[image: image2.png]Wy icrosore

. 2
;. Windows

Microsoft Device Driver Interface for HD Audio - 55

Microsoft Device Driver Interface for HD Audio

Windows Vista RC1 Version - September 25, 2006

Abstract

This document presents programming guidelines and a set of reference pages for the Intel High Definition (HD) Audio device driver interface (DDI). Audio and modem drivers call the routines in this DDI to manage hardware codecs that are attached to an HD Audio bus interface controller.

In the Microsoft® Windows Vista™ operating system, Microsoft intends to provide both a Universal Audio Architecture (UAA) class driver for a UAA-compliant HD Audio codec and a bus driver for the HD Audio controller. The HD Audio bus driver implements the HD Audio DDI. Through this DDI, the UAA class driver communicates with one or more audio codecs that conform to the UAA hardware requirements document (to be published).

This information applies for the following operating systems:

Microsoft Windows® Vista

Microsoft Windows Server™ 2003

Microsoft Windows XP

Microsoft Windows 2000

Future versions of this preview information will be provided in the Windows Driver Kit. The current version of this paper is maintained on the WHDC audio Web site:

http://www.microsoft.com/whdc/device/audio/HDAudioDDI.mspx
References and resources discussed here are listed at the end of this paper.

Contents

4Introduction

5Background

5Intel HD Audio Architecture

7UAA Extensions to the HD Audio Architecture

7HD Audio Bus Driver

8UAA Class Drivers

9Programming Guidelines

9Differences between the DDI Versions

11Synchronous and Asynchronous Codec Commands

12Wall Clock and Link Position Registers

13Hardware Resource Management

13Allocating DMA Engines

14Allocating Link Bandwidth

14Striping

15Synchronizing Two or More Streams

15Wake Enable

15Data Copying and Caching Policy

17Using DMA Interrupt Driven Event Notifications

17Querying for an HD Audio DDI

18Obtaining an HDAUDIO_BUS_INTERFACE DDI Object

19Obtaining an HDAUDIO_BUS_INTERFACE_V2 DDI Object

19Obtaining an HDAUDIO_BUS_INTERFACE_BDL DDI Object

20Technical Reference

20DDI Routines

23AllocateCaptureDmaEngine

25AllocateContiguousDmaBuffer

27AllocateDmaBuffer

29AllocateDmaBufferWithNotification

32AllocateRenderDmaEngine

34ChangeBandwidthAllocation

35FreeContiguousDmaBuffer

37FreeDmaBuffer

38FreeDmaBufferWithNotification

39FreeDmaEngine

40GetDeviceInformation

41GetLinkPositionRegister

42GetResourceInformation

43GetWallClockRegister

43RegisterEventCallback

45RegisterNotificationEvent

46SetDmaEngineState

47SetupDmaEngineWithBdl

50TransferCodecVerbs

52UnregisterEventCallback

53UnregisterNotificationEvent

54Structure Types

54HDAUDIO_BUFFER_DESCRIPTOR

55HDAUDIO_BUS_INTERFACE

58HDAUDIO_BUS_INTERFACE_V2

60HDAUDIO_BUS_INTERFACE_BDL

62HDAUDIO_CODEC_COMMAND

64HDAUDIO_CODEC_RESPONSE

65HDAUDIO_CODEC_TRANSFER

66HDAUDIO_CONVERTER_FORMAT

67HDAUDIO_DEVICE_INFORMATION

68HDAUDIO_STREAM_FORMAT

69Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2005-2006 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

In the next version of the Microsoft® Windows® operating system, Microsoft Windows Vista™, Microsoft intends to provide the following drivers as part of the operating system:

· A bus driver for managing an Intel High Definition (HD) Audio bus interface controller.

· A Universal Audio Architecture (UAA) class driver for managing a UAA-compliant audio codec (or possibly more than one codec) that is connected to an HD Audio controller.

Microsoft also intends to develop a similar HD Audio bus driver and UAA class driver for systems that run Microsoft Windows Server™ 2003, Microsoft Windows XP, and Microsoft Windows 2000. For information about the architecture of the HD Audio controller, see the Intel High Definition Audio Specification. For an overview of UAA, see the white paper Universal Audio Architecture on the WHDC audio Web site.

The HD Audio bus driver implements the HD Audio device driver interface (DDI), which kernel-mode audio and modem drivers use to communicate with hardware codecs that are attached to the HD Audio controller. The HD Audio bus driver exposes the HD Audio DDI to its children, which are instances of the audio and modem drivers that manage the codecs.

The version of the HD Audio bus driver that runs in Windows Server 2003, Windows XP, and Windows 2000 supports two variants of the HD Audio DDI:

· A DDI defined by the HDAUDIO_BUS_INTERFACE structure.
· A DDI defined by the HDAUDIO_BUS_INTERFACE_V2 structure. This DDI adds support for interrupt driven event notifications to the base functionality supplied by HDAUDIO_BUS_INTERFACE.

· A DDI defined by the HDAUDIO_BUS_INTERFACE_BDL structure. This DDI is not available in Windows Vista.

The differences between these DDIs are minor and are discussed in “Differences between the DDI Versions.”

In Windows Vista, the HD Audio bus driver supports both the DDI that is defined by the HDAUDIO_BUS_INTERFACE structure and the DDI that is defined by the HDAUDIO_BUS_INTERFACE_V2 structure.

In Windows Server 2003, Windows XP, and Windows 2000, the UAA class driver uses the DDI defined by the HDAUDIO_BUS_INTERFACE structure to manage UAA-compliant audio codecs. In Windows Vista, the UAA class driver will use the DDI defined by the HDAUDIO_BUS_INTERFACE_V2 structure. In addition, hardware vendors can choose to write custom device drivers that use one or both of these DDIs to manage their audio and modem codecs.

Hardware vendors should design their audio codecs to conform to the UAA hardware requirements document (to be published). In the absence of a custom audio driver from the vendor, users can rely on the system-supplied UAA class driver to manage their UAA-compliant audio codecs. However, an audio codec might contain proprietary features that are accessible only through the vendor's custom driver.

This document provides a preview of the different versions of the HD Audio DDI. It presents the following information:

· A background discussion of the Intel HD Audio architecture and the Microsoft UAA class driver.

· Programming guidelines for using the versions of the HD Audio DDI to control audio and modem codecs.

· A technical reference that describes the routines in the versions of the HD Audio DDI.

Background

This section presents background information about Intel’s HD Audio controller architecture and the Microsoft UAA audio class driver.

Intel HD Audio Architecture

The Intel High Definition Audio Specification describes a new audio hardware architecture that is being developed as the successor to the Intel AC ’97 codec and controller specification. The operating system’s UAA driver components can service an audio solution that exposes the HD Audio register set and connects to the system’s internal bus without requiring a solution-specific driver from the hardware vendor.

The HD Audio architecture provides a uniform programming interface for digital audio controllers. Typically, today’s audio codecs conform to the AC ’97 industry standard, and digital controllers connect to one or more AC ’97 codecs through another industry standard called AC-Link. Although these standards help to ensure that codecs and links are implemented consistently, currently no standard exists to define the interface to the digital audio controller. Vendors tend to have very similar solutions for their system-integrated AC ’97 digital audio controllers, but each AC ’97 solution is likely to be different enough to require a separate driver. The HD Audio architecture is intended to eliminate the requirement for solution-specific drivers by specifying a base register set that is uniform across all implementations.

A bus controller that conforms to the HD Audio architecture:

· Provides controller hardware version information.

· Provides hardware configuration information, including the number of serial data out (SDO) lines and direct memory access (DMA) engines.

· Manages the amount of bus bandwidth available on the HD Audio Link.

· Accepts unsolicited responses and wake-up events from codecs.

· Queues codec commands and codec responses in separate ring buffers.

· Provides a collection of input, output, and bidirectional DMA engines that perform scatter-gather transfers and can stream data between codecs and cyclic buffers in memory without intervention by the host processor.

Figure 1 shows a diagram of the UAA driver architecture for HD Audio devices in Windows Vista. In Figure 1, the software components that are labeled “UAA Audio Driver” and “HD Audio Bus Driver” are provided by Microsoft. The component labeled “Modem Driver” is provided by an independent hardware vendor.

[image: image1.wmf]UAA Audio

Driver

HD Audio

Bus Driver

Kernel Mode

Hardware

Codec

Codec

Codec

HD Audio Link

HD Audio

Controller

DMA

DMA

DMA

DMA

Codec

Modem

Driver

Figure 1. UAA Driver Architecture for Intel HD Audio Devices

The UAA class driver provides the streaming interface to the operating system audio stack above the driver (not shown in Figure 1).

The HD Audio bus driver directly accesses the hardware registers in the HD Audio controller and provides the DDI that the UAA class driver or modem driver uses to manage the DMA engines and to send commands to the codecs. The HD Audio bus driver handles all interrupts, Plug and Play notifications, and power-management events on behalf of audio devices on the HD Audio Link.

The HD Audio controller provides the DMA engines and command buffers that are used to transfer commands and data to codecs on the HD Audio Link. The boxes labeled “Codec” in Figure 1 can be either audio or modem codecs, and they can be connected either to removable peripherals through external jacks or to fixed internal peripherals such as mobile PC speakers.

In Windows Vista, a hardware digital signal processor (DSP), which might reside on the same physical device as the HD Audio controller, can provide audio effects processing that is beyond the basic audio support that the UAA class driver provides. However, the DSP must operate as a separate device, independently of the HD Audio controller, and the user-mode system mixer must have direct access to the output streams from the DSP to maintain global control over the volume levels and other properties of all the outgoing streams. The hardware vendor must provide the driver for the DSP.

UAA Extensions to the HD Audio Architecture

To be UAA-compliant, a hardware controller must implement the following change to Intel High Definition Audio Specification:

A UAA device must support 256 entries for the command output ring buffer (CORB) and 256 entries for the response input ring buffer (RIRB).

In addition, the Intel HD Audio architecture includes several features that are not required to implement a UAA-compliant HD Audio device. As an option, hardware vendors can omit the following features from their HD Audio devices and remain UAA-compliant:

· DMA position lower base address (DPLBASE) and DMA position upper base address (DPUBASE) registers (at offsets 70h and 74h).

· Immediate command output, immediate response input, and immediate command status registers (at offsets 60h, 64h, and 68h).

· Flush control bit in the global control register (at offset 08h).

A bus controller design can omit these features and still be fully compatible with the HD Audio bus driver. However, a hardware vendor should consider whether these features might be necessary for compatibility with other device-specific software. For example, a BIOS routine might use the immediate command, response, and status registers.

For UAA version 1.0, the HD Audio hardware version must be 1.0. (The VMAJ and VMIN registers must specify a major version number of 01h and a minor version number of 00h.)

HD Audio Bus Driver

The HD Audio bus driver is the only software component that directly accesses the hardware registers of the HD Audio bus interface controller. The bus driver exposes the HD Audio DDI that its children—instances of the function drivers that control the audio and modem codecs—can use to program the HD Audio controller hardware.

In addition, the bus driver manages the HD Audio Link hardware resources, which include the DMA engines and bus bandwidth. Function drivers allocate and free these resources through the HD Audio DDI.

The HD Audio bus driver:

· Queries the codecs on the bus and creates children to manage the codecs.

· Handles interrupt service routines (ISRs) for unsolicited responses and propagating the unsolicited responses to its children.

· Passes commands from its children to the codecs and retrieves responses from the codecs.

· Sets up the DMA engines that transfer data to or from the cyclic buffers.

· Manages bus bandwidth resources on the HD Audio Link.

· Provides access to the wall clock register and link position registers.

· Provides synchronized starting and stopping of groups of streams.

The HD Audio bus driver does not provide:

· An interface for programming a DSP or additional registers that are not defined in the Intel High Definition Audio Specification.
· Prioritized bandwidth management.

During device enumeration, the HD Audio bus driver detects the codecs that are attached to the HD Audio controller’s HD Audio Link. For each codec, the bus driver loads one function driver (if available) for each function group that it finds within the codec. For information about function groups, see the Intel High Definition Audio Specification.
UAA Class Drivers

In Windows Vista, Microsoft provides UAA class drivers for audio devices that connect to either an internal bus (PCI) or an external bus (IEEE 1394 or USB). To be supported by the UAA class driver for a particular bus, a device must conform to the UAA hardware specifications for that bus. For a device on an internal bus, the UAA hardware requirements document specifies the following:

· The HD Audio controller’s register set with the minor changes that are discussed in “UAA Extensions to the HD Audio Architecture.”

· The requirements for the HD Audio codec (to be published).

For information about the requirements for UAA devices on external buses, see the white paper Universal Audio Architecture on the WHDC audio Web site.

The remainder of this discussion refers only to the version of the UAA class driver that controls an audio device that connects to an internal bus, implements the HD Audio hardware registers, and controls a UAA-compliant HD Audio codec. This class driver is a child of the HD Audio bus driver and uses the bus driver’s baseline HD Audio DDI to program the UAA-compliant hardware.

The UAA class driver for the HD Audio codec:

· Provides the system with a device interface for an audio codec or codecs.

· Collects information about the digital-to-audio converters, audio-to-digital converters, and jack-presence detection pins in the codecs that are present on the HD Audio Link.

· Initializes the audio codec or codecs with third-party commands on startup.

· Gets and sets audio properties in the audio codecs.

· Provides a streaming interface (mapping a stream’s cyclic buffer to user mode, setting up the codec and DMA engine, and handling properties such as link position).

· Handles power management in the audio codecs.

This class driver does not provide:

· A way of dynamically programming audio effects nodes in the codecs.

· Combining functions across two or more codecs to form an aggregate audio or modem device.

· Handling of general-purpose I/O (GPIO) pins on widgets unless they are explicitly defined in the UAA hardware requirements document.

· A plug-in model for third-party code for either programming the codecs or providing software effects.

For more information about UAA class drivers, see the white paper titled Universal Audio Architecture on the WHDC audio Web site.

Programming Guidelines

This section presents programming guidelines for using the versions of the HD Audio DDI (as defined by the HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2 and HDAUDIO_BUS_INTERFACE_BDL structures) to control audio and modem codecs that are connected to an HD Audio bus interface controller.

The HD Audio bus driver exposes one or both versions of the HD Audio DDI to its children, which are kernel-mode function drivers for the audio and modem codecs. (One of these children might be the UAA class driver.) These drivers call the routines in the DDIs to access the hardware capabilities of the HD Audio controller device.

Differences between the DDI Versions

The HD Audio DDI is available in three slightly different versions:

· The baseline version of the HD Audio DDI, which is defined by the HDAUDIO_BUS_INTERFACE structure. Most function drivers for audio and modem codecs require only the capabilities that this DDI version provides. This version is available through the HD Audio bus drivers that run in Windows Vista, Windows XP, and Windows 2000.

· A modified version of the HD Audio DDI, which is defined by the HDAUDIO_BUS_INTERFACE_V2 structure. This version augments the baseline version with the addition of support for DMA interrupt driver event notification. This version is available through the HD Audio bus drivers that run in Windows Vista.

· The modified version of the HD Audio DDI that is defined by the HDAUDIO_BUS_INTERFACE_BDL structure. This version accommodates the requirements of a relatively few audio and modem drivers that must have additional control over the setup of buffer descriptor lists (BDLs) for DMA operations. This version of the DDI is available only for Windows XP and Windows 2000. It is not available for Windows Vista.

In all of these structures, the names and types of the first five members match those of the five members of the INTERFACE structure, which is described in the Windows DDK documentation. For information about the values of these members, see “Obtaining an HDAUDIO_BUS_INTERFACE DDI Object”, “Obtaining an HDAUDIO_BUS_INTERFACE_V2 DDI Object” or “Obtaining an HDAUDIO_BUS_INTERFACE_BDL DDI Object.”

The routines in the three versions of the HD Audio DDI:

· Transfer commands to codecs and retrieve the responses to those commands.

· Allocate and set up DMA engines to transfer the data in render and capture streams.

· Change the stream state of one or more DMA engines to running, paused, stopped, or reset.

· Reserve link bandwidth for render and capture streams.

· Provide direct access to the wall clock register and link position registers.

· Notify clients of unsolicited responses from codecs.

· Signal registered events based on DMA engine progress.

The three versions of the DDI have the following differences:

· The HDAUDIO_BUS_INTERFACE structure defines two routines, AllocateDmaBuffer and FreeDmaBuffer, that are not present in HDAUDIO_BUS_INTERFACE_BDL.

· The HDAUDIO_BUS_INTERFACE_BDL structure defines three routines, SetupDmaEngineWithBdl, AllocateContiguousDmaBuffer, and FreeContiguousDmaBuffer, that are not present in HDAUDIO_BUS_INTERFACE or HDAUDIO_BUS_INTERFACE_V2

· The HDAUDIO_BUS_INTERFACE_V2 structure defines four routines, AllocateDmaBufferWithNotification, FreeDmaBufferWithNotification, RegisterNotificationEvent, and UnregisterNotificationEvent, that are not present in HDAUDIO_BUS_INTERFACE or HDAUDIO_BUS_INTERFACE_BDL.

When a client calls the AllocateDmaBuffer routine in the first DDI version, the HD Audio bus driver:

· Allocates a DMA buffer and BDL for a DMA engine to use.

· Initializes the BDL.

· Sets up the DMA engine to use the buffer and BDL.

In contrast, the AllocateContiguousDmaBuffer routine in the second DDI version allocates storage for a DMA buffer and BDL, but relies on the caller to initialize the BDL. The SetupDmaEngineWithBdl routine sets up the DMA engine to use the buffer and the caller-initialized BDL.

As described in the Intel High Definition Audio Specification, the BDL contains the list of physical memory blocks in the DMA engine’s scatter-gather queue. By calling SetupDmaEngineWithBdl to set up the BDL, the client can specify the points in the data stream at which the DMA engine generates interrupts. The client does this by setting the interrupt-on-completion (IOC) bit in selected BDL entries, as described in the Intel High Definition Audio Specification. With this capability, the client can precisely control the timing of the IOC interrupts that occur during the processing of the audio stream.
For clients that simply desire DMA interrupt driven event notifications the clients can utilize the HDAUDIO_BUS_INTERFACE_V2 structure’s AllocateDmaBufferWithNotification routine. When this routine is called the HD Audio bus driver:

· Allocates a DMA buffer and BDL for a DMA engine to use.

· Initializes the BDL to support IOC interrupts at the mid-point and the end of the buffer, depending on the number of notifications requested.

· Sets up the DMA engine to use the buffer, the BDL, and to generate interrupts.

Nearly all clients will use the HDAUDIO_BUS_INTERFACE or HDAUDIO_BUS_INTERFACE_V2 versions of the DDI. Only a few clients that require precise control over the timing of interrupts will use the HDAUDIO_BUS_INTERFACE_BDL version.

Synchronous and Asynchronous Codec Commands

The TransferCodecVerbs routine in the HD Audio DDI allows function drivers to send commands to audio and modem codecs that are connected to an HD Audio controller. The codec commands can execute either synchronously or asynchronously:

· If a call to TransferCodecVerbs submits a list of commands to be processed synchronously, the routine returns only after the codec or codecs have processed all the commands.

· If a call to TransferCodecVerbs submits a list of commands to be processed asynchronously, the routine returns just as soon as the HD Audio bus driver adds the commands to its internal command queue, without waiting for the codec or codecs to process the commands. After the codecs have processed the commands, the bus driver notifies the function driver by calling a callback routine.

Depending on the nature of the codec commands that it sends, the function driver uses one or more of the following techniques to retrieve responses from a codec:

· If the function driver must have the response from the codec before it can perform any additional processing, it uses the synchronous mode.

· If the function driver does not need to wait for the codec commands to complete, to see the codec responses, and to know when the commands complete, then it uses the asynchronous mode, ignores the callback (except to free the storage for the codec commands), and discards or ignores the responses to the codec commands.

· If the function driver must know when the codec commands complete, but does not need to see the responses, then it uses the asynchronous mode and relies on the callback for notification. However, it discards or ignores the responses to the codec commands. The callback routine might use a kernel streaming (KS) event to send the notification to the main part of the driver. For information about KS events, see the Windows DDK documentation.

· If the function driver must know both when the codec commands complete and what the responses are, but must resume processing immediately rather than waiting for the commands to complete, then it uses the asynchronous mode and avoids reading the responses until it receives the callback. Either the callback routine or the main part of the driver can inspect the responses.

TransferCodecVerbs returns STATUS_SUCCESS if it succeeds in adding the list of commands to the bus driver’s internal command queue. Even though the call succeeds, the responses might still be invalid. The function driver must check the status bits in the codec responses to determine whether they are valid. This rule applies to both synchronous and asynchronous mode.

The cause of an invalid response is likely to be one of the following:

· The command did not reach the codec.

· The codec responded, but the response was lost when a first-in, first-out (FIFO) overrun occurred in the RIRB.

The latter problem indicates that the RIRB FIFO is of insufficient size.

Each codec response contains an IsValid flag to indicate whether the response is valid and a HasFifoOverrun flag to indicate whether a RIRB FIFO overrun has occurred. If IsValid=0, indicating that a response is invalid, the HasFifoOverrun flag helps to identify the source of the failure:

· If HasFifoOverrun=0, then the codec failed to respond within the required time interval. The probable cause is that the command never reached the codec.

· If HasFifoOverrun=1, then the command probably reached the codec, but the response was lost due to a FIFO overrun.

During a call to TransferCodecCommands, the caller provides a pointer to an array of HDAUDIO_CODEC_TRANSFER structures. Each structure contains a command and provides space for a response. The bus driver always writes each response into the structure that contains the command that triggered the response.

For each call to TransferCodecCommands, the order in which the commands are processed is determined by the order of the commands in the array. Processing of the first command in the array always completes before processing of the second command begins, and so on.

In addition, if a client makes an asynchronous call to TransferCodecCommands and then calls TransferCodecCommands a second time without waiting for the callback from the first call, the relative order in which the two groups of commands from the two calls are processed is defined by the order in which the client submitted the two groups of commands. Thus, the bus driver processes all the commands from the first call before it begins processing the commands from the second call.

However, the relative order of commands sent by two different function driver instances is undefined. (Each instance has its own physical device object.) For example, if instance 1 calls TransferCodecCommands to send commands A, B, and C in the order A-B-C, and instance 2 calls TransferCodecCommands to send commands X, Y, and Z in the order X-Y-Z, then the bus driver might execute the commands in the order A-X-Y-B-Z-C.

When separate function driver threads share access to the same set of hardware resources, the relative order of commands from different driver threads might be important. If so, the function driver is responsible for synchronizing the sharing of the resources among the threads.

For example, the hardware interface for writing a sequence of data bytes to a codec might consist of an index register and an 8-bit data register. First, the function driver submits a codec command to load the starting index into the index register. Next, the driver submits a command to write the first byte of data to the data register. The index register increments following each successive write to the data register until the transfer is complete. However, if two driver threads fail to properly synchronize their accesses of the index and data registers, the relative order of the individual register accesses by the two threads is undefined and the probable result is data corruption or an invalid hardware configuration.

The TransferCodecVerbs routine is available in both versions of the HD Audio DDI.

Wall Clock and Link Position Registers

The HD Audio controller contains a 32-bit wall clock counter register that increments at the bit-clock rate of the HD Audio Link and rolls over approximately every 89 seconds. Software uses this counter to synchronize between two or more controller devices by measuring the relative drift between the devices’ hardware clocks.

In addition, the HD Audio controller contains a set of link position registers. Each DMA engine has a link position register that indicates the current read or write position of the data that the engine is transmitting over the HD Audio Link. The position register expresses the current position as a byte offset from the beginning of the cyclic buffer:

· In a render stream, the link position register indicates the cyclic buffer offset of the next byte that the DMA engine will send over the link to the codec.

· In a capture stream, the link position register indicates the cyclic buffer offset of the next byte that the DMA engine will receive from the codec over the link.

The cyclic buffer offset is simply the offset in bytes of the current read or write position from the start of the cyclic buffer. Upon reaching the end of the buffer, the position wraps around to the start of the buffer and the cyclic buffer offset resets to zero. The cyclic buffer resides in system memory. For more information, see the Intel High Definition Audio Specification.
A kernel-mode function driver can read the wall clock and link position registers directly. To enable direct access, the HD Audio bus driver maps the physical memory that contains the registers into system virtual memory. The function driver calls the GetWallClockRegister or GetLinkPositionRegister routine to obtain a system virtual address pointer to the wall clock register or a link position register. These two routines are available in both versions of the HD Audio DDI.

The HD Audio controller hardware mirrors the wall clock and link position registers into memory pages that do not contain any of the other registers in the controller. Thus, if the function driver maps the mirrored wall clock or position registers to user mode, no user-mode programs can access any of the controller’s other registers. The driver never allows a user-mode program to touch these other registers and program the hardware.

Register mirroring must accommodate the host processor’s page size. Depending on the host processor architecture, a typical page size might be 4,096 or 8,192 bytes.

Hardware Resource Management

Through the HD Audio DDI, function drivers for audio and modem codecs can allocate and free hardware resources in the HD Audio controller device. These resources are chiefly:

· DMA engines in the HD Audio controller.

· Bus bandwidth on the HD Audio Link.

Allocating DMA Engines

The HD Audio controller contains a fixed number of DMA engines. Each engine can perform scatter-gather transfers for a single render or capture stream.

Three types of DMA engines are available:

· Render DMA engines, which can handle only render streams.

· Capture DMA engines, which can handle only capture streams.

· Bidirectional DMA engines, which can be configured to handle either render or capture streams.

When allocating a DMA engine for a render stream, the AllocateCaptureDmaEngine routine allocates a render DMA engine if one is available. If the supply of render DMA engines is exhausted, the routine allocates a bidirectional DMA engine if one is available.

Similarly, when allocating a DMA engine for a capture stream, the AllocateRenderDmaEngineAllocateRenderDmaEngine routine allocates a capture DMA engine if one is available. If the supply of capture DMA engines is exhausted, the routine allocates a bidirectional DMA engine if one is available.

The AllocateXxxDmaEngine routines are available in both versions of the HD Audio DDI.

Allocating Link Bandwidth

The HD Audio Link has a finite amount of bus bandwidth available for render and capture streams to use. To ensure glitchless audio, the HD Audio bus driver manages bus bandwidth as a shared resource. When a function driver allocates a DMA engine, it must also allocate a portion of the available bus bandwidth for the DMA engine’s render or capture stream to use.

A fixed amount of bus bandwidth is available on the HD Audio Link’s serial data in (SDI) lines and on the serial data out (SDO) lines. The HD Audio bus driver monitors bandwidth consumption separately on the SDI and SDO lines. If a request to allocate input or output bus bandwidth exceeds the available bandwidth, the bus driver fails the request.

When the function driver calls the bus driver’s AllocateCaptureDmaEngine and AllocateRenderDmaEngine routine, it specifies a stream format. The stream format specifies the stream’s sample rate, sample size, and number of channels. From this information, the AllocateXxxDmaEngine routine determines the stream’s bus bandwidth requirements. If sufficient bandwidth is available, the routine allocates the required bandwidth for the DMA engine to use. Otherwise, the call to AllocateXxxDmaEngine fails.

A function driver can call ChangeBandwidthAllocation to request a change in the bandwidth allocation for an existing DMA engine allocation.

The AllocateXxxDmaEngine and ChangeBandwidthAllocation routines are available in both versions of the HD Audio DDI.

Striping

The HD Audio architecture supports a technique called striping that can reduce the amount of bus bandwidth that render streams consume. If the HD Audio hardware interface provides more than one SDO line, striping can increase the rate at which a render DMA engine can transfer data by alternately distributing the bits in the data stream among the SDO lines. The first bit (the most significant bit) travels over SDO0, the second bit travels over SDO1, and so on. For example, with two SDO lines, striping effectively doubles the transfer rate by splitting the stream between the two SDO lines. A DMA engine that uses striping to transfer a render stream over two SDO lines consumes only half the bus bandwidth that it would consume if it did not use striping.

The function driver enables striping through the AllocateRenderDmaEngine routine’s stripe call parameter.

For more information about striping, see the Intel High Definition Audio Specification.
Synchronizing Two or More Streams

The SetDmaEngineState routine sets the state of one or more DMA engines to one of the following: running, paused, stopped, or reset. If a call to this routine specifies more than one DMA engine, then all the DMA engines make the state transition synchronously.

The ability to synchronize a group of streams is required for some audio applications. For example, an audio driver might use codec-combining to create a logical surround-sound audio device that joins two audio codecs: one codec drives the front speakers and a second audio codec drives the back speakers. Depending on the capabilities of the codecs, the audio driver might be required to split the original surround-sound audio stream into two streams, one for each codec. By using the SetDmaEngineState routine to start and stop the streams in unison, the two streams can remain synchronized.

Allowing the two streams to fall out of synchronization by even a few samples might cause undesirable audio artifacts.

The SetDmaEngineState routine is available in both versions of the HD Audio DDI.

The UAA class driver does not perform codec-combining.

Wake Enable

Before powering down a codec, the codec function driver typically enables the codec to wake up the system if a status-change event occurs while the codec is in the powered-down state. For an audio codec, such an event can be triggered when the user inserts a plug into an input jack or removes a plug from a jack. For a modem codec, a status-change event can occur when the phone rings to indicate an incoming call. For more information about status-change events, see the Intel High Definition Audio Specification.
To prepare for powering down, the function driver first configures the codec to signal the HD Audio bus controller when a status-change event occurs. Next, the function driver sends an IRP_MN_WAIT_WAKE power-management input/output request packet (IRP) to the HD Audio bus driver to tell it to enable the wake-up signal from the codec. Later, if the wake-up signal is enabled and the codec transmits a status-change event over the codec's SDI line, the controller generates a wake-up signal to the system and the bus driver notifies the function driver by completing the IRP_MN_WAIT_WAKE IRP. For information about IRP_MN_WAIT_WAKE, see the Windows DDK documentation.

Following a wake event, the bus driver determines which codec generated the wake-up signal and completes any pending IRP_MN_WAIT_WAKE IRPs on that codec. However, if the codec contains both audio and modem function groups, for example, the bus driver has no way to determine which function group is the source of the wake-up signal. In this case, the function driver must send its own queries to the codec to verify the source of the wake-up signal.

Data Copying and Caching Policy

The sample HD Audio codec function driver in the HD Audio IHV-Enabling Kit is implemented as an adapter driver that interfaces to the PortCls system driver. As a PortCls adapter driver, the function driver models the subdevices in the audio codec as wave filters and topology filters, and it implements WaveCyclic and Topology miniport drivers to support these subdevices.

As explained in the Windows DDK documentation, a WaveCyclic miniport driver copies audio data between the DMA buffer, which the HD Audio controller hardware accesses, and the client buffer, which the user-mode audio application accesses:

· For a playback data stream, the driver copies data from the client buffer to the DMA buffer.

· For a capture data stream, the driver copies data from the DMA buffer to the client buffer.

For both playback and capture streams, the driver can achieve the best performance by enabling caching of the DMA buffer memory (cache type MmCached) and relying on the PCI controller's bus-snooping mechanism to ensure cache coherency. However, some PCI Express controller implementations do not snoop the HD Audio controller's isochronous data transfers (for example, Intel's initial PCI Express chip set).

The function driver cannot detect whether the PCI controller hardware supports snooping of DMA buffer transfers or performs isochronous data transfers. To avoid potential cache coherency problems, the driver disables caching of the DMA buffer memory by specifying the caching type for that memory as MmWriteCombined. (MmNonCached would also work, but might not perform as well.) If you write a custom adapter driver that is based on the sample function driver, your WaveCyclic miniport driver should behave similarly unless you can verify that the PCI controller does in fact support snooping of DMA buffer transfers.

The sample HD Audio function driver uses the HDAUDIO_BUS_INTERFACE version of the HD Audio DDI. The function driver calls the AllocateDmaBuffer routine to allocate the memory for the DMA buffer. Next, it calls the MmMapLockedPagesSpecifyCache routine to map the physical pages in the DMA buffer. During this call, the function driver specifies the cache type as MmWriteCombined. For information about MmMapLockedPagesSpecifyCache, see the Windows DDK documentation.

To support devices and systems that do not perform bus snooping, a custom function driver must follow these rules:

· For a playback stream, specify the DMA buffer's cache type as MmWriteCombined. After copying a block of data from the client buffer to the DMA buffer, call the KeMemoryBarrier function to make the data visible to the DMA engine. KeMemoryBarrier flushes the copied data to memory in an efficient way that leaves the processor's data caches largely undisturbed.

· For a capture stream, specify the DMA buffer's cache type as either MmWriteCombined or MmNonCached. In addition, the function driver should avoid writing to the DMA buffer. If it must perform in-place processing of audio samples, it should first copy the data elsewhere.

For more information about KeMemoryBarrier, see the Windows DDK documentation.

The block of data that the function driver copies to or from the DMA buffer is not required to begin or end on a write-combining buffer boundary, and its size is not required to be a multiple of the write-combining buffer size (typically, 32 or 64 bytes).

For codec function drivers using the HDAUDIO_BUS_INTERFACE_V2 version of the DDI, the AllocateDmaBufferWithNotification routine performs the same as the AllocateDmaBuffer routine with the exception that it sets up and enables IOC interrupts.

For codec function drivers that use the HDAUDIO_BUS_INTERFACE_BDL version of the DDI, the AllocateContiguousDmaBuffer routine performs both the allocation and mapping of the DMA buffer memory. The routine always sets the buffer's cache type to MmWriteCombined.

For more information about write-combining, see the IA-32 Intel Architecture Software Developer’s Manual at http://www.intel.com.

Using DMA Interrupt Driven Event Notifications

Support for DMA interrupt driven event notifications are provided via the HDAUDIO_BUS_INTERFACE_V2 version of the HD Audio DDI. There are four routines that facilitate this support: AllocateDmaBufferWithNotification, FreeDmaBufferWithNotification, RegisterNotificationEvent, and UnregisterNotificationEvent.

To utilize this capability, the codec function driver uses AllocateDmaBufferWithNotification to allocate its audio buffer. This routine allocates the audio buffer, allocates and initializes the BDL, and programs the DMA engine to use the buffer, the BDL, and to generate IOC interrupts.
If AllocateDmaBufferWithNotification is called requesting a notification count of 1, the engine is programmed to generate an interrupt upon completion of the last entry in the BDL (i.e. – the end of the buffer). If AllocateDmaBufferWithNotification is called requesting a notification count of 2, the buffer is allocated and the BDL initialized such that an interrupt is generated at the mid-point of the buffer and at the end of the buffer.

Once the buffer is allocated with AllocateDmaBufferWithNotification, the client can register events that will be notified (signaled) using the RegisterNotificationEvent routine. The client can register more than one event by making multiple calls to RegisterNotificationEvent and passing pointers to different events.

The HD Audio bus driver, when it receives an IOC interrupt for a DMA engine with event notification enables, queues a DPC (deferred procedure call). When the DPC runs it walks the list of notification events maintained by the HD Audio bus driver and signals each event.
By utilizing the WaveRT Port/Miniport APIs and property sets as described in the WaveRT white paper and Windows DDK documentation, direct signaling of user-mode events can be facilitated to enable DMA driven notification/scheduling in a user-mode audio client.

The codec function driver removes an event from the list maintained by the HD Audio bus driver using the UnregisterNotificationEvent routine. The codec function driver needs to unregister each registered event prior to freeing the audio buffer. To free an audio buffer allocated with AllocateDmaBufferWithNotification, the FreeDmaBufferWithNotification routine must be used.
Querying for an HD Audio DDI

To obtain a counted reference to an object with an, the function driver for an audio or modem codec sends an IRP_MN_QUERY_INTERFACE input/output control (IOCTL) to the HD Audio bus driver. For information about this IOCTL, see the Windows DDK documentation.

In Windows Vista and later, the HD Audio bus driver supports only the HDAUDIO_BUS_INTERFACE and HDAUDIO_BUS_INTERFACE_V2 versions of the DDI. It does not support the HDAUDIO_BUS_INTERFACE_BDL version.

An HD Audio bus driver can be installed as an upgrade in Windows 2000, Windows XP, and Windows Server 2003. This bus driver supports both DDI versions.

The procedures for obtaining references to the HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2 and HDAUDIO_BUS_INTERFACE_BDL versions of the DDI are described in “Obtaining an HDAUDIO_BUS_INTERFACE DDI Object”, “Obtaining an HDAUDIO_BUS_INTERFACE_V2 DDI Object” and “Obtaining an HDAUDIO_BUS_INTERFACE_BDL DDI Object.”

Obtaining an HDAUDIO_BUS_INTERFACE DDI Object

The following table shows the input parameter values that the function driver writes into the IRP_MN_QUERY_INTERFACE IOCTL to obtain an HDAUDIO_BUS_INTERFACE structure and a context object for the version of the HD Audio DDI that this structure defines.

	Parameter
	Value

	CONST GUID *InterfaceType
	GUID_HDAUDIO_BUS_INTERFACE

	USHORT Size
	sizeof (HDAUDIO_BUS_INTERFACE)

	USHORT Version
	0x0100

	PINTERFACE Interface
	Pointer to HDAUDIO_BUS_INTERFACE structure

	PVOID InterfaceSpecificData
	NULL

The function driver allocates the storage for the HDAUDIO_BUS_INTERFACE structure and includes a pointer to this structure in the IOCTL. In the preceding table, the pointer to the HDAUDIO_BUS_INTERFACE structure is cast to type PINTERFACE, which is a pointer to a structure of type INTERFACE. The names and types of the first five members of HDAUDIO_BUS_INTERFACE match those of the five members of INTERFACE. HDAUDIO_BUS_INTERFACE contains additional members that are function pointers to the DDI routines. In response to receiving the IOCTL from the function driver, the HD Audio bus driver fills in the entire HDAUDIO_BUS_INTERFACE structure.

The following table shows the values that the HD Audio bus driver writes into the first five members of the HDAUDIO_BUS_INTERFACE structure.

	Parameter
	Value

	USHORT Size
	sizeof (HDAUDIO_BUS_INTERFACE)

	USHORT Version
	0x0100

	PVOID Context
	Context information that must be passed as the first call parameter to every DDI routine

	PINTERFACE_REFERENCE InterfaceReference
	Pointer to a routine that increments the context object’s reference count

	PINTERFACE_DEREFERENCE InterfaceDereference
	Pointer to a routine that decrements the context object’s reference count

In the preceding table, the Context member points to a context object that contains information that is specific to the particular instance of the baseline HD Audio DDI that the client obtains from the IOCTL. When calling any of the routines in the DDI, the client function driver must always specify the Context pointer value as the first call parameter. The context information is opaque to the client. The HD Audio bus driver creates a different context object for each client. When the context object is no longer required, the client frees the context object by calling the InterfaceDereference routine shown in the preceding table. If required, a client can create additional references to the object by calling the InterfaceReference routine, but the client is responsible for releasing these references when it no longer requires them.

For more information about the IRP_MN_QUERY_INTERFACE IOCTL and INTERFACE structure, see the Windows DDK documentation.

Obtaining an HDAUDIO_BUS_INTERFACE_V2 DDI Object

The following table shows the input parameter values that the function driver writes into the IRP_MN_QUERY_INTERFACE IOCTL to obtain an HDAUDIO_BUS_INTERFACE_V2 structure and a context object for the version of the HD Audio DDI that this structure defines.

	Parameter
	Value

	CONST GUID *InterfaceType
	GUID_HDAUDIO_BUS_INTERFACE_V2

	USHORT Size
	sizeof (HDAUDIO_BUS_INTERFACE_V2)

	USHORT Version
	0x0100

	PINTERFACE Interface
	Pointer to HDAUDIO_BUS_INTERFACE_V2 structure

	PVOID InterfaceSpecificData
	NULL

The function driver allocates the storage for the HDAUDIO_BUS_INTERFACE_V2 structure and includes a pointer to this structure in the IOCTL. In the preceding table, the pointer to the HDAUDIO_BUS_INTERFACE_V2 structure is cast to type PINTERFACE, which is a pointer to a structure of type INTERFACE. The names and types of the first five members of HDAUDIO_BUS_INTERFACE_V2 match those of the five members of INTERFACE. HDAUDIO_BUS_INTERFACE_V2 contains additional members that are function pointers to the DDI routines. In response to receiving the IOCTL from the function driver, the HD Audio bus driver fills in the entire HDAUDIO_BUS_INTERFACE_V2 structure.

The following table shows the values that the HD Audio bus driver writes into the first five members of the HDAUDIO_BUS_INTERFACE_V2 structure.

	Parameter
	Value

	USHORT Size
	sizeof (HDAUDIO_BUS_INTERFACE_V2)

	USHORT Version
	0x0100

	PVOID Context
	Context information that must be passed as the first call parameter to every DDI routine

	PINTERFACE_REFERENCE InterfaceReference
	Pointer to a routine that increments the context object’s reference count

	PINTERFACE_DEREFERENCE InterfaceDereference
	Pointer to a routine that decrements the context object’s reference count

In the preceding table, the Context member points to a context object that contains information that is specific to the particular instance of the baseline HD Audio DDI that the client obtains from the IOCTL. When calling any of the routines in the DDI, the client function driver must always specify the Context pointer value as the first call parameter. The context information is opaque to the client. The HD Audio bus driver creates a different context object for each client. When the context object is no longer required, the client frees the context object by calling the InterfaceDereference routine shown in the preceding table. If required, a client can create additional references to the object by calling the InterfaceReference routine, but the client is responsible for releasing these references when it no longer requires them.

For more information about the IRP_MN_QUERY_INTERFACE IOCTL and INTERFACE structure, see the Windows DDK documentation.

Obtaining an HDAUDIO_BUS_INTERFACE_BDL DDI Object

As explained previously, the function driver for an audio or modem codec obtains a counted reference to an object with an HD Audio DDI by sending an IRP_MN_QUERY_INTERFACE IOCTL to the HD Audio bus driver.

The following table shows the input parameter values that the function driver writes into the IOCTL to obtain an HDAUDIO_BUS_INTERFACE_BDL structure and a context object for the version of the HD Audio DDI that this structure defines.

	Parameter
	Value

	CONST GUID *InterfaceType
	GUID_HDAUDIO_BUS_INTERFACE_BDL

	USHORT Size
	sizeof (HDAUDIO_BUS_INTERFACE_BDL)

	USHORT Version
	0x0100

	PINTERFACE Interface
	Pointer to HDAUDIO_BUS_INTERFACE_BDL structure

	PVOID InterfaceSpecificData
	NULL

The function driver allocates the storage for the HDAUDIO_BUS_INTERFACE_BDL structure and includes a pointer to this structure in the IOCTL. In the preceding table, the pointer to the HDAUDIO_BUS_INTERFACE_BDL structure is cast to type PINTERFACE, which is a pointer to a structure of type INTERFACE. The names and types of the first five members of HDAUDIO_BUS_INTERFACE_BDL match those of the five members of INTERFACE. HDAUDIO_BUS_INTERFACE_BDL contains additional members that are function pointers to the DDI routines. In response to receiving the IOCTL from the function driver, the HD Audio bus driver fills in the entire HDAUDIO_BUS_INTERFACE_BDL structure.

The following table shows the values that the HD Audio bus driver writes into the first five members of the HDAUDIO_BUS_INTERFACE_BDL structure.

	Parameter
	Value

	USHORT Size
	sizeof (HDAUDIO_BUS_INTERFACE_BDL)

	USHORT Version
	0x0100

	PVOID Context
	Context information that needs to be passed as the first call parameter to every DDI routine

	PINTERFACE_REFERENCE InterfaceReference
	Pointer to a routine that increments the context object’s reference count

	PINTERFACE_DEREFERENCE InterfaceDereference
	Pointer to a routine that decrements the context object’s reference count

In the preceding table, the Context member points to a context object that contains information that is specific to the particular instance of the HDAUDIO_BUS_INTERFACE_BDL version of the DDI that the client obtains from the IOCTL. As explained previously, when calling any of the routines in the DDI, the client function driver must always specify the Context pointer value as the first call parameter.

For more information about the IRP_MN_QUERY_INTERFACE IOCTL and INTERFACE structure, see the Windows DDK documentation.

Technical Reference

This section is a technical reference that describes the routines in the two versions of the HD Audio DDI that the HDAUDIO_BUS_INTERFACE and HDAUDIO_BUS_INTERFACE_BDL structures define. It also describes the types of structures that these routines use as parameters.

Two sets of reference pages are presented: DDI Routines and Structure Types.

DDI Routines

As explained in “Differences between the Two DDI Versions,” two versions of the HD Audio DDI exist. These two DDI versions are defined by the HDAUDIO_BUS_INTERFACE and HDAUDIO_BUS_INTERFACE_BDL structures.

Both DDI versions are accessible only in kernel mode.

Either DDI version provides access to the hardware resources that the HD Audio bus controller manages. These resources include codecs, DMA engines, link bandwidth, link position registers, and a wall clock register. The HD Audio bus driver implements the DDI and exposes the DDI to its children. The children are instances of kernel-mode function drivers that use the DDI to manage the hardware codecs that are connected to the HD Audio controller.

To obtain access to either DDI version, a function driver must query the HD Audio bus driver for a DDI context object. For more information, see “Obtaining an HDAUDIO_BUS_INTERFACE DDI Object” , “Obtaining an HDAUDIO_BUS_INTERFACE_V2 DDI Object”, and “Obtaining an HDAUDIO_BUS_INTERFACE_BDL DDI Object.”

Every routine in either DDI version takes a pointer to the context object as its first call parameter.

The HDAUDIO_BUS_INTERFACE structure defines a DDI that contains the following routines:

AllocateCaptureDmaEngine
AllocateDmaBuffer
AllocateRenderDmaEngine
ChangeBandwidthAllocation
FreeDmaBuffer
FreeDmaEngine
GetDeviceInformation
GetLinkPositionRegister
GetResourceInformation
GetWallClockRegister
RegisterEventCallback
SetDmaEngineState
TransferCodecVerbs
UnregisterEventCallback
The HDAUDIO_BUS_INTERFACE version of the HD Audio DDI is supported in Windows Vista and later. In addition, a version of the HD Audio bus driver that supports this DDI can be installed in Windows 2000, Windows XP, and Windows Server 2003.

The HDAUDIO_BUS_INTERFACE_V2 structure defines a DDI that contains the following routines:

AllocateCaptureDmaEngine
AllocateDmaBuffer
AllocateRenderDmaEngine
ChangeBandwidthAllocation
FreeDmaBuffer
FreeDmaEngine
GetDeviceInformation
GetLinkPositionRegister
GetResourceInformation
GetWallClockRegister
RegisterEventCallback
SetDmaEngineState
TransferCodecVerbs
UnregisterEventCallback
AllocateDmaBufferWithNotification
FreeDmaBufferWithNotification
RegisterNotificationEvent
UnregisterNotificationEvent

The HDAUDIO_BUS_INTERFACE_V2 version of the HD Audio DDI is supported in Windows Vista and later.

The HDAUDIO_BUS_INTERFACE_BDL structure defines a DDI that contains the following routines:

AllocateCaptureDmaEngine
AllocateContiguousDmaBuffer
AllocateRenderDmaEngine
ChangeBandwidthAllocation
FreeContiguousDmaBuffer
FreeDmaEngine
GetDeviceInformation
GetLinkPositionRegister
GetResourceInformation
GetWallClockRegister
RegisterEventCallback
SetDmaEngineState
SetupDmaEngineWithBdl
TransferCodecVerbs
UnregisterEventCallback
A version of the HD Audio bus driver that supports the HDAUDIO_BUS_INTERFACE_BDL version of the HD Audio DDI can be installed in Windows 2000, Windows XP, and Windows Server 2003. However, Windows Vista provides no support for this DDI version.

Most of the routines in the DDIs are identical in both name and operation. However, the following two routines, which are part of the HDAUDIO_BUS_INTERFACE and HDAUDIO_BUS_INTERFACE_V2 versions of the DDI, are not included in the HDAUDIO_BUS_INTERFACE_BDL version:

AllocateDmaBuffer
FreeDmaBuffer
Additionally, the following four routines in the HDAUDIO_BUS_INTERFACE_V2 version of the DDI are not part of the HDAUDIO_BUS_INTERFACE and HDAUDIO_BUS_INTERFACE_BDL versions:

AllocateDmaBufferWithNotification
FreeDmaBufferWithNotification
RegisterNotificationEvent
UnregisterNotificationEvent
Finally, the following three routines in the HDAUDIO_BUS_INTERFACE_BDL version of the DDI are not part of the HDAUDIO_BUS_INTERFACE and HDAUDIO_BUS_INTERFACE_V2 versions:

AllocateContiguousDmaBuffer
FreeContiguousDmaBuffer
SetupDmaEngineWithBdl
This section describes the following DDI routines:

AllocateCaptureDmaEngine
AllocateContiguousDmaBuffer
AllocateDmaBuffer
AllocateDmaBufferWithNotification
AllocateRenderDmaEngine
ChangeBandwidthAllocation
FreeContiguousDmaBuffer
FreeDmaBuffer
FreeDmaBufferWithNotification
FreeDmaEngine
GetDeviceInformation
GetLinkPositionRegister
GetResourceInformation
GetWallClockRegister
RegisterEventCallback
RegisterNotificationEvent
SetDmaEngineState
SetupDmaEngineWithBdl
TransferCodecVerbs
UnregisterEventCallback
UnregisterNotificationEvent
The preceding list contains all the routines that appear in any of the versions of the DDI.

AllocateCaptureDmaEngine

The AllocateCaptureDmaEngine routine allocates a DMA engine for a capture stream.

The function pointer type for an AllocateCaptureDmaEngine routine is defined as:

typedef NTSTATUS
 (*PALLOCATE_CAPTURE_DMA_ENGINE)(
 IN PVOID context,
 IN UCHAR codecAddress,
 IN PHDAUDIO_STREAM_FORMAT streamFormat,
 OUT HANDLE *handle,
 OUT PHDAUDIO_CONVERTER_FORMAT converterFormat
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE or HDAUDIO_BUS_INTERFACE_BDL structure.

codecAddress

Specifies a codec address. This parameter identifies the SDI line on which the codec supplies the capture data to the HD Audio bus controller. A bus controller with n SDI pins can support up to n codecs with addresses ranging from 0 to n-1.

streamFormat

Specifies the requested stream format. This parameter points to a caller-allocated structure of type HDAUDIO_STREAM_FORMAT that specifies a data format for the stream.

handle

Retrieves the handle to the DMA engine. This parameter points to a caller-allocated HANDLE variable into which the routine writes a handle that identifies the DMA engine.

converterFormat

Retrieves the converter format. This parameter points to a caller-allocated structure of type HDAUDIO_CONVERTER_FORMAT into which the routine writes the encoded format.

Return Value

AllocateCaptureDmaEngine returns STATUS_SUCCESS if the call succeeds in reserving a DMA engine. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_BUFFER_TOO_SMALL
	Indicates that the DMA engine is unable to allocate sufficient internal FIFO storage to support the requested stream format.

	STATUS_INSUFFICIENT_RESOURCES
	Indicates that either no DMA engine is available or the request exceeds the available bandwidth resources.

	STATUS_INVALID_PARAMETER
	Indicates that one of the parameter values is incorrect (invalid parameter value or bad pointer).

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

This routine allocates a capture DMA engine and specifies the data format for the stream. If successful, the routine outputs a handle that the caller subsequently uses to identify the DMA engine.

The AllocateCaptureDmaEngine routine reserves hardware resources (the DMA engine) but does not configure the DMA hardware. After calling this routine to reserve a DMA engine, a function driver must assign a DMA buffer to the DMA engine and configure the engine to use the buffer:

If using the HDAUDIO_BUS_INTERFACE version of the HD Audio DDI, the function driver calls the AllocateDmaBuffer routine to have the HD Audio bus driver allocate a data buffer for DMA transfers and set up the DMA engine to use the buffer.

If using the HDAUDIO_BUS_INTERFACE_BDL version of the DDI, the function driver calls AllocateContiguousDmaBuffer to allocate the DMA buffer and calls the SetupDmaEngineWithBdl routine to set up the DMA engine to use the buffer.

The streamFormat parameter specifies the data format for the capture stream. Following the call to AllocateCaptureDmaEngine, the stream’s format can be changed by calling ChangeBandwidthAllocation.

Through the handle parameter, the routine outputs a handle that the caller uses to identify the allocated DMA engine in subsequent calls to AllocateDmaBuffer, ChangeBandwidthAllocation, FreeDmaBuffer, SetupDmaEngineWithBdl, and SetDmaEngineState. The function driver frees the handle by calling FreeDmaEngine.

Through the converterFormat parameter, the routine outputs a stream descriptor value that the caller can use to program the input converters. The routine encodes the information from the streamFormat parameter into a 16-bit integer. For more information, see HDAUDIO_CONVERTER_FORMAT.

Immediately following a successful call to AllocateCaptureDmaEngine, the DMA engine is in the reset stream state. Before calling SetDmaEngineState to change the DMA engine to the running, paused, or stopped state, the client must first allocate a DMA buffer for the engine.

A Windows Driver Model (WDM) audio driver calls AllocateCaptureDmaEngine at pin-creation time during execution of its NewStream method (for example, see the description of IMiniportWavePci::NewStream in the Windows DDK documentation).

Callers of AllocateCaptureDmaEngine must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL, HDAUDIO_STREAM_FORMAT, HDAUDIO_CONVERTER_FORMAT, AllocateDmaBuffer, AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, ChangeBandwidthReservation, SetDmaEngineState, FreeDmaEngine

AllocateContiguousDmaBuffer

The AllocateContiguousDmaBuffer routine allocates a DMA buffer that consists of a single, contiguous block of physical memory.

The function pointer type for an AllocateContiguousDmaBuffer routine is defined as:

typedef NTSTATUS
 (*PALLOCATE_CONTIGUOUS_DMA_BUFFER)(
 IN PVOID context,
 IN HANDLE handle,
 ULONG requestedBufferSize,
 OUT PVOID *dataBuffer,
 OUT PHDAUDIO_BUFFER_DESCRIPTOR *bdl
);

Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE_BDL structure.

handle

Handle identifying the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.

requestedBufferSize

Specifies the requested buffer size in bytes.

dataBuffer

Retrieves the data buffer. This parameter points to a caller-allocated PVOID variable into which the routine writes the system virtual address of the data buffer.

bdl

Retrieves the BDL. This parameter points to a caller-allocated PVOID variable into which the routine writes the system virtual address of the BDL. The BDL allocation size is exactly one memory page and the BDL begins on a page boundary.

Return Value

AllocateContiguousDmaBuffer returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_UNSUCCESSFUL
	Indicates that the caller is running at an interrupt request level (IRQL) that is too high.

	STATUS_INSUFFICIENT_RESOURCES
	Indicates that buffer allocation failed.

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

	STATUS_INVALID_PARAMETER
	Indicates that one of the parameter values is incorrect (bad pointer).

	STATUS_DEVICE_NOT_READY
	Indicates that the hardware programming timed out. If this occurs, the hardware might be in a compromised state.

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that the stream is not in the reset state or that a buffer is already allocated for the DMA engine.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

The AllocateContiguousDmaBuffer routine is used in conjunction with the SetupDmaEngineWithBdl and FreeContiguousDmaBuffer routines. These three routines are available only in the HDAUDIO_BUS_INTERFACE_BDL version of the HD Audio DDI. This DDI does not include the AllocateDmaBuffer and FreeDmaBuffer routines, which are never used in conjunction with AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, and FreeContiguousDmaBuffer. Unlike SetupDmaEngineWithBdl, which configures the DMA engine to use a previously allocated DMA buffer, AllocateDmaBuffer both allocates a DMA buffer and configures the DMA engine to use the buffer. For more information, see “Differences between the Two DDI Versions.”

AllocateContiguousDmaBuffer allocates a data buffer for the specified DMA engine. It also allocates a page of memory for the BDL. Depending on the host processor architecture, a typical page size might be 4,096 or 8,192 bytes. The data buffer consists of a single, contiguous block of physical memory.

The handle parameter specifies the DMA engine that is to use the data buffer and BDL. The routine allocates storage that meets the DMA engine’s size, alignment, and position requirements.

The storage that the routine allocates for the data buffer and BDL is uninitialized. The function driver is responsible for filling in the BDL before submitting it to the SetupDmaEngineWithBdl routine. The function driver is also responsible for programming the codec to manage the data transfers and to recognize the stream identifier.

To generate IOC interrupts at precise intervals, the function driver might be required to divide the data buffer allocation into several fragments of a particular size. Each fragment is described by a BDL entry. The fragment size can be adjusted to tune the interrupt rate. According to the Intel High Definition Audio Specification, each fragment must begin on a 128-byte boundary, although no such alignment requirement applies to the length of the fragment. Thus, a gap might exist between the end of one fragment and the beginning of the next. When calling SetupDmaEngineWithBdl, the function driver must specify a value for the bufferSize parameter that represents the sum of the sizes of the individual fragments that the BDL entries describe. This size will be less than or equal to the number of bytes specified in the AllocateContiguousDmaBuffer routine’s requestedBufferSize parameter.

During the lifetime of a DMA engine handle, AllocateContiguousDmaBuffer can be called successively to allocate new DMA buffers. However, before calling AllocateContiguousDmaBuffer, any previously allocated DMA buffer must first be freed by calling FreeContiguousDmaBuffer.

During calls to AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, and FreeContiguousDmaBuffer, the DMA engine must be in the reset stream state. The DMA engine is in the reset state immediately following the call to AllocateXxxDmaEngine. To change the DMA engine to the run state, call SetDmaEngineState.

This routine fails and returns error code STATUS_INVALID_DEVICE_REQUEST in either of the following circumstances:

Any previously allocated DMA buffer has not been freed (by calling FreeContiguousDmaBuffer).

The stream is in a state other than reset.

Callers of AllocateDmaBuffer must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE_BDL, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, SetupDmaEngineWithBdl, FreeContiguousDmaBuffer, AllocateDmaBuffer, FreeDmaBuffer SetDmaEngineState

AllocateDmaBuffer

The AllocateDmaBuffer routine allocates a data buffer in system memory for a DMA engine.

The function pointer type for an AllocateDmaBuffer routine is defined as:

typedef NTSTATUS
 (*PALLOCATE_DMA_BUFFER)(
 IN PVOID context,
 IN HANDLE handle,
 IN SIZE_T requestedBufferSize,
 OUT PMDL *bufferMdl,
 OUT SIZE_T *allocatedBufferSize,
 OUT UCHAR *streamID,
 OUT ULONG *fifoSize
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE structure.

handle

Handle identifying the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.
requestedBufferSize

Specifies the requested buffer size in bytes.

bufferMdl

Retrieves the physical memory pages that contain the allocated buffer. This parameter points to a caller-allocated PMDL variable into which the routine writes a pointer to a memory descriptor list (MDL) that describes the buffer.

allocatedBufferSize

Retrieves the allocated buffer size in bytes. This parameter points to a caller-allocated SIZE_T variable into which the routine writes the size of the allocated buffer.

streamID

Retrieves the stream identifier. This parameter points to a caller-allocated UCHAR variable into which the routine writes the stream identifier that it assigns to the stream.

fifoSize

Retrieves the DMA engine’s FIFO size in bytes. This parameter points to a caller-allocated ULONG variable into which the routine writes the FIFO size.

Return Value

AllocateDmaBuffer returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_UNSUCCESSFUL
	Indicates that the caller is running at an IRQL that is too high.

	STATUS_INSUFFICIENT_RESOURCES
	Indicates that buffer allocation failed.

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

	STATUS_INVALID_PARAMETER
	Indicates that one of the parameter values is incorrect (bad pointer).

	STATUS_DEVICE_NOT_READY
	Indicates that the hardware programming timed out. If this occurs, the hardware might be in a compromised state.

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that the stream is not in the reset state or that a buffer is already allocated for the DMA engine.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

The AllocateDmaBuffer routine is used in conjunction with the FreeDmaBuffer routine. These two routines are not available in the HDAUDIO_BUS_INTERFACE_BDL version of the HD Audio DDI. This DDI does not include the AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, and FreeContiguousDmaBuffer routines, which are never used in conjunction with AllocateDmaBuffer and FreeDmaBuffer. Unlike SetupDmaEngineWithBdl, which configures the DMA engine to use a previously allocated DMA buffer, AllocateDmaBuffer both allocates a DMA buffer and configures the DMA engine to use the buffer.

If the DMA engine cannot use a buffer of the size requested in parameter requestedBufferSize, the routine allocates a buffer that is as close as possible to the requested size.

The function driver for an audio or modem codec is responsible for programming the codec to manage the data transfers and to recognize the stream identifier.

The routine outputs an MDL that lists the physical memory pages that contain the buffer. The buffer base address coincides with the start of the first physical page in the list.

During the lifetime of a DMA engine handle, AllocateDmaBuffer can be called successively to allocate new DMA buffers. However, before calling AllocateDmaBuffer, any previously allocated DMA buffer must first be freed by calling FreeDmaBuffer.

During calls to AllocateDmaBuffer and FreeDmaBuffer, the DMA engine must be in the reset stream state. The DMA engine is in the reset state immediately following the call to AllocateXxxDmaEngine. To change the DMA engine to the run state, call SetDmaEngineState.

The FIFO size is the maximum number of bytes that the DMA engine can hold in its internal buffer. Depending on the hardware implementation, a DMA engine’s FIFO size can either be static or vary dynamically with changes in the stream format. For more information about the FIFO size, see the Intel High Definition Audio Specification.
This routine fails and returns error code STATUS_INVALID_DEVICE_REQUEST in either of the following circumstances:

Any previously allocated DMA buffer has not been freed (by calling FreeDmaBuffer).

The stream is in a state other than reset.

In Windows Vista and later, a WaveRT miniport driver calls this routine when it receives the KSPROPERTY_RTAUDIO_BUFFER property request. In earlier operating systems, including Windows XP and Windows 2000, a WDM audio driver calls this routine during execution of its NewStream method (at pin-creation time) or SetFormat method (after calling one of the AllocateXxxDmaEngine routines in the HD Audio DDI). For more information, see the descriptions of the IMiniportWavePci::NewStream and IMiniportWavePciStream::SetFormat methods in the Windows DDK documentation.

Callers of AllocateDmaBuffer must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, SetupDmaEngineWithBdl, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, FreeDmaBuffer, FreeDmaEngine, SetDmaEngineState

AllocateDmaBufferWithNotification

The AllocateDmaBufferWithNotification routine allocates a data buffer in system memory for a DMA engine.

The function pointer type for an AllocateDmaBufferWithNotification routine is defined as:

typedef NTSTATUS
 (*PALLOCATE_DMA_BUFFER_WITH_NOTIFICATION)(
 IN PVOID context,
 IN HANDLE handle,
 IN ULONG notificationCount
 IN SIZE_T requestedBufferSize,
 OUT PMDL *bufferMdl,
 OUT SIZE_T *allocatedBufferSize,
 OUT UCHAR *streamID,
 OUT ULONG *fifoSize
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE_V2 structure.

handle

Handle identifying the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.

notificationCount

Specifies the number of notifications desired based on DMA progress through the audio buffer. Currently, the values 1 and 2 are supported. If the value is 1, any registered notification events will be signaled each time the cyclic audio buffer is completed and DMA wraps back to the beginning. If the value is 2, any registered notification events will be notified as DMA passes the midpoint of the audio buffer as well as at the end/wraparound point.

requestedBufferSize

Specifies the requested buffer size in bytes.

bufferMdl

Retrieves the physical memory pages that contain the allocated buffer. This parameter points to a caller-allocated PMDL variable into which the routine writes a pointer to a memory descriptor list (MDL) that describes the buffer.

allocatedBufferSize

Retrieves the allocated buffer size in bytes. This parameter points to a caller-allocated SIZE_T variable into which the routine writes the size of the allocated buffer.

streamID

Retrieves the stream identifier. This parameter points to a caller-allocated UCHAR variable into which the routine writes the stream identifier that it assigns to the stream.

fifoSize

Retrieves the DMA engine’s FIFO size in bytes. This parameter points to a caller-allocated ULONG variable into which the routine writes the FIFO size.

Return Value

AllocateDmaBufferWithNotification returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_UNSUCCESSFUL
	Indicates that the caller is running at an IRQL that is too high.

	STATUS_INSUFFICIENT_RESOURCES
	Indicates that buffer allocation failed.

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

	STATUS_INVALID_PARAMETER
	Indicates that one of the parameter values is incorrect (bad pointer).

	STATUS_DEVICE_NOT_READY
	Indicates that the hardware programming timed out. If this occurs, the hardware might be in a compromised state.

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that the stream is not in the reset state or that a buffer is already allocated for the DMA engine.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

The AllocateDmaBufferWithNotification routine is used in conjunction with the FreeDmaBufferWithNotification routine. These two routines are available only in the HDAUDIO_BUS_INTERFACE_V2 version of the HD Audio DDI. This DDI does not include the AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, and FreeContiguousDmaBuffer routines, which are never used in conjunction with AllocateDmaBufferWithNotification and FreeDmaBufferWithNotification. Unlike SetupDmaEngineWithBdl, which configures the DMA engine to use a previously allocated DMA buffer, AllocateDmaBufferWithNotification both allocates a DMA buffer and configures the DMA engine to use the buffer.

If the DMA engine cannot use a buffer of the size requested in parameter requestedBufferSize, the routine allocates a buffer that is as close as possible to the requested size.

The function driver for an audio or modem codec is responsible for programming the codec to manage the data transfers and to recognize the stream identifier.

The routine outputs an MDL that lists the physical memory pages that contain the buffer. The buffer base address coincides with the start of the first physical page in the list.

During the lifetime of a DMA engine handle, AllocateDmaBufferWithNotification can be called successively to allocate new DMA buffers. However, before calling AllocateDmaBufferWithNotification, any previously allocated DMA buffer must first be freed by calling FreeDmaBufferWithNotification.

During calls to AllocateDmaBufferWithNotification and FreeDmaBufferWithNotification, the DMA engine must be in the reset stream state. The DMA engine is in the reset state immediately following the call to AllocateXxxDmaEngine. To change the DMA engine to the run state, call SetDmaEngineState.

The FIFO size is the maximum number of bytes that the DMA engine can hold in its internal buffer. Depending on the hardware implementation, a DMA engine’s FIFO size can either be static or vary dynamically with changes in the stream format. For more information about the FIFO size, see the Intel High Definition Audio Specification.
This routine fails and returns error code STATUS_INVALID_DEVICE_REQUEST in either of the following circumstances:

Any previously allocated DMA buffer has not been freed (by calling FreeDmaBufferWithNotification).

The stream is in a state other than reset.

In Windows Vista and later, a WaveRT miniport driver calls this routine when it receives the KSPROPERTY_RTAUDIO_BUFFER_WITH_NOTIFICATION property request. For more information, see the Windows DDK documentation.

Callers of AllocateDmaBufferWithNotification must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE_V2, SetupDmaEngineWithBdl, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, FreeDmaBufferWithNotification, FreeDmaEngine, SetDmaEngineState
AllocateRenderDmaEngine

The AllocateRenderDmaEngine routine allocates a DMA engine for a render stream.

The function pointer type for an AllocateRenderDmaEngine routine is defined as:

typedef NTSTATUS
 (*PALLOCATE_RENDER_DMA_ENGINE)(
 IN PVOID context,
 IN PHDAUDIO_STREAM_FORMAT streamFormat,
 IN BOOLEAN stripe,
 OUT HANDLE *handle,
 OUT PHDAUDIO_CONVERTER_FORMAT converterFormat
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE or HDAUDIO_BUS_INTERFACE_BDL structure.

streamFormat

Specifies the requested stream format. This parameter points to a caller-allocated structure of type HDAUDIO_STREAM_FORMAT that specifies a data format for the stream.

stripe

Specifies whether to enable striping. If TRUE, the routine enables striping in the DMA transfers. If FALSE, striping is disabled.

handle

Retrieves the handle to the DMA engine. This parameter points to a caller-allocated HANDLE variable into which the routine writes a handle that identifies the DMA engine.

converterFormat

Retrieves the converter format. This parameter points to a caller-allocated structure of type HDAUDIO_CONVERTER_FORMAT into which the routine writes the encoded format.

Return Value

AllocateRenderDmaEngine returns STATUS_SUCCESS if the call succeeds in reserving a DMA engine. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_BUFFER_TOO_SMALL
	Indicates that the DMA engine is unable to allocate sufficient internal FIFO storage to support the requested stream format.

	STATUS_INSUFFICIENT_RESOURCES
	Indicates that either no DMA engine is available or the request exceeds the available bandwidth resources.

	STATUS_INVALID_PARAMETER
	Indicates that one of the parameter values is incorrect (invalid parameter value or bad pointer).

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

This routine allocates a render DMA engine and specifies the data format for the stream. If successful, the routine outputs a handle that the caller subsequently uses to identify the DMA engine.

The AllocateRenderDmaEngine routine reserves hardware resources (the DMA engine) but does not configure the DMA hardware. After calling this routine to reserve a DMA engine, a function driver must assign a DMA buffer to the DMA engine and configure the engine to use the buffer:

If using the HDAUDIO_BUS_INTERFACE version of the HD Audio DDI, the function driver calls the AllocateDmaBuffer routine to have the HD Audio bus driver allocate a data buffer for DMA transfers and set up the DMA engine to use the buffer.

If using the HDAUDIO_BUS_INTERFACE_BDL version of the DDI, the function driver calls AllocateContiguousDmaBuffer to allocate the DMA buffer and calls the SetupDmaEngineWithBdl routine to set up the DMA engine to use the buffer.

The streamFormat parameter specifies the data format for the capture stream. Following the call to AllocateRenderDmaEngine, the stream’s format can be changed by calling ChangeBandwidthAllocation.

The stripe parameter specifies whether the DMA engine is to use striping to speed up data transfers. For more information, see “Striping.”

Through the handle parameter, the routine outputs a handle that the caller uses to identify the allocated DMA engine in subsequent calls to AllocateDmaBuffer, ChangeBandwidthAllocation, FreeDmaBuffer, SetupDmaEngineWithBdl, and SetDmaEngineState. The function driver frees the handle by calling FreeDmaEngine.

Through the converterFormat parameter, the routine outputs a stream descriptor value that the caller can use to program the output converters. The routine encodes the information from the streamFormat parameter into a 16-bit integer. For more information, see HDAUDIO_CONVERTER_FORMAT.

Immediately following a successful call to AllocateRenderDmaEngine, the DMA engine is in the reset stream state. Before calling SetDmaEngineState to change the DMA engine to the running, paused, or stopped state, the client must first allocate a DMA buffer for the engine.

A WDM audio driver calls AllocateRenderDmaEngine at pin-creation time during execution of its NewStream method (for example, see the description of the IMiniportWavePci::NewStream method in the Windows DDK documentation).

Callers of AllocateRenderDmaEngine must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL, HDAUDIO_STREAM_FORMAT, HDAUDIO_CONVERTER_FORMAT, AllocateDmaBuffer, ChangeBandwidthReservation, FreeDmaEngine

ChangeBandwidthAllocation

The ChangeBandwidthAllocation routine changes a DMA engine’s bandwidth allocation on the HD Audio Link.

The function pointer type for a ChangeBandwidthAllocation routine is defined as:

typedef NTSTATUS
 (*PCHANGE_BANDWIDTH_ALLOCATION)(
 IN PVOID context,
 IN HANDLE handle,
 IN PHDAUDIO_STREAM_FORMAT streamFormat,
 OUT PHDAUDIO_CONVERTER_FORMAT converterFormat
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE or HDAUDIO_BUS_INTERFACE_BDL structure.

handle

Handle identifying the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.

streamFormat

Specifies the requested stream format. This parameter points to a caller-allocated structure of type HDAUDIO_STREAM_FORMAT that specifies a data format for the stream.

converterFormat

Retrieves the converter format. This parameter points to a caller-allocated structure of type HDAUDIO_CONVERTER_FORMAT into which the routine writes the encoded format. For more information, see the following Comments section.

Return Value

ChangeBandwidthAllocation returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_UNSUCCESSFUL
	Indicates that the caller is running at an IRQL that is too high.

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

	STATUS_INVALID_PARAMETER
	Indicates that one of the parameter values is not correct (bad pointer or invalid stream format).

	STATUS_BUFFER_TOO_SMALL
	Indicates that the DMA engine is unable to allocate sufficient internal FIFO storage to support the requested stream format.

	STATUS_INSUFFICIENT_RESOURCES
	Indicates that insufficient bandwidth is available to satisfy the request

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that the stream is not in the reset state or that a buffer is still allocated for the DMA engine.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

The caller obtains an initial bandwidth allocation for a DMA engine by calling AllocateCaptureDmaEngine or AllocateRenderDmaEngine. Thereafter, the caller can change the bandwidth allocation by calling ChangeBandwidthAllocation.

Through the converterFormat parameter, the routine outputs a stream descriptor value that the caller can use to program the input or output converters. The routine encodes the information from the streamFormat parameter into a 16-bit integer. For more information, see HDAUDIO_CONVERTER_FORMAT.

This routine fails and returns error code STATUS_INVALID_DEVICE_REQUEST in either of the following circumstances:

Any previously allocated DMA buffer has not been freed (by calling FreeDmaBuffer or FreeContiguousDmaBuffer).

The stream is in a state other than reset.

If the ChangeBandwidthAllocation call fails, the existing bandwidth reservation remains in effect. The bandwidth allocation changes only if the call succeeds.

In Windows Vista and later, a wave miniport driver calls this routine during execution of its SetFormat method (after calling one of the AllocateXxxDmaEngine routines in the HD Audio DDI). For more information, see the descriptions of the IMiniportWaveXxxStream::SetFormat methods in the Windows DDK documentation.

Callers of ChangeBandwidthAllocation must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL, HDAUDIO_STREAM_FORMAT, HDAUDIO_CONVERTER_FORMAT, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, FreeDmaBuffer, FreeContiguousDmaBuffer

FreeContiguousDmaBuffer

The FreeContiguousDmaBuffer routine frees a DMA buffer and BDL that were allocated by a call to AllocateContiguousDmaBuffer.

The function pointer type for a FreeContiguousDmaBuffer routine is defined as:

typedef NTSTATUS
 (*PFREE_CONTIGUOUS_DMA_BUFFER)(
 IN PVOID context,
 IN HANDLE handle
);

Members

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE_BDL structure.

handle

Handle identifying the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.

Return value

FreeContiguousDmaBuffer returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_UNSUCCESSFUL
	Indicates that the caller is running at an IRQL that is too high.

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that the stream is not in the reset state or that no buffer is currently allocated for the DMA engine.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

The FreeContiguousDmaBuffer routine is used in conjunction with the SetupDmaEngineWithBdl and AllocateContiguousDmaBuffer routines. These three routines are available only in the HDAUDIO_BUS_INTERFACE_BDL version of the HD Audio DDI. This DDI does not include the AllocateDmaBuffer and FreeDmaBuffer routines, which are never used in conjunction with AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, and FreeContiguousDmaBuffer. Unlike SetupDmaEngineWithBdl, which configures the DMA engine to use a previously allocated DMA buffer, AllocateDmaBuffer both allocates a DMA buffer and configures the DMA engine to use the buffer. For more information, see “Differences between the Two DDI Versions.”

The routine fails and returns error code STATUS_INVALID_DEVICE_REQUEST in either of the following circumstances:

The client calls FreeContiguousDmaBuffer when no buffer is currently allocated for the DMA engine.

The stream is in a state other than reset.

Callers of FreeContiguousDmaBuffer must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE_BDL, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, AllocateDmaBuffer, FreeDmaBuffer

FreeDmaBuffer

The FreeDmaBuffer routine frees a DMA buffer that was previously allocated by a call to AllocateDmaBuffer.

The function pointer type for a FreeDmaBuffer routine is defined as:

typedef NTSTATUS
 (*PFREE_DMA_BUFFER)(
 IN PVOID context,
 IN HANDLE handle
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE structure.

handle

Handle identifying the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.
Return Value

FreeDmaBuffer returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_UNSUCCESSFUL
	Indicates that the caller is running at an IRQL that is too high.

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that the stream is not in the reset state or that no buffer is currently allocated for the DMA engine.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

The FreeDmaBuffer routine is used in conjunction with the AllocateDmaBuffer routine. These two routines are available only in the HDAUDIO_BUS_INTERFACE version of the HD Audio DDI. This DDI does not include the AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, and FreeContiguousDmaBuffer routines, which are never used in conjunction with AllocateDmaBuffer and FreeDmaBuffer. Unlike SetupDmaEngineWithBdl, which configures the DMA engine to use a previously allocated DMA buffer, AllocateDmaBuffer both allocates a DMA buffer and configures the DMA engine to use the buffer.

The routine fails and returns error code STATUS_INVALID_DEVICE_REQUEST in either of the following circumstances:

The client calls FreeDmaBuffer when no buffer is currently allocated for the DMA engine.

The stream is in a state other than reset.

Callers of FreeDmaBuffer must be running at IRQL PASSIVE_LEVEL.

See Also

AllocateDmaBuffer, HDAUDIO_BUS_INTERFACE, SetupDmaEngineWithBdl

FreeDmaBufferWithNotification

The FreeDmaBufferWithNotification routine frees a DMA buffer that was previously allocated by a call to AllocateDmaBufferWithNotification.

The function pointer type for a FreeDmaBufferWithNotification routine is defined as:

typedef NTSTATUS
 (*PFREE_DMA_BUFFER_WITH_NOTIFICATION)(
 IN PVOID context,
 IN HANDLE handle,
 IN PMDL bufferMdl,
 IN SIZE_T bufferSize
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE_V2 structure.

handle

Handle identifying the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.
bufferMdl

A pointer to the buffer MDL. This value was obtained from a previous call to AllocateDmaBufferWithNotification.
bufferSize

The size of the buffer to be free. This value was obtained from a previous call to AllocateDmaBufferWithNotification.

Return Value

FreeDmaBufferWithNotification returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_UNSUCCESSFUL
	Indicates that the caller is running at an IRQL that is too high.

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that the stream is not in the reset state or that no buffer is currently allocated for the DMA engine.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

The FreeDmaBufferWithNotification routine is used in conjunction with the AllocateDmaBufferWithNotification routine. These two routines are available only in the HDAUDIO_BUS_INTERFACE_V2 version of the HD Audio DDI.

The routine fails and returns error code STATUS_INVALID_DEVICE_REQUEST in either of the following circumstances:

The client calls FreeDmaBufferWithNotification when no buffer is currently allocated for the DMA engine.

The stream is in a state other than reset.

Callers of FreeDmaBufferWithNotification must be running at IRQL PASSIVE_LEVEL.

See Also

AllocateDmaBufferWithNotification, HDAUDIO_BUS_INTERFACE_V2, SetupDmaEngineWithBdl
FreeDmaEngine

The FreeDmaEngine routine frees a DMA engine that was previously allocated by a call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.

The function pointer type for a FreeDmaEngine routine is defined as:

typedef NTSTATUS
 (*PFREE_DMA_ENGINE)(
 IN PVOID context,
 IN HANDLE handle
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2 or HDAUDIO_BUS_INTERFACE_BDL structure.

handle

Handle identifying the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.
Return Value

FreeDmaEngine returns STATUS_SUCCESS if the call succeeds in freeing the DMA engine. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that the stream is not in the reset state or that a buffer is still allocated for the DMA engine.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

This routine frees a DMA engine that was previously reserved by a call to the AllocateCaptureDmaEngine or AllocateRenderDmaEngine routine.

This routine fails and returns error code STATUS_INVALID_DEVICE_REQUEST in either of the following circumstances:

Any previously allocated DMA buffer has not been freed (by calling FreeDmaBuffer or FreeContiguousDmaBuffer).
The stream is in a state other than reset.

An audio driver calls this routine to close the pin (and destroy the stream).

Callers of FreeDmaEngine must be running at IRQL <= DISPATCH_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, FreeDmaBuffer, FreeContiguousDmaBuffer

GetDeviceInformation

The GetDeviceInformation routine retrieves information about the HD Audio controller device.

The function pointer type for a GetDeviceInformation routine is defined as:

typedef NTSTATUS
 (*PGET_DEVICE_INFORMATION)(
 IN PVOID context,
 IN OUT PHDAUDIO_DEVICE_INFORMATION
 deviceInformation
);

Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE structure.

deviceInformation

Retrieves information about the HD Audio controller device. This parameter points to a caller-allocated HDAUDIO_DEVICE_INFORMATION structure into which the routine writes the device information.

Return Value

GetDeviceInformation returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows one possible return status code.

	Error code
	Description

	STATUS_BUFFER_TOO_SMALL
	Indicates that the size specified at the beginning of the deviceInformation buffer is too small.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

This routine retrieves device-dependent information that is static—that is, the information does not change dynamically over time.

The deviceInformation parameter is a pointer to a buffer that contains an HDAUDIO_DEVICE_INFORMATION structure into which the routine writes information about the HD Audio controller. Before calling GetDeviceInformation, the caller allocates the buffer and writes the buffer’s size in bytes into the Size member at the beginning of the buffer.

Callers of GetDeviceInformation must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_DEVICE_INFORMATION

GetLinkPositionRegister

The GetLinkPositionRegister routine retrieves a pointer to a DMA engine's link position register.

The function pointer type for a GetLinkPositionRegister routine is defined as:

typedef NTSTATUS
 (*PGET_LINK_POSITION_REGISTER)(
 IN PVOID context,
 IN HANDLE handle,
 OUT PULONG *position
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2 or HDAUDIO_BUS_INTERFACE_BDL structure.

handle

Handle that identifies the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.

position

Retrieves a pointer to the link position register. This parameter points to a caller-allocated PULONG variable into which the routine writes a pointer to the register. The HD Audio bus driver maps the register to a system virtual address that is accessible to the function driver.

Return Value

GetLinkPositionRegister returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows one possible return status code.

	Error code
	Description

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

For more information, see “Wall Clock and Link Position Registers.”

Callers of GetLinkPositionRegister must be running at IRQL <= DISPATCH_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL, AllocateCaptureDmaEngine, AllocateRenderDmaEngine

GetResourceInformation

The GetResourceInformation routine retrieves information about hardware resources.

The function pointer type for a GetResourceInformation routine is defined as:

void
 (*PGET_RESOURCE_INFORMATION)(
 IN PVOID context,
 OUT UCHAR *codecAddress,
 OUT UCHAR *functionGroupStartNode
);

Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2 or HDAUDIO_BUS_INTERFACE_BDL structure.

codecAddress

Retrieves a codec address. This parameter points to a caller-allocated UCHAR variable into which the routine writes a codec address. The codec address identifies the SDI line on which the codec supplies response data to the HD Audio bus controller. A bus controller with n SDI pins can support up to n codecs with addresses that range from 0 to n-1.

functionGroupStartNode

Retrieves the function group’s starting node ID. This parameter points to a caller-allocated UCHAR variable into which the routine writes the node ID. For more information, see the following Comments section.

Return Value

None

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

A codec contains one or more function groups. Each function group contains some number of nodes that are numbered sequentially beginning with the starting node. For example, if a function group contains three nodes and the starting node has a node ID of 9, the other two nodes in the function group have node IDs 10 and 11. For more information, see the Intel High Definition Audio Specification.
Callers of GetResourceInformation must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL

GetWallClockRegister

The GetWallClockRegister routine retrieves a pointer to the wall clock register.

The function pointer type for a GetWallClockRegister routine is defined as:

typedef void
 (*PGET_WALL_CLOCK_REGISTER)(
 IN PVOID context,
 OUT PULONG *wallclock
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2 or HDAUDIO_BUS_INTERFACE_BDL structure.

wallclock

Retrieves a pointer to the wall clock register. This parameter points to a caller-allocated PULONG variable into which the routine writes a pointer to the register. The HD Audio bus driver maps the register to a system virtual address that is accessible to the function driver.

Return Value

None

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

For more information, see “Wall Clock and Link Position Registers.”

Callers of GetWallClockRegister must be running at IRQL <= DISPATCH_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL

RegisterEventCallback

The RegisterEventCallback routine registers a callback routine for an unsolicited response from a codec or codecs.

The function pointer type for a RegisterEventCallback routine is defined as:

typedef NTSTATUS
 (*PREGISTER_EVENT_CALLBACK)(
 IN PVOID context,
 IN PHDAUDIO_UNSOLICITED_RESPONSE_CALLBACK routine,
 IN PVOID callbackContext,
 OUT UCHAR *tag
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2 or HDAUDIO_BUS_INTERFACE_BDL structure.

routine

Function pointer to a callback routine. This parameter must be a valid, non-NULL function pointer of type PHDAUDIO_UNSOLICITED_RESPONSE_CALLBACK. For more information, see the following Comments section.

callbackContext

Specifies a context value for the callback routine. The caller casts the context value to type PVOID. When a codec generates an unsolicited response that contains the specified tag, the HD Audio bus driver passes the context value to the callback routine as a call parameter.

tag

Retrieves a tag value that identifies the unsolicited response. This parameter points to a caller-allocated UCHAR variable into which the routine writes the tag value. The caller should specify this tag value when programming the codec or codecs to generate the unsolicited response. For more information, see the following Comments section.

Return Value

RegisterEventCallback returns STATUS_SUCCESS if the call succeeds in registering the event. Otherwise, the routine returns an appropriate error code. The following table shows one possible return status code.

	Error code
	Description

	STATUS_INSUFFICIENT_RESOURCES
	Indicates that not enough resources are available to complete the operation.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

This routine registers a callback routine for an unsolicited response from a codec. The routine outputs a tag to identify the unsolicited response. When the HD Audio bus driver encounters an unsolicited response from any codec with a matching tag value, the routine calls the specified callback routine at IRQL DISPATCH_LEVEL and passes the specified context value to the routine as a call parameter.

Following the call to RegisterEventCallback, the function driver is responsible for programming the codec or codecs to generate unsolicited responses with the specified tag.

The routine assigns a unique tag to each registered callback routine. The unique association between tag and callback routine persists as long as the callback routine remains registered. The function driver can delete the registration of a callback routine by calling UnregisterEventCallback.

Currently, the bus driver can supply up to 64 unique tags per codec.

The callback parameter is a function pointer to a callback routine in the function driver. The function pointer type for the callback routine is defined as:

 typedef VOID
 (*PHDAUDIO_UNSOLICITED_RESPONSE_CALLBACK)
 (HDAUDIO_CODEC_RESPONSE, PVOID);

The first call parameter is a structure of type HDAUDIO_CODEC_RESPONSE that specifies the codec’s response to the command. This structure is passed by value. The second call parameter is the callbackContext value that was passed previously to RegisterEventCallback. The HD Audio bus driver calls the callback routine at IRQL DISPATCH_LEVEL.

Callers of RegisterEventCallback must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL, UnregisterEventCallback, HDAUDIO_CODEC_RESPONSE

RegisterNotificationEvent

The RegisterNotificationEvent routine registers a kernel event so that it can receive DMA progress notifications.

The function pointer type for a RegisterNotificationEvent routine is defined as:

typedef NTSTATUS
 (*PREGISTER_NOTIFICATION_EVENT)(
 IN PVOID context,
 IN HANDLE handle,
 IN PKEVENT notificationEvent
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE_V2 structure.

handle

Handle that identifies the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.

notificationEvent

A pointer to a kernel event to be notified as DMA progresses. Depending on the notification count parameter used with AllocateDmaBufferWithNotification, the registered event will be signaled once or twice per DMA pass through the audio buffer.

Return Value

RegisterNotificationEvent returns STATUS_SUCCESS if the call succeeds in registering the event. Otherwise, the routine returns an appropriate error code. The following table shows one possible return status code.

	Error code
	Description

	STATUS_INSUFFICIENT_RESOURCES
	Indicates that not enough resources are available to complete the operation.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

This routine registers a kernel event with the HD Audio bus driver. The HD Audio bus driver maintains a list of registered notification events for each DMA engine and signals them each time the engine receives an IOC interrupt. Events are unregistered using UnregisterNotificationEvent.
Callers of RegisterNotificationEvent must be running at IRQL PASSIVE_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE_V2, UnregisterEventCallback
SetDmaEngineState

The SetDmaEngineState routine sets the state of one or more DMA engines to the running, stopped, paused, or reset state.

The function pointer type for a SetDmaEngineState routine is defined as:

typedef NTSTATUS
 (*PSET_DMA_ENGINE_STATE)(
 IN PVOID context,
 IN HDAUDIO_STREAM_STATE streamState,
 IN ULONG numberOfHandles,
 IN HANDLE *handles
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE or HDAUDIO_BUS_INTERFACE_BDL structure.

streamState

Specifies the new stream state. Set this parameter to one of the following HDAUDIO_STREAM_STATE enumeration values:

PauseState (paused)
ResetState (reset)

RunState (running)

StopState (stopped)

In the current implementation, PauseState and StopState represent the same hardware state.

numberOfHandles

Specifies the number of handles in the handles array. Set this parameter to a nonzero value.

handles

Pointer to an array of handles to DMA engines. Specify a non-NULL value for this parameter.

Return Value

SetDmaEngineState returns STATUS_SUCCESS if the call succeeds in changing the DMA engines' states. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_INVALID_HANDLE
	Indicates that one of the handles is invalid.

	STATUS_INVALID_PARAMETER
	Indicates that one of the parameter values is incorrect (invalid parameter value or bad pointer).

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that no buffer is currently allocated for one of the DMA engines.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

This routine changes the state of one or more DMA engines to the state that the streamState parameter specifies. The routine synchronizes the state transitions of all the DMA engines that the handles in the handles array identify. For more information, see “Synchronizing Two or More Streams.”

Before calling this routine, set up each DMA engine in the handles array:

If using the HDAUDIO_BUS_INTERFACE version of the HD Audio DDI, call AllocateDmaBuffer to set up the DMA engine.

If using the HDAUDIO_BUS_INTERFACE_BDL version of the DDI, call SetupDmaEngineWithBdl to set up the DMA engine.

If no DMA buffer is currently allocated for any DMA engine in the handles array, an attempt to change the stream to any state other than reset causes the SetDmaEngineState call to fail and return error code STATUS_INVALID_DEVICE_REQUEST.

The stream state cannot transition directly between running and reset. Instead, the stream must first pass through an intermediate state of paused or stopped:

From a running or reset state, the stream state can change directly to either paused or stopped.

From a paused or stopped state, the stream state can change directly to either running or reset.

A WDM audio driver calls this routine during a call to its SetState method (for example, see the description of the IMiniportWaveRTStream::SetState method in the Windows DDK documentation).

Callers of SetDmaEngineState must be running at IRQL <= DISPATCH_LEVEL.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL, AllocateDmaBuffer, SetupDmaEngineWithBdl

SetupDmaEngineWithBdl

The SetupDmaEngineWithBdl routine sets up a DMA engine to use a caller-allocated DMA buffer.

The function pointer type for a SetupDmaEngineWithBdl routine is defined as:

typedef NTSTATUS
 (*PSETUP_DMA_ENGINE_WITH_BDL)(
 IN PVOID context,
 IN HANDLE handle,
 IN ULONG bufferSize,
 IN ULONG lvi,
 IN PHDAUDIO_BDL_ISR isr,
 IN VOID *callbackContext,
 OUT UCHAR *streamID,
 OUT UINT *fifoSize
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE_BDL structure.

handle

Handle that identifies the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.

bufferSize

Specifies the size in bytes of the DMA buffer that the bdl array describes.

lvi

Specifies the last valid index (LVI). This parameter contains the index for the last valid buffer descriptor in the BDL. After the DMA engine processes this descriptor, it wraps back to the first descriptor in the list and continues processing. If the BDL contains n descriptors, they are numbered 0 to n-1. The lvi value must be at least 1; in other words, the BDL must contain at least two valid entries before the DMA engine can begin operation.

isr

Function pointer to the caller’s ISR. If the caller sets the IOC bit in one or more of the buffer descriptors in the BDL, the HD Audio bus driver calls the ISR each time an IOC interrupt occurs on the stream. This parameter is a function pointer of type HDAUDIO_BDL_ISR, which is defined in the following Comments section.
callbackContext

Specifies a context value that the HD Audio bus driver passes to the ISR.

streamID

Retrieves the stream identifier. This parameter points to a caller-allocated UCHAR variable into which the routine writes the stream identifier that it assigns to the stream.

fifoSize

Retrieves the DMA engine's FIFO size in bytes. This parameter points to a caller-allocated UINT variable into which the routine writes the FIFO size.

Return Value

SetupDmaEngineWithBdl returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows some of the possible return status codes.

	Error code
	Description

	STATUS_UNSUCCESSFUL
	Indicates that the caller is running at an IRQL that is too high.

	STATUS_INVALID_HANDLE
	Indicates that the handle parameter value is invalid.

	STATUS_INVALID_PARAMETER
	Indicates that one of the parameter values is incorrect (bad pointer or invalid stream format).

	STATUS_DEVICE_NOT_READY
	Indicates that the hardware programming timed out. If this occurs, the hardware might be in a compromised state.

	STATUS_INVALID_DEVICE_REQUEST
	Indicates that the DMA device or DMA buffer is not allocated or the stream is not in the reset state.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

The SetupDmaEngineWithBdl routine is used in conjunction with the AllocateContiguousDmaBuffer and FreeContiguousDmaBuffer routines. These three routines are available only in the HDAUDIO_BUS_INTERFACE_BDL version of the HD Audio DDI. This DDI does not include the AllocateDmaBuffer and FreeDmaBuffer routines, which are never used in conjunction with AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, and FreeContiguousDmaBuffer. Unlike SetupDmaEngineWithBdl, which configures the DMA engine to use a previously allocated DMA buffer, AllocateDmaBuffer both allocates a DMA buffer and configures the DMA engine to use the buffer.

The caller must call AllocateContiguousDmaBuffer to allocate storage in the system memory for both the DMA buffer and the BDL that describes the physical memory pages in the buffer. The BDL entries must reside in memory that is physically contiguous. The BDL and buffer memory must meet the alignment requirements that are described in the Intel High Definition Audio Specification.
Both the BDL and the buffer memory that it describes must remain valid during DMA operations. Following the call to SetupDmaEngineWithBdl, the BDL and buffer memory must remain valid as long as the DMA engine continues to use the buffer. The DMA engine uses the buffer until the function driver replaces the buffer by calling SetupDmaEngineWithBdl again or frees the DMA engine by calling FreeDmaEngine. The function driver is responsible for calling FreeContigousDmaBuffer to free the buffer and BDL when they are no longer required.

When allocating memory for the buffer, the caller must satisfy all hardware constraints for the address, length, and alignment of the physically contiguous blocks of memory that the BDL specifies. Thus, only clients with significant knowledge of the bus controller and system hardware should use the SetupDmaEngineWithBdl routine.

Before calling SetupDmaEngineWithBdl to configure a DMA engine, the client must call AllocateCaptureDmaEngine or AllocateRenderDmaEngine to allocate the DMA engine. The handle parameter is the value obtained from the preceding call to AllocateXxxDmaEngine.

The caller is responsible for programming the codec to manage the data transfers and to recognize the stream identifier.

A WDM audio driver calls this routine at pin-creation time during execution of its NewStream method (for example, see the description of the IMiniportWavePci::NewStream method in the Windows DDK documentation).

Following the call to SetupDmaEngineWithBdl, the DMA engine is in the reset state. To start the DMA engine, call SetDmaEngineState.

Parameter isr specifies the ISR that the HD Audio bus driver is to call each time an IOC interrupt occurs on the stream. This parameter is a function pointer of type HDAUDIO_BDL_ISR, which is defined as:

VOID (*PHDAUDIO_BDL_ISR)(IN VOID *context,
 IN ULONG interruptBitMask);

The HD Audio bus driver calls the ISR with the same context value that the client specified in the context parameter of the preceding SetupDmaEngineWithBdl call. The interruptBitMask parameter contains the bits from the HD Audio controller device’s stream status register that indicate the reason for the interrupt. The following table shows the meaning of the individual bits in interruptBitMask.

	Bit numbers
	Meaning

	31:5
	Unused.

	4
	Descriptor Error (DESE). If an error occurs during the fetch of a buffer descriptor, then the HD Audio controller sets the DESE bit to 1.

	3
	FIFO Error (FIFOE). If a FIFO error occurs (an overrun on an output stream or an underrun on an input stream), then the HD Audio controller sets the FIFOE bit to 1.

	2
	Buffer Completion Interrupt Status (BCIS). If the IOC bit is set to 1 in the command byte of the buffer descriptor, then the HD Audio controller sets the BCIS bit to 1 after the last sample of a buffer is processed.

	1:0
	Unused.

The HD Audio bus driver sets the unused bits to zero. Instead of assuming that an IOC interrupt has occurred, the ISR must always check the interruptBitMask parameter to determine whether a stream error has occurred. For more information about the interrupt status bits shown in the preceding table, see the description of the stream status registers in the Intel High Definition Audio Specification.
The FIFO size is the maximum number of bytes that the DMA engine can hold in its internal buffer at any one time. Depending on the hardware implementation, a DMA engine’s FIFO size can either be static or vary dynamically with changes in the stream format. For more information about the FIFO size, see the Intel High Definition Audio Specification.
Callers of SetupDmaEngineWithBdl must be running at IRQL PASSIVE_LEVEL.

The caller must allocate the buffer memory and BDL from the nonpaged pool.

See Also

HDAUDIO_BUS_INTERFACE_BDL, HDAUDIO_BUFFER_DESCRIPTOR, AllocateDmaBuffer, FreeDmaBuffer, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, SetDmaEngineState

TransferCodecVerbs

The TransferCodecVerbs routine transfers one or more commands to a codec or codecs and retrieves the responses to those commands.

The function pointer type for a TransferCodecVerbs routine is defined as:

typedef NTSTATUS
 (*PTRANSFER_CODEC_VERBS)(
 IN PVOID context,
 IN ULONG count,
 IN OUT PHDAUDIO_CODEC_TRANSFER codecTransfer,
 IN PHDAUDIO_TRANSFER_COMPLETE_CALLBACK callback,
 IN PVOID callbackContext
);
Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2 or HDAUDIO_BUS_INTERFACE_BDL structure.

count

Specifies the number of elements in the codecTransfer array.

codecTransfer

Pointer to an array of HDAUDIO_CODEC_TRANSFER structures. Each array element is a structure that contains storage for both an output command from the caller and the corresponding input response from the codec.

callback

Function pointer to a callback routine. This parameter is a function pointer of type HDAUDIO_TRANSFER_COMPLETE_CALLBACK. The parameter can be specified as NULL. For more information, see the following Comments section.

callbackContext

A context value for the callback routine. The caller casts the context value to type PVOID. After completing the commands asynchronously, the HD Audio bus driver passes the context value to the callback routine as a call parameter.

Return Value

TransferCodecVerbs returns STATUS_SUCCESS if the call succeeds. Otherwise, the routine returns an appropriate error code. The following table shows one possible return status code.

	Error code
	Description

	STATUS_NO_MEMORY
	Indicates that the request could not be added to the command queue due to a shortage of nonpaged memory.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

This routine submits one or more codec commands to the HD Audio bus driver. The bus driver issues the commands to the codecs, retrieves the codecs' responses to the commands, and outputs the responses to the caller.

The caller specifies the commands in an array of HDAUDIO_CODEC_TRANSFER structures. Each structure contains storage for both a command and the codec's response to that command. Before calling TransferCodecVerbs, the caller fills in the commands in each of the structures in the array. As each command completes, the HD Audio bus driver retrieves the codec's response and writes it into the structure. After the last command completes, the caller can read the responses from the array.

The routine can operate either synchronously or asynchronously:

If the caller specifies NULL for the value of input parameter callback, the HD Audio bus driver completes the commands in the codecTransfer array synchronously. (In other words, the routine returns only after the codecs have processed all the commands and the responses to those commands are available.)

If the caller specifies a non-NULL value for the callback parameter, the routine operates asynchronously. (In other words, the routine returns immediately after adding the commands to its internal queue without waiting for the codecs to process all the commands.) After the codecs process the commands, the HD Audio bus driver calls the callback routine. In the asynchronous case, the caller should not attempt to read the responses to the commands before the bus driver calls the callback routine.

The function pointer type for the callback parameter is defined as:

typedef void
 (*PHDAUDIO_TRANSFER_COMPLETE_CALLBACK)
 (HDAUDIO_CODEC_TRANSFER *, PVOID);

The first call parameter is a pointer to the codecTransfer array element that contains the codec command and the response that triggered the callback. The second call parameter is the same context value that was specified previously in the TransferCodecVerbs routine’s callbackContext parameter.

If successful, TransferCodecVerbs returns STATUS_SUCCESS. The meaning of this status code depends on whether the routine operates synchronously or asynchronously:

In the synchronous case (callback is NULL), STATUS_SUCCESS means that the bus driver has all the commands in the codecTransfer array to the codecs and that the routine has written all the responses to those commands into the array. However, the caller must check the individual responses to determine whether they are valid. Individual responses might be invalid due to codec timeouts or FIFO overrun.

In the asynchronous case (callback is non-NULL), STATUS_SUCCESS means only that the routine has successfully added the commands to the HD Audio bus driver's internal queue. The caller must not attempt to read the responses to those commands until the bus driver calls the callback routine.

If a response is invalid due to a FIFO overrun, the likely cause is that the codec responded to the command but the response was lost due to an insufficiently sized RIRB. If a FIFO overrun is not the cause of the invalid response, the failure probably occurred because the codec did not respond in time (timed out). In this case, the caller can assume that the command did not reach the codec.

If the callback parameter is NULL, the caller must be running at IRQL PASSIVE_LEVEL. If callback is non-NULL, the caller can call TransferCodecVerbs at IRQL <= DISPATCH_LEVEL, in which case the call returns immediately without waiting for the codecs to process all the commands; after the commands complete, the HD Audio bus driver calls the callback routine at IRQL DISPATCH_LEVEL.

The caller must allocate the codecTransfer array from the nonpaged pool.

See Also

HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2, HDAUDIO_BUS_INTERFACE_BDL, HDAUDIO_CODEC_TRANSFER

UnregisterEventCallback

The UnregisterEventCallback routine deletes the registration of an event callback that was previously registered by a call to RegisterEventCallback.

The function pointer type for an UnregisterEventCallback routine is defined as:

typedef NTSTATUS
 (*PUNREGISTER_EVENT_CALLBACK)(
 IN PVOID context,
 IN UCHAR tag
);

Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2 or HDAUDIO_BUS_INTERFACE_BDL structure.

tag

Specifies the tag value that was associated with the callback by the preceding call to RegisterEventCallback.

Return Value

UnregisterEventCallback returns STATUS_SUCCESS if the call succeeds in changing the DMA engines' states. Otherwise, the routine returns an appropriate error code. The following table shows one possible return status code.

	Error code
	Description

	STATUS_INVALID_PARAMETER
	Indicates that the specified tag is not valid.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

Before calling this routine, the function driver is responsible for programming the codec or codecs to remove the association of the callback with the specified tag.

Callers of UnregisterEventCallback must be running at IRQL PASSIVE_LEVEL.

See Also

RegisterEventCallback, HDAUDIO_ BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL

UnregisterNotificationEvent

The UnregisterNotificationEvent routine deletes the registration of an event that was previously registered by a call to RegisterNotificationEvent.

The function pointer type for an UnregisterNotificationEvent routine is defined as:

typedef NTSTATUS
 (*PUNREGISTER_NOTIFICATION_EVENT)(
 IN PVOID context,
 IN HANDLE handle,
 IN PKEVENT notificationEvent
);

Parameters

context

Specifies the context value from the Context member of the HDAUDIO_BUS_INTERFACE_V2 structure.

handle

Handle that identifies the DMA engine. This handle value was obtained from a previous call to AllocateCaptureDmaEngine or AllocateRenderDmaEngine.

notificationEvent

A pointer to a kernel event previously registered for DMA progress notification with a call to RegisterNotificationEvent.

Return Value

UnregisterNotificationEvent returns STATUS_SUCCESS if the call succeeds in unregistering the notification event. Otherwise, the routine returns an appropriate error code. The following table shows one possible return status code.

	Error code
	Description

	STATUS_INVALID_PARAMETER
	Indicates that the specified tag is not valid.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

Callers of UnregisterNotificationEvent must be running at IRQL PASSIVE_LEVEL.

See Also

RegisterNotificationEvent, HDAUDIO_ BUS_INTERFACE_V2
Structure Types

The routines in both versions of the HD Audio DDI use the following structure types:

HDAUDIO_BUFFER_DESCRIPTOR
HDAUDIO_BUS_INTERFACE
HDAUDIO_BUS_INTERFACE_V2
HDAUDIO_BUS_INTERFACE_BDL
HDAUDIO_CODEC_COMMAND
HDAUDIO_CODEC_RESPONSE
HDAUDIO_CODEC_TRANSFER
HDAUDIO_CONVERTER_FORMAT
HDAUDIO_DEVICE_INFORMATION
HDAUDIO_STREAM_FORMAT
HDAUDIO_BUFFER_DESCRIPTOR

The HDAUDIO_BUFFER_DESCRIPTOR structure specifies a buffer descriptor, which is an entry in a BDL.

typedef struct _HDAUDIO_BUFFER_DESCRIPTOR
{
 PHYSICAL_ADDRESS Address;
 ULONG Length;
 ULONG InterruptOnCompletion;
} HDAUDIO_BUFFER_DESCRIPTOR, *PHDAUDIO_BUFFER_DESCRIPTOR;

Members

Address

Specifies the start address of a physically contiguous fragment of the buffer. In the case of a 32-bit address, the address should be right-justified and the 32 most significant bits (MSBs) of the member should be zero.

Length

Specifies the size in bytes of the buffer fragment.

InterruptOnCompletion

Specifies whether the DMA engine should generate an interrupt on completing the transfer of the buffer fragment. A value of 1 enables the interrupt. A value of 0 disables it.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

A BDL is an array of HDAUDIO_BUFFER_DESCRIPTOR structures. Each structure specifies a physically contiguous fragment of the buffer. A BDL specifies all the fragments that make up the buffer.

The Address member contains the physical memory address of the start of the buffer fragment. The Length member specifies the number of bytes of physically contiguous memory that the fragment contains.

If the InterruptOnCompletion bit is set during a DMA transfer to or from the buffer fragment, the DMA engine generates an interrupt on completion of the transfer.

This structure is used by the AllocateContiguousDmaBuffer and SetupDmaEngineWithBdl routines.

For more information about BDLs, see the Intel High Definition Audio Specification.
See Also

SetupDmaEngineWithBdl

HDAUDIO_BUS_INTERFACE

The HDAUDIO_BUS_INTERFACE structure specifies the information that a client requires to call the routines in the HDAUDIO_BUS_INTERFACE version of the HD Audio DDI. Another variant of this DDI is specified by the HDAUDIO_BUS_INTERFACE_BDL structure.

typedef struct _HDAUDIO_BUS_INTERFACE
{
 USHORT Size;
 USHORT Version;
 PVOID Context;
 PINTERFACE_REFERENCE InterfaceReference;
 PINTERFACE_DEREFERENCE InterfaceDereference;

 PTRANSFER_CODEC_VERBS TransferCodecVerbs;
 PALLOCATE_CAPTURE_DMA_ENGINE AllocateCaptureDmaEngine;
 PALLOCATE_RENDER_DMA_ENGINE AllocateRenderDmaEngine;
 PCHANGE_BANDWIDTH_ALLOCATION ChangeBandwidthAllocation;
 PALLOCATE_DMA_BUFFER AllocateDmaBuffer;
 PFREE_DMA_BUFFER FreeDmaBuffer;
 PFREE_DMA_ENGINE FreeDmaEngine;
 PSET_DMA_ENGINE_STATE SetDmaEngineState;
 PGET_WALL_CLOCK_REGISTER GetWallClockRegister;
 PGET_LINK_POSITION_REGISTER GetLinkPositionRegister;
 PREGISTER_EVENT_CALLBACK RegisterEventCallback;
 PUNREGISTER_EVENT_CALLBACK UnregisterEventCallback;
 PGET_DEVICE_INFORMATION GetDeviceInformation;
 PGET_RESOURCE_INFORMATION GetResourceInformation;
} HDAUDIO_BUS_INTERFACE, *PHDAUDIO_BUS_INTERFACE;
Members

Size

Specifies the size in bytes of the HDAUDIO_BUS_INTERFACE structure.

Version

Specifies the version of the baseline HD Audio DDI.

Context

Pointer to interface-specific context information.

InterfaceReference

Pointer to a driver-supplied routine that increments the interface's reference count.

InterfaceDereference

Pointer to a driver-supplied routine that decrements the interface's reference count.

TransferCodecVerbs

Function pointer to the TransferCodecVerbs routine.

AllocateCaptureDmaEngine

Function pointer to the AllocateCaptureDmaEngine routine.

AllocateRenderDmaEngine

Function pointer to the AllocateRenderDmaEngine routine.

ChangeBandwidthAllocation

Function pointer to the ChangeBandwidthAllocation routine.

AllocateDmaBuffer

Function pointer to the AllocateDmaBuffer routine.

FreeDmaBuffer

Function pointer to the FreeDmaBuffer routine.

FreeDmaEngine

Function pointer to the FreeDmaEngine routine.

SetDmaEngineState

Function pointer to the SetDmaEngineState routine.

GetWallClockRegister

Function pointer to the GetWallClockRegister routine.

GetLinkPositionRegister

Function pointer to the GetLinkPositionRegister routine.

RegisterEventCallback

Function pointer to the RegisterEventCallback routine.

UnregisterEventCallback

Function pointer to the UnregisterEventCallback routine.

GetDeviceInformation

Function pointer to the GetDeviceInformation routine.

GetResourceInformation

Function pointer to the GetResourceInformation routine.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

The IRP_MN_QUERY_INTERFACE IOCTL uses this structure to provide interface information to a client that is querying the HD Audio bus driver for the HD Audio DDI. Another variant of this DDI is specified by the HDAUDIO_BUS_INTERFACE_BDL structure.

The HDAUDIO_BUS_INTERFACE and HDAUDIO_BUS_INTERFACE_BDL structures are similar but have the following differences:

HDAUDIO_BUS_INTERFACE has two members, AllocateDmaBuffer and FreeDmaBuffer, that are not present in HDAUDIO_BUS_INTERFACE_BDL.

HDAUDIO_BUS_INTERFACE_BDL has three members, AllocateContiguousDmaBuffer, FreeContiguousDmaBuffer, and SetupDmaEngineWithBdl, that are not present in HDAUDIO_BUS_INTERFACE.

For more information, see “Differences between the Two DDI Versions.”

The names and definitions of the first five members (Size, Version, Context, InterfaceReference, and InterfaceDereference) are the same as in the INTERFACE structure. The remaining members are specific to the baseline HD Audio DDI and specify function pointers to the routines in the DDI. For more information, see “Obtaining an HDAUDIO_BUS_INTERFACE DDI Object.”

See Also

TransferCodecVerbs, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, ChangeBandwidthAllocation, AllocateDmaBuffer, FreeDmaBuffer, FreeDmaEngine, SetDmaEngineState, GetWallClockRegister, GetLinkPositionRegister, RegisterEventCallback, UnregisterEventCallback, GetDeviceInformation, GetResourceInformation, HDAUDIO_BUS_INTERFACE_BDL
HDAUDIO_BUS_INTERFACE_V2

The HDAUDIO_BUS_INTERFACE_V2 structure specifies the information that a client requires to call the routines in the HDAUDIO_BUS_INTERFACE_V2 version of the HD Audio DDI. The interface represented by this structure provides all the functionality of HDAUDIO_BUS_INTERFACE with the added capability of supporting flexible DMA driven event notification.

typedef struct _HDAUDIO_BUS_INTERFACE_V2
{
 USHORT Size;
 USHORT Version;
 PVOID Context;
 PINTERFACE_REFERENCE InterfaceReference;
 PINTERFACE_DEREFERENCE InterfaceDereference;

 PTRANSFER_CODEC_VERBS TransferCodecVerbs;
 PALLOCATE_CAPTURE_DMA_ENGINE AllocateCaptureDmaEngine;
 PALLOCATE_RENDER_DMA_ENGINE AllocateRenderDmaEngine;
 PCHANGE_BANDWIDTH_ALLOCATION ChangeBandwidthAllocation;
 PALLOCATE_DMA_BUFFER AllocateDmaBuffer;
 PFREE_DMA_BUFFER FreeDmaBuffer;
 PFREE_DMA_ENGINE FreeDmaEngine;
 PSET_DMA_ENGINE_STATE SetDmaEngineState;
 PGET_WALL_CLOCK_REGISTER GetWallClockRegister;
 PGET_LINK_POSITION_REGISTER GetLinkPositionRegister;
 PREGISTER_EVENT_CALLBACK RegisterEventCallback;
 PUNREGISTER_EVENT_CALLBACK UnregisterEventCallback;
 PGET_DEVICE_INFORMATION GetDeviceInformation;
 PGET_RESOURCE_INFORMATION GetResourceInformation;
 PALLOCATE_DMA_BUFFER_WITH_NOTIFICATION AllocateDmaBufferWithNotification;
 PFREE_DMA_BUFFER_WITH_NOTIFICATION FreeDmaBufferWithNotification;
 PREGISTER_NOTIFICATION_EVENT RegisterNotificationEvent;
 PUNREGISTER_NOTIFICATION_EVENT UnregisterNotificationEvent;
} HDAUDIO_BUS_INTERFACE, *PHDAUDIO_BUS_INTERFACE;
Members

Size

Specifies the size in bytes of the HDAUDIO_BUS_INTERFACE structure.

Version

Specifies the version of the baseline HD Audio DDI.

Context

Pointer to interface-specific context information.

InterfaceReference

Pointer to a driver-supplied routine that increments the interface's reference count.

InterfaceDereference

Pointer to a driver-supplied routine that decrements the interface's reference count.

TransferCodecVerbs

Function pointer to the TransferCodecVerbs routine.

AllocateCaptureDmaEngine

Function pointer to the AllocateCaptureDmaEngine routine.

AllocateRenderDmaEngine

Function pointer to the AllocateRenderDmaEngine routine.

ChangeBandwidthAllocation

Function pointer to the ChangeBandwidthAllocation routine.

AllocateDmaBuffer

Function pointer to the AllocateDmaBuffer routine.

FreeDmaBuffer

Function pointer to the FreeDmaBuffer routine.

FreeDmaEngine

Function pointer to the FreeDmaEngine routine.

SetDmaEngineState

Function pointer to the SetDmaEngineState routine.

GetWallClockRegister

Function pointer to the GetWallClockRegister routine.

GetLinkPositionRegister

Function pointer to the GetLinkPositionRegister routine.

RegisterEventCallback

Function pointer to the RegisterEventCallback routine.

UnregisterEventCallback

Function pointer to the UnregisterEventCallback routine.

GetDeviceInformation

Function pointer to the GetDeviceInformation routine.

GetResourceInformation

Function pointer to the GetResourceInformation routine.

AllocateDmaBufferWithNotification

Function pointer to the AllocateDmaBufferWithNotification routine.

FreeDmaBufferWithNotification

Function pointer to the FreeDmaBufferWithNotification routine.

RegisterNotificationEvent

Function pointer to the RegisterNotificationEvent routine.

UnregisterNotificationEvent

Function pointer to the UnregisterNotificationEvent routine.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

The IRP_MN_QUERY_INTERFACE IOCTL uses this structure to provide interface information to a client that is querying the HD Audio bus driver for the HD Audio DDI.

For more information, see “Differences between the DDI Versions.”

The names and definitions of the first five members (Size, Version, Context, InterfaceReference, and InterfaceDereference) are the same as in the INTERFACE structure. The remaining members are specific to the baseline HD Audio DDI and specify function pointers to the routines in the DDI. For more information, see “Obtaining an HDAUDIO_BUS_INTERFACE_V2 DDI Object.”

See Also

TransferCodecVerbs, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, ChangeBandwidthAllocation, AllocateDmaBuffer, FreeDmaBuffer, FreeDmaEngine, SetDmaEngineState, GetWallClockRegister, GetLinkPositionRegister, RegisterEventCallback, UnregisterEventCallback, GetDeviceInformation, GetResourceInformation, AllocateDmaBufferWithNotification, FreeDmaBufferWithNotification, RegisterNotificationEvent, UnregisterNotificationEvent, HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_BDL
HDAUDIO_BUS_INTERFACE_BDL

The HDAUDIO_BUS_INTERFACE_BDL structure specifies the information that a client requires to call the routines in the HDAUDIO_BUS_INTERFACE_BDL version of the HD Audio DDI. Another variant of this DDI is specified by the HDAUDIO_BUS_INTERFACE structure.

typedef struct _HDAUDIO_BUS_INTERFACE_BDL
{
 USHORT Size;
 USHORT Version;
 PVOID Context;
 PINTERFACE_REFERENCE InterfaceReference;
 PINTERFACE_DEREFERENCE InterfaceDereference;

 PTRANSFER_CODEC_VERBS TransferCodecVerbs;
 PALLOCATE_CAPTURE_DMA_ENGINE AllocateCaptureDmaEngine;
 PALLOCATE_RENDER_DMA_ENGINE AllocateRenderDmaEngine;
 PCHANGE_BANDWIDTH_ALLOCATION ChangeBandwidthAllocation;
 PALLOCATE_CONTIGUOUS_DMA_BUFFER
 AllocateContiguousDmaBuffer;
 PSETUP_DMA_ENGINE_WITH_BDL SetupDmaEngineWithBdl;
 PFREE_CONTIGUOUS_DMA_BUFFER FreeContiguousDmaBuffer;
 PFREE_DMA_ENGINE FreeDmaEngine;
 PSET_DMA_ENGINE_STATE SetDmaEngineState;
 PGET_WALL_CLOCK_REGISTER GetWallClockRegister;
 PGET_LINK_POSITION_REGISTER GetLinkPositionRegister;
 PREGISTER_EVENT_CALLBACK RegisterEventCallback;
 PUNREGISTER_EVENT_CALLBACK UnregisterEventCallback;
 PGET_DEVICE_INFORMATION GetDeviceInformation;
 PGET_RESOURCE_INFORMATION GetResourceInformation;
} HDAUDIO_BUS_INTERFACE_BDL, *PHDAUDIO_BUS_INTERFACE_BDL;
Members

Size

Specifies the size in bytes of the HDAUDIO_BUS_INTERFACE_BDL structure.

Version

Specifies the version of the extended HD Audio DDI.

Context

Pointer to interface-specific context information.

InterfaceReference

Pointer to a driver-supplied routine that increments the interface's reference count.

InterfaceDereference

Pointer to a driver-supplied routine that decrements the interface's reference count.

TransferCodecVerbs

Function pointer to the TransferCodecVerbs routine.

AllocateCaptureDmaEngine

Function pointer to the AllocateCaptureDmaEngine routine.

AllocateRenderDmaEngine

Function pointer to the AllocateRenderDmaEngine routine.

ChangeBandwidthAllocation

Function pointer to the ChangeBandwidthAllocation routine.

AllocateContiguousDmaBuffer

Function pointer to the AllocateContiguousDmaBuffer routine.

SetupDmaEngineWithBdl

Function pointer to the SetupDmaEngineWithBdl routine.

FreeContiguousDmaBuffer

Function pointer to the FreeContiguousDmaBuffer routine.

FreeDmaEngine

Function pointer to the FreeDmaEngine routine.

SetDmaEngineState

Function pointer to the SetDmaEngineState routine.

GetWallClockRegister

Function pointer to the GetWallClockRegister routine.

GetLinkPositionRegister

Function pointer to the GetLinkPositionRegister routine.

RegisterEventCallback

Function pointer to the RegisterEventCallback routine.

UnregisterEventCallback

Function pointer to the UnregisterEventCallback routine.

GetDeviceInformation

Function pointer to the GetDeviceInformation routine.

GetResourceInformation

Function pointer to the GetResourceInformation routine.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

The IRP_MN_QUERY_INTERFACE IOCTL uses this structure to provide interface information to a client that is querying the HD Audio bus driver for the HD Audio DDI. Other variants of this DDI is specified by the HDAUDIO_BUS_INTERFACE and HDAUDIO_BUS_INTERFACE_V2 structures.

The HDAUDIO_BUS_INTERFACE_BDL and HDAUDIO_BUS_INTERFACE structures are similar but have the following differences:

HDAUDIO_BUS_INTERFACE_BDL has three members, AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, and FreeContiguousDmaBuffer, that are not present in HDAUDIO_BUS_INTERFACE.

HDAUDIO_BUS_INTERFACE has two members, AllocateDmaBuffer and FreeDmaBuffer, that are not present in HDAUDIO_BUS_INTERFACE_BDL.

For more information, see “Differences between the DDI Versions.”

The names and definitions of the first five members (Size, Version, Context, InterfaceReference, and InterfaceDereference) are the same as in the INTERFACE structure. The remaining members are specific to the extended HD Audio DDI and specify function pointers to the routines in the DDI. For more information, see “Obtaining an HDAUDIO_BUS_INTERFACE_BDL DDI Object.”

See Also

TransferCodecVerbs, AllocateCaptureDmaEngine, AllocateRenderDmaEngine, ChangeBandwidthAllocation, AllocateContiguousDmaBuffer, SetupDmaEngineWithBdl, FreeContiguousDmaBuffer, FreeDmaEngine, SetDmaEngineState, GetWallClockRegister, GetLinkPositionRegister, RegisterEventCallback, UnregisterEventCallback, GetResourceInformation, HDAUDIO_BUS_INTERFACE, HDAUDIO_BUS_INTERFACE_V2
HDAUDIO_CODEC_COMMAND

The HDAUDIO_CODEC_COMMAND structure specifies a codec command.

typedef struct _HDAUDIO_CODEC_COMMAND
{
 union
 {
 struct
 {
 ULONG Data : 8;
 ULONG VerbID : 12;
 ULONG Node : 8;
 ULONG CodecAddress : 4;
 } Verb8;
 struct
 {
 ULONG Data : 16;
 ULONG VerbID : 4;
 ULONG Node : 8;
 ULONG CodecAddress : 4;
 } Verb16;
 ULONG Command;
 };
} HDAUDIO_CODEC_COMMAND, *PHDAUDIO_CODEC_COMMAND;

Members

Verb8.Data

Specifies an 8-bit data payload value for the 8-bit payload command format.

Verb8.VerbID

Specifies a 12-bit verb identifier for the 8-bit payload command format.

Verb8.Node

Specifies an 8-bit node identifier for the 8-bit payload command format.

Verb8.CodecAddress

Specifies a 4-bit codec address for the 8-bit payload command format.

Verb16.Data

Specifies a 16-bit data payload value for the 16-bit payload command format.

Verb16.VerbID

Specifies a 4-bit verb identifier for the 16-bit payload command format.

Verb16.Node

Specifies an 8-bit node identifier for the 16-bit payload command format.

Verb16.CodecAddress

Specifies a 4-bit codec address for the 16-bit payload command format.

Command

Specifies a 32-bit codec command that contains payload data, a verb identifier, a node identifier, and a codec address.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

Clients call the TransferCodecVerbs routine to pass commands to codecs. The commands are in the HDAUDIO_CODEC_TRANSFER structures that clients pass to this routine as call parameters. Before calling TransferCodecVerbs, function drivers can use the HDAUDIO_CODEC_COMMAND structure to encode the codec commands.

The validity of individual members depends on the type of command sent.

See Also

TransferCodecVerbs, HDAUDIO_CODEC_TRANSFER

HDAUDIO_CODEC_RESPONSE

The HDAUDIO_CODEC_RESPONSE structure specifies either a response to a codec command or an unsolicited response from a codec.

typedef struct _HDAUDIO_CODEC_RESPONSE
{
 union
 {
 struct
 {
 union
 {
 struct
 {
 ULONG Response : 26;
 ULONG Tag : 6;
 } Unsolicited;
 ULONG Response;
 };
 ULONG SDataIn : 4;
 ULONG IsUnsolicitedResponse : 1;
 ULONG : 25;
 ULONG HasFifoOverrun : 1;
 ULONG IsValid : 1;
 };
 ULONGLONG CompleteResponse;
 };
} HDAUDIO_CODEC_RESPONSE, *PHDAUDIO_CODEC_RESPONSE;

Members

Unsolicited.Response

Specifies a 26-bit unsolicited response value.

Unsolicited.Tag

Specifies a 6-bit tag value for an unsolicited response.

Unsolicited

Specifies a 32-bit unsolicited response value that consists of a 26-bit response value and a 6-bit tag value.

Response

Specifies a 32-bit solicited response value.

SDataIn

Specifies the 4-bit codec address (SDI line) of the codec that generates the response.

IsUnsolicitedResponse

Specifies whether the response is unsolicited. If 1, the response is unsolicited. If 0, the response is solicited (that is, a response to a codec command).

HasFifoOverrun

Specifies whether a FIFO overrun occurred in the RIRB. If 1, a FIFO overrun occurred. If 0, a FIFO overrun did not occur.

IsValid

Specifies whether the response is valid. If 1, the response is valid. If 0, it is not valid.

CompleteResponse

Specifies a complete, 64-bit response summary that consists of a 32-bit response, 4-bit codec address, three status bits, and 25 unused bits (set to zero). This value is mostly used in debug messages.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

After calling the TransferCodecVerbs routine, function drivers can use the HDAUDIO_CODEC_RESPONSE structure to decode the responses to their codec commands. The commands are contained in the HDAUDIO_CODEC_TRANSFER structures that clients pass to this routine as call parameters.

The callback for the RegisterEventCallback routine also uses the HDAUDIO_CODEC_RESPONSE structure.

Most members of this structure contain hardware-generated values that the bus driver copies directly from the corresponding RIRB entry. The two exceptions are the values of the IsValid and HasFifoOverrun members, which the bus driver software writes to the structure to indicate the error status of the response. For information about the RIRB entry format, see the Intel High Definition Audio Specification.
If IsValid = 0, one of the following has occurred:

If HasFifoOverrun = 1, the RIRB FIFO overflowed.

If HasFifoOverrun = 0, the codec failed to respond.

The unnamed 25-bit field between the UnsolicitedResponse and HasFifoOverrun members is reserved for future expansion. The HD Audio bus controller currently writes zeros to this field.

See Also

TransferCodecVerbs, HDAUDIO_CODEC_TRANSFER, RegisterEventCallback

HDAUDIO_CODEC_TRANSFER

The HDAUDIO_CODEC_TRANSFER structure specifies a codec command and the response to that command.

typedef struct _HDAUDIO_CODEC_TRANSFER
{
 HDAUDIO_CODEC_COMMAND Output;
 HDAUDIO_CODEC_RESPONSE Input;
} HDAUDIO_CODEC_TRANSFER, *PHDAUDIO_CODEC_TRANSFER;

Members

Output

Specifies a codec command for the HD Audio bus driver to output to a codec that is attached to the HD Audio controller. This member is a structure of type HDAUDIO_CODEC_COMMAND. Before calling the TransferCodecVerbs routine, the caller writes a codec command to this member.

Input

Specifies the response to the codec command. This member is a structure of type HDAUDIO_CODEC_RESPONSE. The HD Audio bus driver retrieves the response to the codec command that is contained in the Output member and writes the response into the Input member.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

This structure is used by the TransferCodecVerbs routine:

At entry, the Output member contains a codec command from the caller.

At return, the Input member contains the response to the codec command.

See Also

HDAUDIO_CODEC_COMMAND, HDAUDIO_CODEC_RESPONSE, TransferCodecVerbs

HDAUDIO_CONVERTER_FORMAT

The HDAUDIO_CONVERTER_FORMAT structure specifies the 16-bit encoded stream format for an input or output converter, as defined in the Intel High Definition Audio Specification.
typedef struct _HDAUDIO_CONVERTER_FORMAT
{
 union
 {
 struct
 {
 USHORT NumberOfChannels : 4;
 USHORT BitsPerSample : 3;
 USHORT : 1;
 USHORT SampleRate : 7;
 USHORT StreamType : 1;
 };
 USHORT ConverterFormat;
 };
} HDAUDIO_CONVERTER_FORMAT, *PHDAUDIO_CONVERTER_FORMAT;

Members

NumberOfChannels

Specifies the number of channels in the stream’s data format. For more information, see the following Comments section.

BitsPerSample

Specifies the number of bits per sample. For more information, see the following Comments section.

SampleRate

Specifies the stream’s sample rate. For more information, see the following Comments section.

StreamType

Specifies the stream type. If StreamType=0, the stream contains PCM data. If StreamType=1, the stream contains non-PCM data.

ConverterFormat

Specifies the stream’s data format as an encoded 16-bit value. For more information, see the following Comments section.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

For information about the encoding of the individual bit fields in the structure definition, see the discussion of the stream descriptor in the Intel High Definition Audio Specification.
The HD Audio bus driver sets the two unnamed bit fields in the structure definition to zero.

The AllocateCaptureDmaEngine, AllocateRenderDmaEngine, and ChangeBandwidthAllocation routines take as an input parameter an HDAUDIO_STREAM_FORMAT structure and output the corresponding HDAUDIO_CONVERTER_FORMAT structure. The caller can use the output value to program the input or output converters.

Each valid HDAUDIO_CONVERTER_FORMAT encoding has a one-to-one correspondence to an HDAUDIO_STREAM_FORMAT structure that contains a valid set of parameters.

See Also

AllocateCaptureDmaEngine, AllocateRenderDmaEngine, ChangeBandwidthAllocation, HDAUDIO_STREAM_FORMAT

HDAUDIO_DEVICE_INFORMATION

The HDAUDIO_DEVICE_INFORMATION structure specifies the hardware capabilities of the HD Audio bus controller.

typedef struct _HDAUDIO_DEVICE_INFORMATION
{
 USHORT Size;
 USHORT DeviceVersion;
 USHORT DriverVersion;
 USHORT CodecsDetected;
 BOOLEAN IsStripingSupported;
} HDAUDIO_DEVICE_INFORMATION, *PHDAUDIO_DEVICE_INFORMATION;

Members

Size

Specifies the size in bytes of the HDAUDIO_DEVICE_INFORMATION structure.

DeviceVersion

Specifies the HD Audio controller device version.

DriverVersion

Specifies the HD Audio bus driver version.

CodecsDetected

Specifies the number of codecs that the HD Audio controller detects on the HD Audio Link.

IsStripingSupported

Specifies whether the HD Audio controller supports striping. If TRUE, it supports striping (with at least two SDO lines). If FALSE, it does not support striping.

Headers

Declared in hdaudio.h. Include hdaudio.h.

Comments

The GetDeviceInformation routine uses this structure to provide information about the HD Audio controller’s device-specific capabilities to clients.

See Also

GetDeviceInformation

HDAUDIO_STREAM_FORMAT

The HDAUDIO_STREAM_FORMAT structure describes the data format of a capture or render stream.

typedef struct _HDAUDIO_STREAM_FORMAT
{
 ULONG SampleRate;
 USHORT ValidBitsPerSample;
 USHORT ContainerSize;
 USHORT NumberOfChannels;
} HDAUDIO_STREAM_FORMAT, *PHDAUDIO_STREAM_FORMAT;

Members

SampleRate

Specifies the sample rate in samples per second. This member indicates the rate at which each channel should be played or recorded.

ValidBitsPerSample

Specifies the number of valid bits per sample. The valid bits are left justified within the container. Any unused bits to the right of the valid bits must be set to zero.

ContainerSize

Specifies the size in bits of a sample container. Valid values for this member are 8, 16, 24, and 32.

NumberOfChannels

Specifies the number of channels of audio data. For monophonic audio, set this member to 1. For stereo, set this member to 2.

Headers

Declared in hdaudio.h. Include hdaudio.h.
Comments

The AllocateCaptureDmaEngine, AllocateRenderDmaEngine, and ChangeBandwidthAllocation routines take as an input parameter an HDAUDIO_STREAM_FORMAT structure and output the corresponding HDAUDIO_CONVERTER_FORMAT structure. The information in a valid HDAUDIO_STREAM_FORMAT value can be encoded as an HDAUDIO_CONVERTER_FORMAT value.

This structure is similar to the WAVEFORMATEXTENSIBLE structure, but it omits certain parameters that are in WAVEFORMATEXTENSIBLE but are not relevant to the task of managing codecs that are connected to an HD Audio controller. For more information about WAVEFORMATEXTENSIBLE, see the Windows DDK documentation.

See Also

AllocateCaptureDmaEngine, AllocateRenderDmaEngine, ChangeBandwidthAllocation, HDAUDIO_CONVERTER_FORMAT
Resources

A Wave Port Driver for Real-Time Audio Streaming

http://www.microsoft.com/whdc/device/audio/wavertport.mspx
Intel High Definition Audio Specification

http://www.intel.com/standards/hdaudio/
Windows Hardware Developer Central – WHDC Web site

http://www.microsoft.com/whdc/

Microsoft Windows Driver Kit (WDK)

http://www.microsoft.com/whdc/DevTools/WDK/aboutWDK.mspx
Microsoft Universal Audio Architecture (UAA) — overview and white papers

http://www.microsoft.com/whdc/device/audio/
Microsoft Windows Logo Program System and Device Requirements

http://www.microsoft.com/whdc/winlogo/
Microsoft HD Audio IHV-Enabling Kit

Send e-mail to uaa@microsoft.com.

© 2005-2006, Microsoft Corporation. All rights reserved.

[image: image2.png]