dataByte;

 size_t length;

 ULONG len=0;

 //

 // Get a pointer to our device extension

 //

 device = WdfIoQueueGetDevice(Queue);

 devContext = DioGetContextFromDevice(device);

 //

 // Switch based on the control code specified by the user
 // when they

 // issued the DeviceIoControl function call:

 //

 switch(IoControlCode) {

 //

 // IOCTL_WDFDIO_OUTPUT

 // Output 16 or 24 bits of digital data, depending whether
 // PortA has previously been placed in INPUT mode, using

 // IOCTL_WDFDIO_PORTA_INPUT.

 //

 case IOCTL_WDFDIO_OUTPUT:

 //

 // Before doing ANYthing, validate the buffer length

 //

 if (!devContext->PortAInput) {

 //

 // If PortA is being used for OUTPUT, the buffer
 // length needs to be 3

 //

 if(InputBufferLength != 3) {

 status = STATUS_INVALID_PARAMETER;

 break;

 }

 } else {

 //

 // PortA is input... This output request has to be
 // either 2 bytes long or 3 bytes long (we'll accept
 // either). If the input buffer is 3 bytes long, we
 // just ignore the last byte.

 //

 if((InputBufferLength != 3) &&
 (InputBufferLength != 2)) {

 status = STATUS_INVALID_PARAMETER;

 break;

 }

 }

 //

 // Get the pointer to the user-supplied IN buffer, where
 // it's been copied into kernel virtual address space.

 // Note that because we validate the input buffer length
 // separately, we pass 0 as the minimum length argument,
 // meaning we'll accept ANY input buffer length at

 // this point.

 //

 status = WdfRequestRetrieveInputBuffer(Request,

 0, // Minimum length

 (PVOID *)&dataBuffer,

 &length);

 if(!NT_SUCCESS(status)) {

 status = STATUS_INSUFFICIENT_RESOURCES;

 break;

 }

 //

 // Set the device mode

 //

 if(!devContext->PortAInput) {

 WRITE_HARDWARE_UCHAR(devContext,

 devContext->BaseAddress+DIO_CONTROLWORD_OFFSET,

 DIO_PORTABC_OUT);

 } else {

 WRITE_HARDWARE_UCHAR(devContext,

 devContext->BaseAddress+DIO_CONTROLWORD_OFFSET,

 DIO_PORTA_IN_PORTBC_OUT);

 }

 //

 // Get the data supplied by the user, and write it to
 // the device. Keep count as bytes are written to the
 // device.

 //

 dataByte = *dataBuffer;

 WRITE_HARDWARE_UCHAR(devContext,

 devContext->BaseAddress+DIO_PORTC_OFFSET,

 dataByte);

 dataBuffer++;

 len++;

 dataByte = *dataBuffer;

 WRITE_HARDWARE_UCHAR(devContext,

 devContext->BaseAddress+DIO_PORTB_OFFSET,

 dataByte);

 dataBuffer++;

 len++;

 if(!devContext->PortAInput) {

 dataByte = *dataBuffer;

 WRITE_HARDWARE_UCHAR(devContext,

 devContext->BaseAddress+DIO_PORTA_OFFSET,

 dataByte);

 dataBuffer++;

 len++;

 }

 break;

 //

 // IOCTL_WDFDIO_PORTA_INPUT

 //

 case IOCTL_WDFDIO_PORTA_INPUT:

... // >>> PROCESSING CODE NOT SHOWN HERE

 break;

 //

 // IOCTL_WDFDIO_READ_PORTA_AFTER_INT

 //

 case IOCTL_WDFDIO_READ_PORTA_AFTER_INT:

... // >>> PROCESSING CODE NOT SHOWN HERE

 break;

 }

 //

 // Set the information field to the number of bytes read/written

 //

 WdfRequestSetInformation(Request, len);

 //

 // Complete the request with "status"

 //

 WdfRequestComplete(Request, status);

}

In this example:

· When the function is called, the driver executes a specific block of code based upon the control code indicated in the device control request. (To clarify the general flow of control, only the code for processing a write to the DIO device (Device Control code IOCTL_WDFDIO_OUTPUT) is shown.)
· The local variable “status” is initialized to STATUS_SUCCESS and the local variable “len” is initialized to zero. These values will be used to hold the I/O status and completion information data, respectively, that are returned to the requestor on completion of the arriving WDFREQUEST.

· After the driver switches based on the control code, the driver validates the length of the input buffer supplied by the requestor. Because the driver operates the DIO device in two modes—one that allows 24 bits of digital output data to be written at a time and another that allows only 16 bits of digital output data to be written at a time—the driver validates the buffer length of the received request based on the current mode of the device:
If the supplied buffer length is not valid, the driver sets the local variable “status” to an appropriate status code and breaks out of the switch statement, dropping to the bottom of the function where the request is completed.

If the buffer length is valid, the driver gets a pointer to data supplied in the requestor’s input buffer from the framework, and writes two or three data bytes to the DIO device, one byte at a time, keeping track of the number of bytes written as it goes. The determination of whether 2 or 3 data bytes are written is made based on the device’s current mode. Note that the function WRITE_HARDWARE_UCHAR used by the driver is a driver-defined function that invokes the appropriate HAL routine (WRITE_PORT_UCHAR or WRITE_REGISTER_UCHAR) based on whether the device’s ports are in I/O space or memory space.

· Control next falls to the bottom of the function, where the request is completed:

Completion Information (comprising the number of bytes that were transferred for this request) is filled into the request by calling WdfRequestSetInformation.
The request is completed with a specified I/O status by calling WdfRequestComplete.

WDFDIO Initiating a Request and Awaiting an Interrupt

The WDFDIO driver also provides an example of how a device that directly communicates with its hardware initiates a request and then returns to the framework to wait for an interrupt from its device that indicates the request is complete.
The following example shows processing code from the I/O event processing callback for device control in the previous example:
case IOCTL_WDFDIO_READ_PORTA_AFTER_INT:

 //

 // There better be room for the one byte we've been
 // asked to return in the output buffer!

 //

 if(OutputBufferLength < 1) {

 status = STATUS_INVALID_PARAMETER;

 break;

 }

 if((devContext->PortAInput == FALSE) ||

 (devContext->AwaitingInput == TRUE)) {

 status = STATUS_INVALID_DEVICE_STATE;

 } else {

 //

 // Store a pointer to the pending WDF request where
 // we can get it later.

 //

 devContext->CurrentRequest = Request;

 //

 // Indicate to our ISR that we're waiting for an
 // interrupt to occur

 //

 devContext->AwaitingInt = TRUE;

 //

 // ********** NOTE ************

 // We RETURN here -- We DO NOT FALL THROUGH.

 // The current request remains in progress, and the
 // device remains "busy" (that is, it does not
 // enter the idle state because there's a request

 // in progress).

 //

 // At this point, we're waiting for the interrupt

 // to occur.

 //

 return;

 }

 break;

This example, although simple, illustrates a few important points:

· When this device control request is received, the driver must have already received and processed a request to enable interrupts when the state of bit 0 in the device’s PortA changes.
· Only one IOCTL_WDFDIO_READ_PORTA_AFTER_INT type request can be in progress at a time in the driver. Therefore, when the driver validates the request, it validates the size of the supplied buffer, the state of the device (to ensure that PortA has been set to input mode), and the state of the driver (to ensure that a previously received _READ_PORTA_AFTER_INT is not already in progress).

Assuming the request passes the driver’s validation checks, the driver saves the request handle and sets a flag to indicate that a _READ_PORTA_AFTER_INT is in progress. At this point, the driver’s I/O event processing cllback returns to the framework, to await the interrupt and the framework’s subsequent call to the driver's interrupt event callback. For details, see "Driver's Interrupt Event Callback Executes" later in this paper.

OSRUSBFX2 Sending a Request and Awaiting Completion

The OSRUSBFX2 driver’s read and write I/O event processing callbacks are good examples of how a driver asynchronously forwards a request to another driver for processing after registering an I/O completion routine callback. Because the driver supports a USB device, it forwards read and write requests to the underlying USBHUB driver for processing.
The following example code shows the driver’s read I/O event processing callback:

VOID

OsrFxEvtIoRead(

 IN WDFQUEUE Queue,

 IN WDFREQUEST Request,

 IN size_t Length

)

{

 WDFUSBPIPE pipe;

 NTSTATUS status;

 WDFMEMORY reqMemory;

 PDEVICE_CONTEXT pDeviceContext;

 UNREFERENCED_PARAMETER(Queue);

 //

 // First validate input parameters.

 //

 if (Length > TEST_BOARD_TRANSFER_BUFFER_SIZE) {

 status = STATUS_INVALID_PARAMETER;

 goto Exit;

 }

 pDeviceContext = GetDeviceContext(WdfIoQueueGetDevice(Queue));

 pipe = pDeviceContext->BulkReadPipe;

 status = WdfRequestRetrieveOutputMemory(Request, &reqMemory);

 if(!NT_SUCCESS(status)){

 goto Exit;

 }

 //

 // The format call validates to make sure that you are reading
 // or writing to the right pipe type, sets the appropriate
 // transfer flags, creates a URB and initializes the request.

 //

 status = WdfUsbTargetPipeFormatRequestForRead(pipe,

 Request,

 reqMemory,

 NULL // Offsets

);

 if (!NT_SUCCESS(status)) {

 goto Exit;

 }

 WdfRequestSetCompletionRoutine(

 Request,

 EvtRequestReadCompletionRoutine,

 pipe);

 //

 // Send the request asynchronously.

 //

 if (WdfRequestSend(Request,
 WdfUsbTargetPipeGetIoTarget(pipe), NULL)

 == FALSE) {

 //

 // Framework couldn't send the request for some reason.

 //

 status = WdfRequestGetStatus(Request);

 goto Exit;

 }

Exit:

 if (!NT_SUCCESS(status)) {

 WdfRequestCompleteWithInformation(Request, status, 0);

 }

 return;

}

In this example:

· As in the previous two examples, the first thing the driver does in this function is validate the request that it receives. In this case, the validation comprises checking to ensure that the length of the requested transfer is not greater than that allowed by the device.
· Note that the driver does not check to see if the buffer length is zero. This check is not necessary, because (as previously mentioned) the framework checks for zero length read and write requests by default and completes them with STATUS_SUCCESS without passing them to the driver.

· Next, the driver formats a USB request for its bulk read pipe, using the data buffer specified in the read WDFREQUEST.
· The driver then registers an I/O completion routine callback with the request (by calling WdfRequestSetCompletionRoutine) and sends the IRP to the USBHUB driver by calling WdfRequestSend. Because the third parameter to WdfRequestSend (RequestOptions) is specified as NULL, the default mode of operation of this function is used, which sends the request asynchronously to the driver for the target device.
· Assuming the call to WdfRequestSend succeeds, the driver returns to the framework to await the callback to its I/O completion routine, which indicates that the request it sent is complete.
OSRUSBFX2 Sending an Alternate Request Synchronously

The final example of processing within a driver’s I/O event processing callback is a slightly more complex one, taken from the OSRUSBFX2 driver’s I/O event processing callback for device control:

VOID

OsrFxEvtIoDeviceControl(

 IN WDFQUEUE Queue,

 IN WDFREQUEST Request,

 IN size_t OutputBufferLength,

 IN size_t InputBufferLength,

 IN ULONG IoControlCode

)

{

 WDFDEVICE device;

 PDEVICE_CONTEXT pDevContext;

 size_t bytesReturned = 0;

 PBAR_GRAPH_STATE barGraphState = NULL;

 PSWITCH_STATE switchState = NULL;

 PUCHAR sevenSegment = NULL;

 NTSTATUS status;

 UNREFERENCED_PARAMETER(InputBufferLength);

 UNREFERENCED_PARAMETER(OutputBufferLength);

 VERIFY_IS_IRQL_PASSIVE_LEVEL();

 //

 // initialize variables

 //

 device = WdfIoQueueGetDevice(Queue);

 pDevContext = GetDeviceContext(device);

 switch(IoControlCode) {

 case IOCTL_OSRUSBFX2_READ_SWITCHES:

 status = WdfRequestRetrieveOutputBuffer(Request,

 sizeof(SWITCH_STATE),

 &switchState,

 NULL);// BufferLength

 if (!NT_SUCCESS(status)) {

 bytesReturned = sizeof(SWITCH_STATE);

 break;

 }

 //

 // Call our routine to get the state of the switches

 //

 status = GetSwitchState(pDevContext, switchState);

 //

 // If successful, return the user their data

 //

 if (NT_SUCCESS(status)) {

 bytesReturned = sizeof(SWITCH_STATE);

 } else {

 //

 // Don't return any data

 //

 bytesReturned = 0;

 }

 break;

 WdfRequestCompleteWithInformation(Request,

 status,

 bytesReturned);

 return;

}

This example shows how the OSRUSBFX2 driver processes the device control function IOCTL_OSRUSBFX2_READ_SWITCHES. As with the other examples, code not related to the example (such as code for the other cases in the switch statement) has been removed to improve readability.
The function in this example returns an encoded value that indicates the state of the switch pack on the board. In this example:

· The first thing the driver does is retrieve the output buffer pointer from the arriving request using the KMDF function WdfRequestRetrieveOutputBuffer.
· In addition to returning a pointer to a buffer in kernel virtual address space into which the driver should return the data for the requestor, it also validates the buffer length. If the length of the buffer is not greater than or equal to the length specified in the second parameter (MinimumRequiredSize) the function returns an error. In the example, this results in the driver completing the request with an error status.
· With the buffer length validated, and a pointer to the buffer into which to return the data retrieved, the driver then calls the driver-defined function GetSwitchState.
· The GetSwitchState function is passed the buffer pointer and a pointer to the WDFDEVICE context, and returns a status that is used to complete the request. The data is placed in the indicated buffer within the GetSwitchState function.

The bulk of the work for processing this request takes place in the driver-defined function GetSwitchState:

NTSTATUS

GetSwitchState(

 PDEVICE_CONTEXT DevContext,

 PSWITCH_STATE SwitchState

)

{

 NTSTATUS status;

 WDF_USB_CONTROL_SETUP_PACKET controlSetupPacket;

 WDF_MEMORY_DESCRIPTOR memDesc;

 ULONG bytesTransferred;

 VERIFY_IS_IRQL_PASSIVE_LEVEL();

 WDF_USB_CONTROL_SETUP_PACKET_INIT_VENDOR(&controlSetupPacket,

 BMREQUEST_DEVICE_TO_HOST,

 BMREQUEST_TO_DEVICE,

 USBFX2LK_READ_SWITCHES, // Request

 0, // Value

 0); // Index

 SwitchState->SwitchesAsUChar = 0;

 WDF_MEMORY_DESCRIPTOR_INIT_BUFFER(&memDesc,

 SwitchState,

 sizeof(SWITCH_STATE));

 status = WdfUsbTargetDeviceSendControlTransferSynchronously(

 DevContext->UsbDevice,

 NULL, // Optional WDFREQUEST

 NULL, // PWDF_REQUEST_SEND_OPTIONS

 &controlSetupPacket,

 &memDesc,

 &bytesTransferred);

 return status;

}

In this example, the OSRUSBFX2 driver processes the request it receives by building another, separate, request and sending it to another driver (USBHUB) for processing, using the functions provided by the framework for USB target processing. The OSRUSBFX2 driver thus uses the USBHUB driver to satisfy the device control request that it receives, even to the extent of relying on the USBHUB driver to return the necessary switch state data into the requestor’s buffer.

In this example:

· The driver initializes a “vendor command” USB packet with the command USBFX2LK_READ_SWITCHES.
· It then initializes a KMDF memory buffer that points to the buffer into which to return the device’s switch state value and calls the function WdfUsbTargetDeviceSendControlTransferSynchronously, which sends a request to the underlying USBHUB driver, and waits for it to complete.
· Control returns from the call to WdfUsbTargetDeviceSendControlTransferSynchronously when the function is complete due to either success or error.
· The status returned from the function is then returned to the caller, which (as described earlier) is used to complete the in-progress WDFREQUEST.

Although appropriate for the example shown, the approach that the OSRUSBFX2 driver uses to satisfy this request can cause problems. The most serious potential problem is that the OSRUSBFX2 driver is entirely dependent on the USBHUB driver (and the device) to complete the request, and it has no control over how long completing the request will take.
KMDF drivers do not make assumptions about the context in which their I/O event processing callbacks for device control run, so it would be a serious design error for the driver to wait for a significant amount of time within that routine. Because the OSRUSBFX2 driver “knows” that its device completes requests quickly, it can assume that the request will always be completed quickly by the USBHUB driver. However, a safer design for this and other drivers in similar situations would be to format the incoming request as a control transfer using the function WdfUsbTargetDeviceFormatRequestForControlTransfer and send it asynchronously to the USBHUB device, as shown in "OSRUSBFX2 Sending an Alternate Request Synchronously" earlier in this paper.
Driver's I/O Completion Routine Executes

When a request is sent to another driver asynchronously (which is the default mode for WdfRequestSend), the driver sending the request has the option of registering an I/O completion routine callback prior to sending the request. When the request is complete and all I/O completion callbacks have been called for the drivers that subsequently handled the request, the I/O Manager calls the framework, which ultimately calls the driver’s I/O completion routine callback.

When a KMDF driver’s I/O completion routine executes, the driver regains ownership of the WDFREQUEST.
I/O Completion Routine Example

The following example shows the I/O completion routine from the OSRUSBFX2 driver:

VOID

EvtRequestReadCompletionRoutine(

 IN WDFREQUEST Request,

 IN WDFIOTARGET Target,

 PWDF_REQUEST_COMPLETION_PARAMS CompletionParams,

 IN WDFCONTEXT Context

)

{

 NTSTATUS status;

 size_t bytesRead = 0;

 PWDF_USB_REQUEST_COMPLETION_PARAMS usbCompletionParams;

 UNREFERENCED_PARAMETER(Target);

 UNREFERENCED_PARAMETER(Context);

 status = CompletionParams->IoStatus.Status;

 usbCompletionParams =
 CompletionParams->Parameters.Usb.Completion;

 bytesRead = usbCompletionParams->Parameters.PipeRead.Length;

 WdfRequestCompleteWithInformation(Request, status, bytesRead);

 return;

}

This example is the I/O completion routine callback registered by the OsrFxEvtIoRead function example, shown earlier. Note that when this callback is invoked, the driver regains ownership of the WDFREQUEST. Thus, to cause the request to be completed back to the application program that issued it, the driver calls WdfRequestCompleteWithInformation. This causes the framework to complete the WDFREQUEST and to call IoCompleteRequest on the IRP associated with the WDFREQUEST.
Note that if the driver did not complete the request, the request’s I/O status and completion information would not be returned to the requestor. If the application had requested synchronous processing for the request, it would hang awaiting the request’s eventual completion because, unless the request is completed by the driver, the request would not be returned to the I/O Manager. I/O completion processing in the requestor's context (Stage 2 completion processing, described earlier in this paper) would not occur.

Driver's Interrupt Event Callback Executes

When a device must gain the attention of the driver that controls it, the device generates an interrupt. When a device generates an interrupt, the system invokes the driver’s interrupt service routine (ISR). For KMDF drivers, the ISR call passes through a thin layer in the framework, which in turn calls the driver’s interrupt event callback. This callback executes at the device hardware IRQL.
Running at device IRQL has several consequences for the driver:

· Other system processes are blocked when the interrupt event callback executes, due to its high IRQL. Therefore, the amount of processing performed in this routine should be kept to a minimum.

· Very few KMDF or system functions can be called from the driver’s interrupt event callback, again due to its high IRQL. For example, a driver cannot call WdfRequestComplete from its interrupt event callback, because this function must be called at IRQL DISPATCH_LEVEL or below.

The typical KMDF driver performs four basic actions in its interrupt event callback:

· Ensures that its device is interrupting. The driver does this by interrogating the device’s registers. If the device is not interrupting when the interrupt event callback is called, the driver returns FALSE from its interrupt event callback. This would be the case when a device is sharing interrupts with another device in the system.

· Saves the reason for the interrupt and/or data from the interrupt. The interrupt reason is typically communicated to the driver through one or more of the device’s registers. Depending on the design of the device, the driver might also need to get data from the device from within the interrupt event callback.
· Acknowledges the interrupt. Before leaving its interrupt event callback, the driver must acknowledge the pending interrupt. Whether the driver leaves the device’s interrupt event callback with interrupts enabled or disabled is determined by the design of the device and that of the driver.
· If additional work is required, requests a callback to its DpcForIsr. If the driver needs to perform additional work that will take some time or that requires calling support functions that cannot be called at device IRQL, the driver requests a callback to its deferred procedure call for interrupt service routine completion (DpcForIsr). It requests this callback by calling the function WdfInterruptQueueDpcForIsr.
Note that KMDF drivers usually do not need to consider the Plug and Play or power states of their devices within their interrupt event callback, because the framework disconnects a device’s interrupt service routine whenever the device is not ready and in the D0 (working) state.

Interrupt Event Callback Example

The interrupt event callback for the WDFDIO driver is an example of a typical interrupt service routine in WDF drivers:

BOOLEAN

DioIsr(WDFINTERRUPT Interrupt, ULONG MessageID)

{

 PDIO_DEVICE_CONTEXT devContext;

 UCHAR data;

 //

 // Get a pointer to our device extension

 //

 devContext =
 DioGetContextFromDevice(WdfInterruptGetDevice(Interrupt));

 //

 // Check to see if our device has an interrupt pending

 //

 data = READ_HARDWARE_UCHAR(devContext,

 devContext->BaseAddress+DIO_INTSTATUS_OFFSET);

 //

 // If the DIO_INSTATUS_PENDING bit is set, IT DOES!

 // For our device, just the act of reading the interrupt status
 // register is enough to acknowledge (and clear) the pending
 // interrupt.

 //

 if (data & DIO_INTSTATUS_PENDING) {

 //

 // Were we waiting for this interrupt as part of processing

 // an IOCTL_WDFDIO_READ_PORTA_AFTER_INT request??

 //

 if(devContext->AwaitingInt) {

 //

 // Get the contents of PortA

 //

 data = READ_HARDWARE_UCHAR(devContext,

 devContext->BaseAddress+DIO_PORTA_OFFSET);

 //

 // Store it away in our device context. We'll pick it\

 // back up in our DpcForIsr.

 //

 devContext->PortAValueAtInt = data;

 devContext->AwaitingInt = FALSE;

 }

 //

 // Request that our DPC runs...

 //

 WdfInterruptQueueDpcForIsr(Interrupt);

 //

 // Tell WDF and hence Windows, that there WAS an interrupt
 // outstanding for us to process

 //

 return(TRUE);

 }

 return(FALSE);

}

In this example:

· The WDFDIO driver begins processing within its interrupt event callback by reading the contents of its interrupt status register and storing it in a local variable named “data.”
· The driver then tests the state of the DIO_INSTATUS_PENDING bit, which indicates that the device is currently interrupting:
If the DIO_INSTATUS_PENDING bit is not set, the device is not currently interrupting. The driver returns from the function, returning a status of FALSE to the framework.

If the device is interrupting, reading the device’s interrupt status register is sufficient to acknowledge the interrupt to the device.
· Next, the driver checks to see if it currently has a request pending to read the value of PortA after an interrupt. This is indicated by the flag AwaitingInt, which indicates that a device control request with control code IOCTL_WDFDIO_READ_PORTA_AFTER_INT is outstanding.
· If such a request is pending, the driver reads the status of PortA and stores this in the WDFDEVICE’s context field PortAValueAtInt. The driver also clears the AwaitingInt flag, to indicate that the pending device control request has been satisfied.

· The data necessary to complete the pending IOCTL_WDFDIO_READ_PORTA_AFTER_INT request has been collected, so the driver calls WdfInterruptQueueDpcForIsr to request a callback to its DpcForIsr function.

· Finally, the driver returns from its interrupt event callback, returning the status TRUE to the framework. The framework subsequently returns to the system, and the interrupt is complete.
Driver's DpcForIsr Callback Executes

When a driver’s interrupt event callback requests a DpcForIsr callback, the DpcForIsr callback will be executed when the system is next ready to return to an IRQL that is less than IRQL DISPATCH_LEVEL.
A driver’s DpcForIsr callback is typically used to continue or complete the I/O processing that was started within the device’s interrupt event callback. This includes performing whatever processing is necessary to complete the requests that are newly satisfied as a result of the device’s interrupt, or to continue the processing of any requests that are partially but not yet fully complete as a result of the device’s interrupt.
How can a request be partially complete as a result of a device’s interrupt? For example, a request to read 1024 bytes from a device that can only provide 512 bytes at a time will require multiple operations to be sent to the device to satisfy the request. When the device interrupts with the first 512 bytes, the driver’s interrupt event callback might get that data from the device and then request a callback to the driver’s DpcForIsr. Within the subsequent invocation of the DpcForIsr, the driver could initiate the required operation on the device to read the second 512 bytes.

Remember that completing a request can influence the flow of control in a driver, especially if the driver has configured the queue with a WdfIoQueueDispatchSequential dispatch type. In such a driver, completing the active request from a queue that has other requests pending will cause the framework to call the driver's I/O event processing callback to process a new request. Even for drivers that configure queues with the WdfIoQueueDispatchManual dispatch type, completing a request can trigger a queue status change.
DpcForIsr Callback Example

The WDFDIO driver’s DpcForIsr callback is invoked as a result of the example interrupt event callback shown earlier in this paper.

VOID DioDpc(WDFINTERRUPT Interrupt,WDFOBJECT Device)

{

 PDIO_DEVICE_CONTEXT devContext;

 WDFREQUEST req = NULL;

 UCHAR data = 0;

 size_t length;

 NTSTATUS status;

 //

 // Get a pointer to our device extension

 //

 devContext =

 DioGetContextFromDevice(WdfInterruptGetDevice(Interrupt));

 //

 // Is there a IOCTL_WDFDIO_READ_PORTA_AFTER_INT requst is
 // progress, waiting for us an interrupt?

 //

 if(devContext->CurrentRequest) {

 //

 // Get a pointer to the WDFREQUEST

 //

 req = devContext->CurrentRequest;

 devContext->CurrentRequest = NULL;

 //

 // Get the data that was read

 //

 data = devContext->PortAValueAtInt;

 }

 //

 // Is there a pending request?

 //

 if(req) {

 PUCHAR dataBuffer;

 //

 // Get a pointer to the buffer associated with this request.

 // This is a METHOD_BUFFERED request, so we have but one
 // buffer to use and we can use it in an arbitrary thread
 // context. We've already validated the output buffer
 // length in our EvtDeviceControl event processing callback)
 // so we pass 0 as the required buffer length.

 //

 status = WdfRequestRetrieveOutputBuffer(req,

 0,

 (PVOID*)&dataBuffer,

 &length);

 if(NT_SUCCESS(status)) {

 //

 // Return the data to the user -- Just 1 byte, read

 // in the ISR

 //

 *dataBuffer = data;

 //

 // Complete the request with success, pass back 1 in the

 // information field.

 //

 WdfRequestCompleteWithInformation(req,

 STATUS_SUCCESS,
 1);
// count of data bytes returned
 //

 // This request is successfully completed

 //

 return;

 } else {

 //

 // Not really possible, but what the heck...

 //

 WdfRequestCompleteWithInformation(req,

 STATUS_INVALID_DEVICE_REQUEST,

 0);

 }

 }

}

In this example:

· The DpcForIsr code begins by determining if there is an outstanding IOCTL_WDFDIO_READ_PORTA_AFTER_INT request in the driver.
Although the driver code does this in such a way as to prevent race conditions (first copying the request handle from its storage location, then setting the contents of the storage location to NULL) this care is not strictly necessary. The driver utilizes a single queue to handle all its request and has set the queue dispatch type on that queue to WdfIoQueueDispatchSequential (as shown in the example earlier in this paper). As a result, only one request will ever be active at a time for each device—there is no chance that the contents of the CurrentRequest field in the device’s context will change while the driver executes in its DpcForIsr.

· If there is an outstanding IOCTL_WDFDIO_READ_PORTA_AFTER_INT device control request, the driver retrieves a pointer to the buffer into which to return the value that it read for PortA during the interrupt.
· The driver returns that value and completes the request by calling WdfRequestCompleteWithInformation. The driver returns I/O status STATUS_SUCCESS and a completion information value of 1, indicating that one byte of data is being returned to the requestor.

· Because the driver specified the WdfIoQueueDispatchSequential dispatch type, the framework will attempt to start another request, if one is pending on the queue as soon as the driver calls WdfRequestCompleteWithInformation. If there is another request pending for the queue, the framework calls the driver’s I/O event processing callback, and processing continues.

Summary

This paper describes the major steps that an I/O request from user mode takes as it is processed by Windows, with the goal of helping you understand the overall flow of an I/O request through the system. It also shows where the kernel-mode driver framework (KMDF) fits within the process, and the type of work that the framework performs.

This paper also describes the major steps that a KMDF driver takes to process a WDFREQUEST. These steps are defined by the device type, driver design, WDFQUEUE and dispatching configuration and the device’s synchronization scope. Because of the various processing and synchronization options, a well-designed KMDF driver will typically require few, if any, manually acquired locks to properly serialize access to its shared data structures.
Resources

WDF

· Windows Driver Foundation Beta Program
http://www.microsoft.com/whdc/driver/wdf/beta.mspx

· Whitepapers and presentations
http://www.microsoft.com/whdc/driver/wdf/default.mspx
· Sample source code
OSRUSBFX2. Provided in the KMDF distribution kit available through the Windows Driver Foundation Beta Program.
WDFDIO. Available in the Downloads section of http://www.osronline.com.

Windows Kernel-Mode Drivers

· Whitepapers and presentations
http://www.microsoft.com/whdc/driver/kernel/default.mspx

· Windows Driver Development Kit

Ordering Information
http://www.microsoft.com/whdc/DevTools/ddk/default.mspx

Windows DDK documentation on MSDN
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ddkint/hh/ddkint/ddksplash_0d0ef7c0-7411-4fed-8c52-ef4690fe6e40.xml.asp

© 2005 Microsoft Corporation. All rights reserved.

[image: image4.png]