
The Impact of Changing Collations and of Changing Data Types from Non-Unicode to Unicode
SQL Server Best Practices Article

Writer: Akio Jose
Technical Reviewers: Don Vilen, Fernando Caro, Goldie Chaudhuri, Michael Wang, Sanjay Mishra, Stuart Ozer

Published: November 2007
Applies To: SQL Server 2005 SP2

Summary: When a business grows internationally, its database system must support multilingual characters in tables through the use of Unicode data types. This white paper explores the amount of time that it takes to change a table column from a non-Unicode data type to a Unicode data type, along with changing the collation of the database. Use this information to calculate how long it takes to alter large tables.
[bookmark: _Toc115167741][bookmark: _Toc171848820][bookmark: _Toc115167742]
Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

 2007 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are property of their respective owners.

Table of Contents
Introduction	1
Changing Data Types and Collations	1
Test Methodology	1
Changing Data Types From Non-Unicode to Unicode	1
Test Procedure	2
Test Matrix	3
Changing the tempdb Collation	5
Changing the Collation of a Database	5
Test Results and Observations	3
Changing Data Types from Non-Unicode to Unicode	3
Time Required to Change a Collation	4
Recommendations	6
Conclusion	7
Appendix A: Using Management Studio to Change Data Types	8
Appendix B: Performance Test Findings	9
Appendix C: Test Environment	11

[bookmark: _Toc95395435][bookmark: _Toc182623969]Introduction
When a business grows internationally, its database system must support multilingual characters in tables. Businesses that previously needed to manage only non-Unicode information must now support database tables that include non-Unicode data types such as CHAR or VARCHAR. As the business grows internationally, it must alter its database system to support Unicode data types. It may also need databases that have different collations across several servers.
This white paper explores the amount of time it takes to change a table column from a non-Unicode data type to a Unicode data type, along with changing the collation of the database. It answers the following question:
If a table contains a large number of rows, such as several million, how long does it take to change the data type from non-Unicode to Unicode?
[bookmark: _Toc182623970]Changing Data Types and Collations
Changing from a non-Unicode to a Unicode data type and changing collations are both straightforward tasks.
Changing Data Types From Non-Unicode to Unicode
You change the data type of a column from non-Unicode to Unicode in one of two ways: either alter the table from within Microsoft® SQL Server™ Management Studio, or run a single ALTER TABLE statement. For how to do this in Management Studio, see Appendix A.
To convert the data type of a column from non-Unicode to Unicode, execute an ALTER statement as follows:
alter table t1 alter column c1 nchar(20)
Where t1 is defined as:
t1 (c1 char(20))
Changing Effects Collation
A collation can be changed at either the database level or at the column level. The following statement changes the collation at the database level:
alter database dbName COLLATE Latin1_General_CI_AS
The following statement changes a collation at the column level:
alter table tableName alter column c1 collate Japanese_CI_AS
[bookmark: _Toc182623971]Test Methodology
This section describes the test data and explains the processes that we used to convert the data types and change collations.
[bookmark: _Toc182623972]Changing Data Types From Non-Unicode to Unicode
In the data conversion test, five tables having the following definitions were prepared:
T01(c1 char(20))
T02(c1 char(20), c2 varchar(20)
T03(ID int, c1 char(20))
T04(ID int, c1 varchar(20))
T05(ID int, c1 char(20), c2 varchar(20))
We had two purposes for our tests:
Find out whether there are any differences, in terms of conversion time, when the table has a single column or multiple columns.
Find out whether having other columns, such as an integer column, has any effect on the result.
So we used two test tables—one table had a single column and a second table had multiple columns.
We ran tests on tables of different sizes. We used tables that contained 10 million, 5 million, and 1 million rows. Test data was randomly generated. The test data had fixed-length columns of 20 characters for the char and varchar columns. For tables of the integer type, the ID was generated randomly.
[bookmark: _Toc182623973]Test Procedure
Following are the high-level steps of the test operation:
Export data to a file (such as a file named X.bcp).
Modify the column with an ALTER statement, for example:
alter table T01 alter column c1 nchar(20)
Export data to a file (such as Y.bcp).
Do a file compare of X.bcp and Y.bcp.
The purpose of step 4 is to validate our test to ensure that the data is consistent both before and after the data conversion. At step 2 we measured the time it took the ALTER statement to complete.
To calculate time requirements, we measured the response time of a query execution against the default database, which we call the basis database. Next, we changed the collation of the basis database (or the table) and ran the same query. Response times executed on the basis database and the modified databases were then compared to see how the collation change affected the response time.
We used several queries based on the decision support type. Each query was executed serially and each response time collected. We used only read-only queries—we did not use any UPDATE, INSERT, or DELETE queries. This narrowed our test result analysis.
We used two databases as our basis databases. These were the default databases for English and Japanese collations. The SQL_Latin1_General_Pref_CP1_CI_AS collation was the English default and the Japanese_CI_AS collation was the Japanese default.

[bookmark: _Test_Matrix][bookmark: _Toc182623974]Test Matrix
Table 1 and Table 2 in this section show the test case matrix.
Reading the Test Matrix
Both test matrices represent test cases for tests on Japanese collations and Latin1 collations. The first row in each matrix indicates the state of the original database. The P00 in the top row represents our basis database for Japanese. The P13 in the top row represents our basis database for the Latin1 case. Queries were executed on each database to collect the total response time. The data collected was the basis on which to compare the query response time when the queries were executed on databases that have the other collation settings according to the settings shown in other test cases (P01 to P12 for the Japanese test cases and P14 to P25 for the Latin1 test cases).
For example, to perform test case P01, the original database (the database for Japanese collations) was changed according to the information shown in row P01 in the test matrix in Table 1. Following were the steps we took to perform a test case:
1. Change the database collation to Japanese_90_BIN.
In all columns in all user tables, change the collation to Japanese_CI_AS.
We did not change the data type of the user table column since the original tables (in the P00 database) were Non-Unicode. In test case P03, we changed the data type of every column to Unicode.
We did not change the tempdb collation since the system’s default collation is Japanese_CI_AS. In test case P04, we changed the tempdb collation to Japanese_90_BIN.
After changing the state of the basis database (P00 in the example) we ran the same queries as were executed on the original (basis) database and compared the results.

[bookmark: _Ref175368100][bookmark: Table1][bookmark: _Toc173748394][bookmark: _Ref175367768][bookmark: _Toc177814852]Table 1: Test Matrix (JPN Test Case)
	P00 (JPN Basis)
Database state
Database Level=Japanese_CI_AS, Column Level = Japanese_CI_AS
Column Data type = Non-Unicode, tempdb = Japanese_CI_AS

	Test Case ID
	Database Level
	Column Level
	Column Data type
	tempdb

	P01
	Japanese_90_BIN
	Japanese_CI_AS
	Non-Unicode
	Japanese_CI_AS

	P02
	Japanese_90_BIN
	Japanese_90_BIN
	Non-Unicode
	Japanese_CI_AS

	P03
	Japanese_90_BIN
	Japanese_90_BIN
	Unicode
	Japanese_CI_AS

	P04
	Japanese_90_BIN
	Japanese_CI_AS
	Non-Unicode
	Japanese_90_BIN

	P05
	Japanese_90_BIN
	Japanese_90_BIN
	Non-Unicode
	Japanese_90_BIN

	P06
	Japanese_90_BIN
	Japanese_90_BIN
	Unicode
	Japanese_90_BIN

	P07
	Japanese_CS_AS
	Japanese_CI_AS
	Non-Unicode
	Japanese_CI_AS

	P08
	Japanese_CS_AS
	Japanese_CS_AS
	Non-Unicode
	Japanese_CI_AS

	P09
	Japanese_CS_AS
	Japanese_CS_AS
	Unicode
	Japanese_CI_AS

	P10
	Japanese_CS_AS
	Japanese_CI_AS
	Non-Unicode
	Japanese_CS_AS

	P11
	Japanese_CS_AS
	Japanese_CS_AS
	Non-Unicode
	Japanese_CS_AS

	P12
	Japanese_CS_AS
	Japanese_CS_AS
	Unicode
	Japanese_CS_AS

<Title of white paper goes here>	1
<Title of white paper goes here>	2
The Impact of Changing Collations From Non-Unicode to Unicode	1
[bookmark: _Ref175368110][bookmark: _Toc177814853]
	Microsoft Corporation ©2007
	Microsoft Corporation ©2007
[bookmark: Table2]Table 2: Test Matrix (Latin1 Test Case)
	P13 (Latin1 Basis)
Database State :
Database Level = SQL_Latin1_General_Pref_CP1_CI_AS, Column Level = SQL_Latin1_General_Pref_CP_CI_AS,
Colum Data Type = Non-Unicode, tempdb = SQL_Latin1_General_Pref_CP1_CI_AS

	Test Case ID
	Database Level
	Column Level
	Column Data Type
	tempdb

	P13 (US basis)
	SQL_Latin1_General_Pref_CP1_CI_AS
	SQL_Latin1_General_ Pref_CP1_CI_AS
	Non-Unicode
	SQL_Latin1_General_ Pref_CP1_CI_AS

	P14
	Latin1_General_CI_AS
	SQL_Latin1_General_ Pref_CP1_CI_AS
	Non-Unicode
	SQL_Latin1_General_ Pref_CP1_CI_AS

	P15
	Latin1_General_CI_AS
	Latin1_General_CI_AS
	Non-Unicode
	SQL_Latin1_General_ Pref_CP1_CI_AS

	P16
	Latin1_General_CI_AS
	Latin1_General_CI_AS
	Unicode
	SQL_Latin1_General_ Pref_CP1_CI_AS

	P17
	Latin1_General_CI_AS
	SQL_Latin1_General_ Pref_CP1_CI_AS
	Non-Unicode
	Latin1_General_CI_AS

	P18
	Latin1_General_CI_AS
	Latin1_General_CI_AS
	Non-Unicode
	Latin1_General_CI_AS

	P19
	Latin1_General_CI_AS
	Latin1_General_CI_AS
	Unicode
	Latin1_General_CI_AS

	P20
	Latin1_General_BIN2
	SQL_Latin1_General_ Pref_CP1_CI_AS
	Non-Unicode
	SQL_Latin1_General_ Pref_CP1_CI_AS

	P21
	Latin1_General_BIN2
	Latin1_General_BIN2
	Non-Unicode
	SQL_Latin1_General_ Pref_CP1_CI_AS

	P22
	Latin1_General_BIN2
	Latin1_General_BIN2
	Unicode
	SQL_Latin1_General_ Pref_CP1_CI_AS

	P23
	Latin1_General_BIN2
	SQL_Latin1_General_ Pref_CP1_CI_AS
	Non-Unicode
	Latin1_General_BIN2

	P24
	Latin1_General_BIN2
	Latin1_General_BIN2
	Non-Unicode
	Latin1_General_BIN2

	P25
	Latin1_General_BIN2
	Latin1_General_BIN2
	Unicode
	Latin1_General_BIN2

[bookmark: _Ref175369799][bookmark: _Toc182623975]Changing the tempdb Collation
The collation of tempdb cannot be changed by using the ALTER DATABASE statement—SQL Server does not allow this since tempdb is part of the system database. Note that tempdb uses the collation of the model database. Since there is a way to change the collation of the model database, we inferred that we should be able to change the collation of tempdb. Recall that the model database can be backed up and restored. So, for example, if we have another instance of SQL Server running with a default collation of French_CI_AS, we can back up the model database from the “French” server, restore it on the target server, and then restart the MSSQL service on the target server. We used this technique to change the collation of tempdb for the test cases described in the previous section.
Note that SQL Server uses the model database as a template to create new databases. Continuing our example, new databases would have the default collation set to French_CI_AS.
[bookmark: _Toc182623976]Changing the Collation of a Database
If the collation change is only at the database level, changing the collation is only a matter of running one ALTER DATABASE statement, for instance:
alter database userDB collate Japanese_90_BIN
Internally, SQL Server changes the property of only the user database, which enables the ALTER statement to complete instantly.
Notice that changing the collation at the database level does not alter the collations in pre-existing tables. For instance, if the initial collation of the user database is Japanese_CI_AS, tables that existed before the collation is changed retain their collation property as Japanese_CI_AS even when the collation is changed at the database level. New tables created after the change to the new collation use the new collation. This can confirmed from the following example:

create database MyDB
go
use MyDB
go
create table t(c1 nchar(10))
go
select 'Table'=object_name(o.object_id), 'Column'=c.name, c.collation_name
from sys.columns c, sys.objects o where o.type = 'U' and c.object_id = o.object_id
go

alter database MyDB collate Japanese_BIN
go
select 'Table'=object_name(o.object_id), 'Column'=c.name, c.collation_name
from sys.columns c, sys.objects o where o.type = 'U' and c.object_id = o.object_id
create table t2(c1 nchar(10))
go

select 'Table'=object_name(o.object_id), 'Column'=c.name, c.collation_name
from sys.columns c, sys.objects o where o.type = 'U' and c.object_id = o.object_id

Notice that the collation of column c1 in table t retains its property as Japanese_CI_AS even after the collation is changed at the database level; however, column c1 in table t2 has Japanese_BIN as its collation property. Joining tables that have columns with different collations can produce unexpected results.
Changing the collation at the column level requires some work, particularly if the tables have indexes and other constraints defined. If indexes and other constraints exist on the target column, those objects must be dropped before changing either the collation property or the data type. Following are some examples of changing a column when there is nonclustered index defined. Included are examples of changing the column’s data type and collation property separately: however, changing both the column data type and its collation property can be done in a single statement.
First we show the table name and its column name and data type:

select
'Table'=object_name(o.object_id),
'Column'=c.name,
'Data type' = t.name,
'Length' = c.max_length, c.collation_name
from sys.columns c, sys.objects o , sys.types t
where o.type = 'U' and c.object_id = o.object_id
and c.user_type_id = t.user_type_id

To change the column data type, the index must first be dropped:

drop index t1_idx on t1
alter table t1 alter column c1 nchar(10)

Now we see the column data type has changed accordingly. Also, the length has doubled since it was changed to Unicode data type.

Next we change the column’s collation property:
alter table t1 alter column c1 nchar(10) collate Latin1_General_CI_AS
The collation property has been changed:

This illustrates changing the column’s data type and its collation property by using two separate statements. However, these can be combined. The following statement changes the column data type and its collation property:
alter table t1 alter column c1 nvarchar(50) collate French_CI_AS
The column’s property is now:

[bookmark: _Toc182623977]Test Results and Observations
This section shows our findings and observations. Details of performance-related information are in the appendices.
[bookmark: _Toc182623978]Changing Data Types from Non-Unicode to Unicode
The following graph shows the results of tests that were performed on table T01. Each bar represents the completion time for the ALTER statement to complete when the table had 10 million, 5 million, and million records.

[bookmark: _Toc177814857]Result Graph 1: Unicode data type conversion result
Overall, the conversion time shows linearity with respect to the number of data rows in each table. This is expected since SQL Server converts the data in each row to its equivalent Unicode data.
The conversion results from other tables in our test showed similar results to those in Result Graph 1.
Following are the basic steps that the SQL Server engine goes through when the ALTER statement is executed:
1. Begin nested transaction.
Lock the table in schema-modify mode (exclusive access). Check for any existing constraints, indexes, and permissions on the target column to ensure that none exist.
Set up metadata for the column that has the new data type.
Run an internal update query to convert the data if necessary. Data conversion is done either with an in-place update or by allocating new space. If data conversion is not required, this step is skipped completely.
Commit nested transaction.
DBAs might want to keep in mind that the target table will be locked during the data conversion. Following is the information returned by sp_lock when performing the ALTER statement on a single column:

	Spid
	Dbid
	ObjId
	IndId
	Type
	Resource
	Mode
	Status

	61
	5
	2073058421
	0
	TAB
	
	Sch-M
	GRANT

After performing the tests and analyzing the results, we came up with some tips that may help when changing the collation. See Appendix B for details of our findings and these tips.
[bookmark: _Toc182623979]Time Required to Change a Collation
Our tests involved changing the database and table at three levels. We changed the database collation, the collation at each column, and the data type of each column from non-Unicode to Unicode (changing char to varchar and nchar to nvarchar). The time it took to change the collation varied, depending on the level. This section contains how long it took to complete the collation change at the different levels. This gives you an idea of how long it might take for the entire conversion process. A script was used to take care of the conversion procedure. The time required to change the collations on a given database may differ depending on the number of objects and records in each table.
Time required to change the collation at the database level
The collation change at the database level was almost instant:
alter database MyDB collate Latin1_General_BIN
The change at the database level, described earlier in this paper, is a matter of changing the property of the database, which occurs immediately.
Time required to change the collation at the column level
We used a script to perform all the necessary changes at each level.
The following table summarizes the user tables in the database and the time it took the script to complete.
[bookmark: _Toc173748396][bookmark: _Toc177814854]Table 3: Test Table Information
	 Table Name
	 Record Count
	Number of columns to alter (only columns
having char/varchar types)

	ORDERS
	18,750,000
	4

	LINEITEM
	74,986,253
	5

	NATION
	25
	2

	REGION
	5
	2

	PART
	2,500,000
	6

	SUPPLIER
	100,000
	4

	PARTSUPP
	10,000,000
	1

	CUSTOMER
	1,875,000
	5

Table 4 shows the time it took to change the table or/and column data type. In every case, the collation is changed at the database level and the column level. The data type of the column is changed from non-Unicode to Unicode only in case 4. Notice that the total time is much longer than other cases. In this case, SQL Server must convert all data to Unicode data type.
[bookmark: _Ref175652184][bookmark: _Toc173748397][bookmark: _Toc177814855]
Table 4: Data Conversion Time
	Cases

	Alter table (29 ALTER statements)
	Create indexes
	Total time for script to complete *

	Case 1
SORT_IN_TEMPDB = OFF for index rebuilds
	Instantly
(less than 1 min)
	50 min
	1 hr 6 min

	Case 2
SORT_IN_TEMPDB = ON
Index build order: NCI -> CI
	Instantly
(less than 1 min)
	28 min
	46 min

	Case 3
SORT_IN_TEMPDB = ON
Index build order: CI -> NCI
	Instantly
(less than 1 min)
	25 min
	44 min

	Case 4
SORT_IN_TEMP=OFF
Index build order: NCI -> CI
Data type alteration from non-Unicode to Unicode
	4 hrs 56 min
	2 hrs 18 min
	7 hrs 35 min

* The script also performs validation and statistical updates. The total time shown in the table includes these additional validations.
[bookmark: _Toc182623980]Recommendations
If your business is expanding globally and you expect to handle data from other countries, this section includes a number of recommendations.
Use the Unicode data type as the data type for character columns
If existing tables contain the non-Unicode data type, change all of them to Unicode.
If the column to change has an index, use the SORT_IN_TEMPDB option when re-creating the index. This reduces the possibility of having fragmentations in the index extents.
Changing collations to different languages
In our test we did not perform intermixed collations, such as going from Japanese to English (changing from Japanese_CI_AS to the Latin1_General_CI_AS collation). This is because attempting to do so may result in data loss. Consider the following code:

create database JPN collate Japanese_CI_AS
go
use JPN
go
create table t1 (c1 char(2))
insert t1 values ('あ')
select * from t1
alter database JPN collate Latin1_General_CI_AS
alter table t1 alter column c1 char(2) collate Latin1_General_CI_AS
select * from t1

The result is the following:

Notice that the data is lost, as shown by the “?” mark. This happens when you change the collation of a column to a collation that is not recognized in the target collation’s code page. In the example, the Japanese character is not recognized by the Latin1_General_CI_AS 1252 code page.
Following are recommendations for changing collations to different languages:
· In character columns, store only data belonging to the code page for the column.
· If you must change the collation (and avoid data loss), change non-Unicode data types to Unicode.
[bookmark: _Toc182623981]Conclusion
When converting data types from non-Unicode to Unicode, the conversion time (the time for an ALTER statement to complete) is linear with respect to the number of data rows in the table. In our test, it took approximately 12 minutes for the ALTER statement to finish when run on a table having 10 million rows. Note that this may differ depending on the number of characters in each row. The calculated coefficients of the Best Fit Line estimate for the T01, T02 and T04 tables were as follows:
T01: 73.45
T02: 73.87
T04: 70.08
We can estimate the time (in seconds) it will take to alter table T01 if it has 20 million rows by using the following formula:
EstimatedTimeSeconds = 73.45 x 20
The table will be inaccessible since SQL Server locks the table during data conversion. SQL Server locks the table in Schema mode during ALTER COLUMN processing.
We observed noticeable effects when a non-Unicode data type was changed to Unicode. This was due to the increase in the number of data pages. The SQL Server engine allocates data space to be occupied by the data converted to Unicode
We observed noticeable effects when the collation was changed at the column level but not at the database level. In our testing, this impact was mainly caused by fragments in the index page and not by the collation change itself because we had to drop and re‑create the existing index on the target column.
[bookmark: _Appendix_A:_Changing][bookmark: _Ref175297035][bookmark: _Toc182623982]
Appendix A: Using Management Studio to Change Data Types
To change the column data type by using SQL Server Management Studio
1. From Management Studio, expand the tree view to the table.
Right-click the table and click Design to open the design pane:

Select the new data type from the Data Type list as in the following illustration.

Click Save on the toolbar to apply the change.
Internally, SQL Server creates a temporary table that has the same column property as that in the target column.
Next an INSERT INTO statement is executed to copy the data to the temporary table. This is shown in the following, which we observed by using SQL Profiler:

IF EXISTS(SELECT * FROM dbo.t1)
 EXEC('INSERT INTO dbo.Tmp_t1 (c1)
 SELECT CONVERT(nchar(10), c1) FROM dbo.t1 WITH (HOLDLOCK TABLOCKX)')

Afterwards, the index is added if it existed in the original table and the table name is renamed to the original table name.
[bookmark: _Appendix_B:_Performance][bookmark: _Ref175296952][bookmark: _Toc182623983]Appendix B: Performance Test Findings
Findings from the Collation Impact testing
Table 5 shows the total response times from queries executed on each database. The database collations were changed in the tests as shown in the test matrix earlier in this paper.

[bookmark: _Ref175651255][bookmark: _Toc173748395][bookmark: _Ref175651199][bookmark: _Toc177814856]Table 5: Performance Test Results
	[bookmark: _Ref171850589]Japanese Collation
	US Collation

	Test Case
ID
	Collation Change Level
	Total Response Time (mm:ss)
	Test Case
ID
	Collation
Change Level
	Total Response Time (mm:ss)

	P00 (Basis)
	(N/A)
	29:01
	P13 (Basis)
	(N/A)
	24:09

	P01
	DB
	28:02
	P14
	DB
	25:27

	P02
	DB, Column
	43:40
	P15
	DB, Column
	30:34

	P03
	DB, Column, (*)
	59:48
	P16
	DB, Column, (*)
	40:34

	P04
	DB
	25:25
	P17
	DB
	25:41

	P05
	DB, Column
	43:57
	P18
	DB, Column
	30:21

	P06
	DB, Column, (*)
	52:29
	P19
	DB, Column, (*)
	42:23

	P07
	DB
	25:52
	P20
	DB
	24:00

	P08
	DB, Column
	47:33
	P21
	DB, Column
	31:01

	P09
	DB, Column, (*)
	52:27
	P22
	DB, Column, (*)
	41:31

	P10
	DB
	25:24
	P23
	DB
	24:00

	P11
	DB, Column
	46:09
	P24
	DB, Column
	29:36

	P12
	DB, Column, (*)
	55:55
	P25
	DB, Column, (*)
	44:27

	(*): Change column data type from Non-Unicode to Unicode

[bookmark: _Toc173747708][bookmark: _Toc177814858]Result Graph 2: Total response time (Japanese collations)
[bookmark: _Ref171850656]
The”P##” labels refer to the test case ID shown in the test matrix earlier in this paper. The P00 is the basis result, which is the total response time of all queries executed against the default database for Japanese. We compared the total response time result from the basis database with other results to determine how the collation change affected the query response time.
Results can be grouped as follows:
Group A	P01, P04, P07, P10 (Japanese case)
Group B	P02, P05, P08, P10 (Japanese case)
Group C	P03, P06, P09, P12 (Japanese case)
Interestingly, each group has the following commonality:
Group A	Collation change only at the database level
Group B	Collation change at the database level and the table level
Group C	Collation change at the database level and the table level, and data type change at the table column from non-Unicode to Unicode
After comparing the result from each group with the basis result, we noticed the following:
In Group A, the impact on performance was minor.
In Group B and Group C, the impact on performance was major.
So what caused the longer response times when the collation was changed at the database and the table level (and the data type changed at each column)?
The cause of the impact on performance in Group C can be explained by the fact that we changed the column type from non-Unicode to Unicode in all of the user tables. SQL Server allocates space for the data that will be converted to Unicode to occupy. If the number of records to convert is significant, this can result in a larger number of data pages so SQL Server must read more data pages.
The next task was to find out what caused the impact in Group B. Why did performance degrade when the collation change was done at both the database and the table level?
After a thorough investigation, we arrived at three reasons for the impact on performance:
The SORT_IN_TEMPDB option
In our test database preparation, when we changed the collation at the database and table level, we rebuilt all indexes that existed in user tables. The basic steps for altering a column that has an index defined are to drop the index, alter the column, and rebuild the index. This was required before we could alter the column in the target table. For instance, indexes and constraints must be dropped before executing the following statement:
alter table MyTable alter column c1 char(20) collate Latin1_General_BIN
When we rebuilt the index, we did not explicitly specify the SORT_IN_TEMPDB option in our CREATE INDEX statement—this option is OFF by default. Not using the SORT_IN_TEMPDB option can result in less contiguity in index extents, which may cause extra I/Os. Furthermore, the MAXDOP (max degree of parallelism) setting may have some effect on the resulting extents.
The order in which nonclustered indexes and clustered indexes are built
There are no restrictions on creating a non-clustered index, and then creating a clustered index on the same table. If the non-clustered index is created first, creating the clustered index rebuilds the non-clustered index in parallel. This lead to fragmentation in the index extents.
The change from SQL collation to Windows® collation
Some of our test cases included changing the collation from SQL collation to Windows collation. The test cases with test case IDs P14 to P25 in Table 2 fall under this case. It is a known issue that using Windows collation can result in performance degradation as compared to SQL collation. For more information, see Comparing SQL collations to Windows collations (KB:322112).
[bookmark: _Toc182623984]Appendix C: Test Environment
Database server:
CPU: 8-way, 2.0 GHz (gigahertz)
Memory: 12-GB RAM
Operating System: Windows Server® Enterprise 2003 SP2 Japanese
SQL Server: SQL Server 2005 Enterprise Edition SP2
Storage system
SAN storage

image2.png

image3.png
Table Cohmn colation_name
|1 [e1 spenesecias

image4.png

image5.png
[Results

Table Column Datatype Leng.. coliation_name
1o e char 10 Japanese BIN

image6.png
3 Results.

Table Column Datatype Leng.. coliation_name
1o e nchar 20 Japanese BIN

image7.png
[Results | [Ty Messages

Table Column Datatype Leng.. coliation_name
1o e nchar 20 Latin1_General_CI_AS

image8.png
Table Column Datatype Leng.. coliation_name
1t e nvarchar 100 French_CI_AS

image9.png
(hh:mm:ss)

Unicode Data Type Conversion Results

0:12:58

10Million, 0:12:10

5 Million, 12:05:4¢

AM

1Million, 0:01:10

Table TO1(c1 char(20))

image10.png
3 Results.
cl
1 ®

cl
1 07

[y Messages

image11.png
= (3 MyDB
Database Diagrams
£ C3 Tables

3 System Tables

Open Table
it Tl e N

image12.png

image13.png

image14.emf

P00(B

asis)

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12

Response Time

0:28:0 0:28:0 0:43:4 0:59:4 0:25:2 0:43:5 0:52:2 0:25:5 0:47:3 0:52:2 0:25:2 0:46:0 0:55:5

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1:04:48

hh:mm:ss

Total Query Response Time

(Japanese Collations)

image1.png
Microsoft*

SQL Server 2005

