PAGE

[image: image1.jpg]£7 Windows 7

Managing Shims in an Enterprise

Practical Advice for Application Compatibility Mitigation

Microsoft Windows Family of Operating Systems

Microsoft Corporation

Published: May 2009

Abstract

This document provides reusable guidance for reducing the cost of deployment for Windows® 7 by accelerating the mitigation of blocking application compatibility issues—including understanding how shims work, when to consider applying shims, and how to manage the shims you do apply.

[image: image2.png]Microsoft

Copyright information

The information contained in this document represents the current view of Microsoft Corp. on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, this document should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented. This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. The furnishing of this document does not provide the reader any license to the patents, trademarks, copyrights, or other intellectual property rights except as expressly provided in any written license agreement from Microsoft.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on this document. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties or merchantability, fitness for a particular purpose, and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret, or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you. © 2009 Microsoft Corp. All rights reserved

Contents

5Managing Shims in an Enterprise

5Understanding Shims

5How shims work

6Design implications for the shim infrastructure

7Deciding When to Use Shims as a Compatibility Mitigation

8Scenarios in which customers decide to use shims

8Deciding which versions of an application to shim

9Support for shims

9Custom Shim Database-Management Strategies

10Deploying fixes as part of an application package

10Managing a centralized custom shim database

11Merging custom shim databases

11Custom Shim Database Deployment

13Initial deployment and updates

13Summary and Resources

13Additional references

Managing Shims in an Enterprise

When addressing application compatibility issues in preparation for a deployment of Windows® 7, among the most flexible and powerful tools available are application compatibility fixes, or shims. However, most organizations do not leverage shims to the extent that they could, either because they don’t understand the underlying technology or because they do not have a process in place to manage shims over the lifetime of the applications they manage.

In this document, Chris Jackson, from the Microsoft® Windows Application Experience SWAT Team, shares his experience and best practices working with large enterprise customers to address application compatibility issues by using shims and to manage an organization’s custom shim databases. This document provides reusable guidance for reducing the cost of deployment for Windows 7 by accelerating the mitigation of blocking application compatibility issues—including understanding how shims work, when to consider applying shims, and how to manage the shims you do apply.

In this document:


Understanding Shims

Deciding When to Use Shims as a Compatibility Mitigation

Custom Shim Database-Management Strategies

Custom Shim Database Deployment
[image: image3.png]

Note

For a complete view of Windows 7 resources, articles, demos, and guidance, please visit the Springboard Series for Windows 7 on the Windows Client TechCenter.

For a Web version of this document, see Managing Shims in an Enterprise in the Windows 7 Technical Library (http://go.microsoft.com/fwlink/?LinkId=151421).
Understanding Shims

How shims work

Application experience and compatibility in Microsoft® Windows® operating systems is one of the fundamental pillars of its development, alongside performance, reliability, and manageability. To reduce deployment costs and accelerate adoption, Microsoft invests in deep technical solutions to ensure broad compatibility of existing software, driving compatibility into the engineering and release process.

The Microsoft Windows Application Compatibility Infrastructure (Shim Infrastructure) is one such powerful technical solution. As the Windows operating system evolves from version to version—changing to support new technology, incorporate bug fixes, and implement a modification in strategy—changes to the implementation of some functions may affect applications that depend on them. Because of the nature of software, modifying the function again to resolve this compatibility issue could break additional applications or require Windows to remain the same regardless of the improvement that the alternative implementation could offer. We can circumvent this possibility by placing branches directly in the source code for Windows, but doing so presents a long-term challenge for the serviceability and reliability of the Windows operating system. Using the Shim Infrastructure, however, you can target a specific application fix but only for a particular application (and typically, for particular versions of that application), with these fixes housed outside the core Windows functions and maintained separately.

The Shim Infrastructure implements a form of application programming interface (API) hooking. Specifically, it leverages the nature of linking to redirect API calls from Windows itself to alternative code—the shim itself. The Windows Portable Executable (PE) and Common Object File Format (COFF) Specification includes several headers, and the data directories in this header provide a layer of indirection between the application and the linked file. Calls to external binary files take place through the Import Address Table (IAT). Consequently, a call into Windows looks like Figure 1 to the system.

[image: image4.jpg][ot
Sk 2

Figure 1 Application calling into Windows through the IAT

Specifically, you can modify the address of the Windows function resolved in the import table, and then replace it with a pointer to a function in the alternate shim code, as shown in Figure 2.

[image: image5.jpg]Application

'

-9-9-Q

Figure 2 Application redirected to the shim prior to calling Windows

This indirection happens for statically linked .dll files when the application is loaded. You can also shim dynamically linked .dll files by hooking the GetProcAddress API.

Design implications for the shim infrastructure

You may find certain consequences of the Shim Infrastructure design relevant when determining your shimming strategy.

First, as shown in Figure 2. Application redirected to the shim prior to calling Windows, the code that runs inside a shim still sits outside Windows. Consequently, Windows holds shim code to the same security restrictions as the application code itself. In fact, to Windows, the shim code appears to be application code. As a result, you cannot use shims to bypass any security mechanisms present in Windows. For example, no shim is available to bypass the Windows 7 User Account Control (UAC) prompts while still running the application with elevated permissions. You can shim the application not to require administrator rights, or you can shim it to demand it, but in order to receive administrator rights with UAC enabled, the user will have to approve the elevation. The same is true for code that you write yourself.

Therefore, when evaluating the security implications of using shims in your enterprise, you are not opening any additional security vulnerability. In fact, using shims to avoid having to loosen security descriptors or make security policy more lax can frequently be the more secure choice. For example, without shims, you may be able to mitigate a compatibility issue by loosening the ACLs on a particular directory, but this decision has an effect on the entire system. Using shims, you may be able to redirect the file access to a per-user location for that application. As another example, an application may be explicitly checking for administrator rights. Without shims, you may have to grant the application administrator rights to pass this check. If the check is an unnecessary one, however, a shim could simply lie about whether the current user has administrator rights, allowing the check to succeed without exposing additional security surface area.

Second, because the Shim Infrastructure, in essence, injects additional code into the application before it calls into Windows, any mitigation you can use a shim to accomplish can be done by modifying the application code itself. At a minimum, the application could include code similar to what Windows implements in the shim immediately prior to calling into Windows APIs.

Finally, because shims run as user-mode code inside a user-mode application process, you cannot use a shim to fix kernel-mode code. For example, you cannot use shims to resolve compatibility issues with device drivers or with other kernel-mode code. (For example, some antivirus, firewall, and antispyware code runs in kernel mode.)

Deciding When to Use Shims as a Compatibility Mitigation

When Microsoft consultants work with customers on using shims to resolve compatibility issues with Windows 7, they begin the conversation with an overview of how shims work, ensuring that people at various levels in the organization understand the technical implications of using shims for mitigations. However, the decision is more than a technical one.

An application vendor is unlikely to support an application on Windows 7 when there are known compatibility issues. Application vendors cannot distribute shims to fix their application, so every enterprise must independently validate and deploy shims that mitigate these issues. Consequently, most vendors will not provide support for shimmed applications, either.

Vendor support is typically a critical business issue for Information Technology (IT) departments, especially for any software deemed either business critical or important to the operation of the business. While some customers have negotiated with vendors to have support extended to shimmed versions of their software on Windows 7, most vendors will wait to release either an update to the existing version or a new version, offering support on this new version.

If your organization is like most, you are likely to decide not to shim your most important off-the-shelf applications for this very reason: support.

Scenarios in which customers decide to use shims

The scenarios in which Microsoft consultants have assisted customers in using shims to mitigate application issues include:


You acquired the application from a vendor that is no longer in business. Several applications Microsoft consultants have worked with have been from vendors that have since gone out of business; so clearly, support is no longer a concern. The application is nice to have if the consultants can keep it working, because it prevents you from having to implement the software yourself (as frequently there are no vendors offering a competing offering). However, because the source code is not available, shimming is the only option for compatibility mitigation.


You developed the application internally. While most customers would prefer to fix all their applications to be natively compatible, there are some scenarios in which the timing does not allow for this. The team may not be able to fix all of them prior to the planned deployment of Windows 7, so they may choose to shim the applications that can be shimmed and modify the code on the ones where shims are insufficient to resolve the compatibility issue. Alternately, you may already be at work on a long-term project to replace the application with a new one, and does not wish to invest further in the existing version, instead using shims to resolve compatibility issues until the new application is completed. Then, the customer deploys the natively compatible version upon completion, without having to delay the deployment of Windows 7.


You acquired the application from a vendor that will eventually be releasing a compatible version, but support is not critical. When an off-the-shelf application is neither business critical nor important, some customers use shims as a stopgap solution. Users could theoretically wait until a compatible version is available, and its absence would not block the deployment, but being able to provide users with a shimmed and functional version can bridge that gap until a compatible version is available (or budget to acquire it becomes available).

In general, Microsoft consultants have found that good communication and collaboration among technology owners (“do the shims succeed in making the application sufficiently compatible”) and business owners (“can I accept the support terms of using a shimmed version of this incompatible application”) helps the decision process.

Deciding which versions of an application to shim

While a thorough description of applying a shim to a particular application is outside the scope of this white paper, one aspect that is important to note is that shims can be applied to particular versions of applications, either as “up to or including” or just a particular version. Either one ensures that the next version of the application that is released will no longer have the shim applied.

This is important to many customers. They want to ensure that they can fix the incompatible application for a particular version but still encourage the vendor (whether an internal development team or a vendor) to fix the application by having the shim no longer apply the next time the version number is incremented.

Support for shims

While support policies for applications made compatible with Windows 7 using shims is up to each software vendor, another frequent question is, how is the code for the shims themselves supported?

Shims ship as part of Windows 7 and are updated through Windows Update. Consequently, they fall under the same support terms as the rest of the Windows operating system.

You can apply shims that the Windows product team creates to your own applications, but Microsoft does not provide the necessary tools for you to create your own shims leveraging the Shim Infrastructure.

Custom Shim Database-Management Strategies

If you have decided to use shims as part of your application compatibility mitigation strategy (for certain classifications of applications), the next question is, which strategy should you employ for managing custom shim databases? The customers Microsoft consultants have worked with have tended to select one of two approaches to managing their custom shim databases: deploying fixes as part of the application package or managing a centralized custom shim database.

Regardless of the approach your organization chooses, here are general recommendations for improving the management of custom shim databases:


Define standards for when to apply shims. You also want to define the scenarios in which shims are appropriate to use, as discussed earlier, based on the specific business and technology needs of your organization.


Define standards for custom shim databases. You may want to define standards for how to map shims to particular applications. For example, you may want to ensure that shims always include a version check so that the shim stops being applied to subsequent versions of the applications.


Define a resource responsible for addressing questions and enforcing standards. Having an individual or a team responsible for being familiar with the technology and standards around the use of shims has consistently been an important predictor of success. Many customers ramp up on shims and mitigations in general in response to an operating system migration but soon forget the details when the migration is over. As the databases are managed over time, you will want to ensure that some resource continues to remain familiar with these details.

Deploying fixes as part of an application package

One strategy for deploying application fixes is to include the custom shim database—containing a single entry for the application the package is installing—directly into the installation package. During the early phases of compatibility testing, this can seem like the easiest approach. However, over time this approach can grow more complex.

Microsoft consultants recommend evaluating the following considerations prior to selecting this approach:


How many applications will you end up shimming? The thing to keep in mind is that custom shim databases are still databases. Consequently, if you were to have 1,000 shimmed applications, it takes longer to open and query 1,000 different one-row databases looking for a match to a given application than it would to open a single database and query against 1,000 rows.


Can you track which applications you have deployed to which computers? It is possible that you will eventually find that the shims assigned to resolve a set of compatibility issues in an application are not comprehensive and that later you will need to deploy an updated version of the custom shim database that resolves the additional issues your organization later discovered. If you deployed the original custom shim database as part of the installation package, you will need to locate each client that has installed this application and the original custom shim database for it to replace it with the new version.

While this strategy can be a good approach if you are shimming only a few applications, most customers eventually opt against using it.

Managing a centralized custom shim database

An alternate strategy most customers consider (and most end up using) is to manage either a single custom shim database or several custom shim databases for large subsets of the organization. Doing so makes it easier to enforce policy and provide consistent updates to application mitigations you discover that you need to support your migration to Windows 7. Microsoft consultants recommend evaluating the following considerations prior to selecting this approach:


Do I have deployment tools to deploy and update custom shim databases to all the target computers? If you are planning to manage a centralized custom shim database, ensure that the tools are in place to deploy and update this custom shim database across all the computers in your organization that require this. As additional applications have shims applied to them, ensure that the target computers have the updated shim database installed prior to using the application.


Do I have centralized resources in place I can dedicate to managing and updating the centralized custom shim database? If you are taking the centralized approach, make sure that you have identified appropriate owners and that the application owners and testers have a clear path for escalating a request for a shim to result in deployment of an update to target computers.

Microsoft consultants have found that this strategy tends to be the best approach, when you have a solid deployment infrastructure in place and centralized ownership of the process. The primary advantages have been accountability and simplifying support (as the deployment of a particular version of a shim is more consistent across the organization).

Merging custom shim databases

Customers who have selected a centralized custom shim database approach benefit from the improved performance of searching a single database to determine whether Windows should apply a shim to a particular executable file. A frequent question Microsoft consultants receive is how to merge custom shim databases to create a single custom shim database. Customers have generally taken the following approach:


Application compatibility testers generally run on a computer containing the latest version of the organization’s custom shim database (which still may be a preliminary version).


If an application requires an additional shim, the tester will create a second custom shim database containing the shims required for that application, which the tester uses to verify the fixes, and through customer acceptance testing.


If the application passes all the functionality and integration tests, the single-application custom shim database is forwarded to the team that manages the custom shim database.


The central team opens the master copy of the organization’s custom shim database. This step is important, because the database contains a globally unique identifier (GUID) that makes updating the database easier (installing a new version of a database with the same GUID as an existing database installed on the computer uninstalls the old version).


The central team can then copy and paste the shims that were applied in the new custom shim database into the master shim database for the organization. (These are options on the right-click menu of Compatibility Administrator.)


The central team then redeploys the new version of the custom shim database containing the additional application fix to all users.

Custom Shim Database Deployment

Deploying a custom shim database to users requires the following two actions:


Placing the custom shim database (*.sdb file) in a location to which the user’s computer has access (either locally or on the network)


Calling the sdbinst.exe command-line utility to install the custom shim database locally

While any approach that completes these two actions will work, customers commonly use one of the following two approaches:


Packaging the *.sdb file and a script in an .msi file and then deploying the .msi file, making sure to mark the custom action not to impersonate the calling user. For example, if using Microsoft Visual Basic® Scripting Edition (VBScript) script, the custom action type would be msidbCustomActionTypeVBScript + msidbCustomActionTypeInScript + msidbCustomActionTypeNoImpersonate = 0x0006 + 0x0400 + 0x0800 = 0x0C06 = 3078 decimal.


Placing the *.sdb file on a network share, and then calling a script on target computers, making sure to call the script at a time when it will receive elevated rights (for example, from a computer start-up script instead of a user log-in script)

Note that you must ensure that the installation of the custom shim database executes with administrative rights.

This example script is taken from the custom action of a Windows Installer (MSI-based) installation of a custom shim database:

'InstallSDB.vbs

Function Install

Dim WshShell

Set WshShell = CreateObject("WScript.Shell")

WshShell.Run "sdbinst.exe -q " & CHR(34) & "%ProgramFiles%\MyOrganizationSDB\MyOrg.sdb" & CHR(34), 0, true

WshShell.Run "cmd.exe /c " & CHR(34) & "del " & CHR(34) & "%ProgramFiles%\MyOrganizationSDB\MyOrg.sdb" & CHR(34) & CHR(34), 0

WshShell.Run "reg.exe delete HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{guidFromMyOrgsSdb}.sdb /f", 0

End Function

Function UnInstall

Dim WshShell

Set WshShell = CreateObject("WScript.Shell")

WshShell.Run "sdbinst.exe -q -u -g {guidFromMyOrgsSdb}", 0

End Function

Initial deployment and updates

Because testing and mitigation of application compatibility issues typically happens prior to the deployment of Windows 7, a common approach is to include the custom shim database containing all known issues at the time of deployment with the corporate image. Then, as you need to update your custom shim database, you could provide these updates using one of the mechanisms described above. This is the methodology that Microsoft uses to manage the System shim database. The initial version was released with the Release to Manufacturing (RTM) version of Windows 7, and updates are provided with Windows Update. When you use this approach, you are using a methodology proven at a very large scale.

Summary and Resources

Shims are a powerful tool for mitigating application compatibility issues and moving forward with your Windows 7 deployment. However, understanding when to shim and how to manage shims within an organization can be a challenge.

This white paper has reviewed the approaches that other customers have used to leverage this powerful technology while minimizing risk and costs. Understanding how shims work is often the most important step in adopting the technology. You have seen how to set criteria for selecting the applications for which using this tool is appropriate after the decision has been made to adopt the technology. Finally, this paper discussed the approaches that most customers use to manage and deploy a custom shim database.

Additional references

For more information on shims, the Application Compatibility Toolkit 5.0, and other migration tools, here is a list of selected resources:


Chris Jackson’s blog on MSDN (http://go.microsoft.com/fwlink/?LinkId=150905)


Microsoft TechNet Application Compatibility Web site (http://go.microsoft.com/fwlink/?LinkId=150904)


Windows 7 and Windows Server 2008 R2 Application Quality Cookbook (http://go.microsoft.com/fwlink/?LinkID=150429)

PAGE

