Designing .NET Class Libraries
Session:
Security
Speaker:
Sebastian Lange
Transcription

Sebastian Lange:
My name is Sebastian Lange and I’m program manager on the common language run-time team responsible for the security system shipping the .NET framework, and I’d like to welcome you all to Lesson 12, in which we’ll talk exactly about that, the Code Access Security system, shipping in the .NET framework and what you need to do in order to write secure code that integrates well with that security system. What I hope to cover in this presentation is to first give you a quick overview of what Code Access Security actually is. After that, we’ll together built a little shared library, and implement the various security precautions that you should use when you write your own shared library, such as using verifiable code, how and when you use the so-called allowed partially trusted callers attribute, how and when you use permission asserts, and how you actually go about protecting resources that are security-relevant in your code, and finally, how you seal access to methods in your code. After that, we’ll go over some of the common security mistakes and issues that we actually found when we implemented the .NET frameworks 1.0 version, and had our big security push before we shipped. And finally, I’ll walk you through a couple of the helpful security tools and processes that you might find interesting when you implement your own secure shared library.

First of all, let’s start off with some terminology. Some or all of this will probably be fairly familiar to you, but let’s just make sure that we are all on the same page here. Microsoft .NET framework obviously is a language agnostic programming platform that offers memory management and security services among other things, and that comes with a very rich class library. Some of those API’s are security relevant, such as access to the file system or the registry, and need adequate protection. The heart of the .NET framework is the common language runtime, which, since it’s part of the .NET framework, it implements those services, such as the memory management, or the security services, but its main task is to just-in-time compile code that has been compiled to run on the .NET framework into the underlying processes machine code. The code that gets compiled from a Microsoft intermediate language, that it is the language that compilers emit when you write code for the .NET framework. Those pieces of code are called assemblies, and those are basically just x’s or they are o’s that have been compiled to run on the .NET framework. And as you’ve probably been made very well aware of by now, those assemblies contain two main parts. One part is metadata. Metadata describes the implementation of all the types contained in the assembly, as well as some versioning information and hash and signature information. And the assembly also contains, as I already mentioned, Microsoft intermediate language, which is basically the code that gets just in time compiled and then run when an assembly gets executed on the common language runtime.

With that let’s just, without further ado, jump right into the world of Code Access Security. What is Code Access Security, specifically, what is the main goal that we try to solve when we invented Code Access Security in version 1.0 of the .NET framework? Well, the main scenario that Code Access Security solves is to give us a security framework to run code within so-called partially trusted security context. Now what do we mean by a partial trust security context? Well, partial trust security context are really means that you can run a piece of software and still run it, but you run it within constraints that allow you to guarantee that that program cannot act maliciously against your machine. Cannot do elevation of privileges, cannot do some of the most heinous piracy and denial of service attacks. And, you might wonder, so, why is this system important? Why do we have something like Code Access Security? Doesn’t Microsoft already have enough security systems and security technology out in the world? Do we need yet another piece of technology? Well imagine the following scenario. You go out, and buy a shrink-wrapped piece of your favorite word processing software, come home, you install that CD onto your machine, and you thereby have made a very explicit decision to have those bits run, you know the software publisher, you trust that software vendor, and that piece of software runs within your user context. At the same time, you open the Web browser, go to some sites you’ve never been at before, and some Web control tries to run. Now that piece of code you have very little information about. You don’t really know was written it, you don’t really know whether you can trust the person, whether that piece of software is buggy or not, whether the person writing had any evil intent whatsoever. So, wouldn’t it be great if you had a security system which you can use to sub-partition the operating system, use a security context in which all your programs that you run in your security context run within the same security privileges, into finer grain security areas, so that for instance, you can say, programs that come from very trustworthy origins, such as a software publisher you trust, or things you have explicitly installed on your local hard drive get to run with all of the privileges of your user context, whereas other pieces of software, which come from potentially trustworthy origins get to run only within a constraint set up security permissions, such that those pieces of software cannot act maliciously against your computer.

And that’s exactly what the Code Access Security system is doing. And that’s exactly what has shipped in the .NET framework since version 1.0 and 1.1. Now, the Code Access Security paradigm is quite differed from operating systems security. In Code Access Security, as the name implies, the main security identity are not users, are not user roles, but the individual piece of code trying to run on the common language runtime. So, code identity determines a security trust context, and is also the enforcement boundary in Code Access Security. What we mean by this? Well, in the common language runtime, basically, when an assembly gets loaded onto the common language runtime, we perform and authentication step, basically a step trying to find out what piece of software is trying to gain access to potentially protected resource in the .NET framework. And we try to build as much identity information about that assembly as we can upon load time of that assembly. So, we check what your element came from, what is the software publisher, if any, what is the Internet zone it came from, what’s the hash value, what’s the digital sequence, authentic code or strong name, and so on, and basically build a whole set up identity information for that piece of software, just about to execute on the common language runtime. Based on that identity information, we then make a mapping to a trust position. Basically, you can think about the Code Access Security policy system, which does that mapping just as a big black box. In comes an evidence, some information about where that piece of code just about to run came from, and out comes a set of permissions to access all the protected or some or none of the protected resources that are part of the .NET framework. Again, it’s a system that’s based on code identity, there’s a policy system that takes input about the origin of a piece of software and outputs a set of permissions to protect it, to allow access to protected resources in .NET framework.

Now, every security system would be worth very little if it didn’t enforce its own trust position and its own authorization positions. And the way Code Access Security does that is basically, upon call of a protected API, if that API is correctly annotated--and that will be one of the things we’re going to go through in quite some detail in this talk, with the right security check, then that security check well internally trigger a stack walk of all callers currently on the call stack into that API, making sure that every one of those callers have been granted the requested permission that is required to access that API. Basically, short-circuiting any man-in-the-middle attacks. So that’s a basic infrastructure implementation of Code Access Security. And in order to make the Code Access Security policy and enforcement system work, there are two other main parts of infrastructure that ship in the common area’s runtime that enable Code Access Security. First of all, there is assembly validation. And assembly validation is just what it sounds like. It’s basically running a set up correctness checks over an assembly just as it is being loaded. And there are literally several hundred of those checks, making sure first of all that an assembly that is about to be executed complies by the PE cut file format specifications, so that it’s actually a correct executable, that it is a correct managed executable image, so that it has the right managed entry in the PE cut file format so that the common language runtime can recognize it as a managed executable. It does, the validation also includes a checking over the metadata of an assembly. So for instance, we check that none of the metadata table pointers point outside of the assembly, or that there are no circular class hierarchies that end of being defined by a metadata.

What we also check as part of validation is that the IL contained in the assembly is actually corrector L, so that various IL code set make up the IL stream of the assembly actually correspond to some tactically well-formed IL instructions. And that jump instructions contained in that IL stream actually point within the executable region of the assembly. So in short, we do literally hundreds of checks that we amortize over a low time, and sometimes over class low time, to make sure that an assembly is structurally correct from a security perspective. Now the other part of supporting infrastructure that makes Code Access Security possible is called verification. The invariant that verification supports is what’s called type safety. You can think about type safety just as guaranteeing that a program that is type safe acts very well with memory, that it does not try to accept private state in another assembly, that it doesn’t try to access any part of memory that, via the visibility annotations in other assemblies or other classes, that piece of code shouldn’t have access to. So basically, any verifiable piece of code has the processes memory space be broken up into little islands that are visible to it because they constitute publicly visible fields or variables and a lot of unapproachable or inaccessible parts of memory, which cannot be securely accessed. So what that means is that any verifiable piece of code cannot be doing arbitrary point arithmetic for instance. And we’ll go into some more details about verification in just a second. Now let’s come to actually writing managed code securely. We’ve structured the security infrastructure of the .NET framework such that normal application writers will need to do basically nothing in order to interface with the Code Access Security system. They get the whole security gamut of features and benefits basically for free. The code authors however that’s write shared managed libraries need to do some explicit coding into their shared library in order to make sure that resources that application writers are going to use in order to implement the applications are actually secured. And that’s where a lot of you will come into, because many of you very likely will have to set up some shared library, some managed code shared library, and it will be your task to make sure that the public APIs that you expose are actually adequately secured. In the remainder of this talk we’ll go over exactly how you do that.

Now before you even write a single line of code, there are a few things you should take into account in your design phase of the shared library. First of all, you should decide what stands toward security should I take when I write my shared library. So, is my shared library just absolutely unsafe? I have previously determined that my format hard drive API and my enumeration of passwords API are things that should never be exposed to any code that doesn’t have the highest level of privileges. In that case, all you basically need to do is not expose your shared library to any such code. And unfortunately, in many cases, that is an option that is quite rare, especially since as a company, we are trying to build more and more managed APIs that actually expose resources and are features not just to fully-trusted callers, but to partially-trusted callers, namely callers that come in from the Internet or the Intranet and haven’t been granted by default security policy all the rights to access all the resources in the .NET framework. Now another option sometimes is that your library might actually turn out to be security neutral. And that happens to be the case when you write a shared library that sits on top of another shared library which has already done all the right security checks and basically all you do is just repackage some of the features that are already written in another shared library. And that’s a fairly rare case. The case that is probably the most likely to be encountered it is that you actually write a shared library that does expose of some security-relevant resource. Now you might ask, what on earth is a security-relevant resource? And it’s actually very difficult to come up with a good definition. And one of the heuristics that I would like to employ whenever I am asked question is, basically, posing the following question, does your API expose some resource that is security conscious or security paranoid administrator might want to restrict partially or completely? And if the answer to this is yes or maybe, you are very well advised to follow some of the security protection steps that I’m going to enumerate in the remainder of this presentation. The library that exposes some security relevant APIs is probably the most common API, or the most common library in existence today. And I think most, if not all of our shared libraries that we ship in the .NET framework have at least some public API that has some security relevancy. So you’re very likely to encounter the security requirements we’re about to delve into.

Another thing you should take into account before you even start to write a single line of code is that question of verifiability. Am I going to write verifiable code or am I not going to write verifiable code? Well, the property of verifiability is basically a property of the compiler you use. So if you use C# or Visual Basic, by default, those compilers will emit verifiable code. And if you use managed C++ on the other hand, by default, that compiler will not emit verifiable code. However, in the Whidbey release, in the upcoming release of the compiler, there will be a compiler switch that will basically force any compiled code to be compiled verifiably or trigger an appropriate error message from the compiler. Now you might still want to, so, why exactly was verification important in order to support Code Access Security? Well, one reason is that in verifiable code, in code that doesn’t do arbitrary memory management and doesn’t have the right to access arbitrary parts of memory, basically memory must be managed for that piece of code, which is the memory management service of the common language runtime. And such code has much lower likelihood of generating buffer overrun problems. So just by virtue of writing verifiable code, you dramatically reduce the risk of having a buffer overrun problem in your piece of code. And again, the reason for that it is that some of the most common coding patterns that lead to buffer overruns are memory allocation or point arithmetic kind of coding patterns, which are precluded into verifiable pieces of code.

Another sort of more striking reason for the importance of verifiability for Code Access Security is the following. If it were possible that a piece of code could access arbitrary pieces of memory within the common language runtime process space, or as process space, that the, the common language runtime loads all managed applications running on the same CLR instance into, those programs would be able to access the fields that the CLR itself has a managed code. And there is for instance a private pool field that has basically the meaning Code Access Security on or off. And so if a piece of code could do arbitrary memory access within the CLR process, that code could accidentally or maliciously just switch the state of the pool field to off and turn security off for that process. At least the Code Access Security System. So, for that reason alone and many other reasons, verification is extremely important, and we never allow, in the default policy that ships with the .NET framework, any unverifiable piece of code to run from one trustworthy locations, meaning in the Internet or Intranet sandbox, unverifiable code is strictly disallowed.

Well, it actually turns out that you can’t just write an assembly, just stick it in the global assembly cache and then just have those APIs automatically be visible to all managed calls, including callers again that can come from the Internet or Intranet and can be potentially malicious. We realize that we needed an explicit trigger for developers of shared libraries to actually make sure that they have signed off on haven’t done all the security reviews, having put the right security checks, and the right security precautions into their shared library and only then published their shared library out to the world, including potentially malicious callers. And the way you do publish your shared library out to the world is by a single simple line of code, which is a custom assembly level custom attribute annotation called the allow partially trusted callers attribute. And let’s just see what happens if we put this into our shared library. Because then, according to what I’ve just stated, any code from the Internet or Intranet should be able to just call into our public APIs of that little shared library and call the beat API. And, so let’s see if our little client will actually make some noise if I add the allow partially trusted callers attribute.

And I have a question here.
Q:
Question from the audience.
A:
Question is: is the same applicable when you call to COM Interop or Win32. When you call, yes, so the, the short answer is yes, and basically one of the most common design patterns when you write a shared library, in fact, are that in order to implement your resource for the managed world, you have to call out into unmanaged code either into COM object, or to some Win32 API to get your job done. And what will have to do in most of these cases is assert for the right to access unmanaged code because in most cases you don’t want all of your callers to bear the burden of an unmanaged code security check. And prior to that, in the line of code before that, just frame an appropriate permission demand for whatever resource you’re implementing it in your API. And so, again, this will be probably, if your implementing a shared library, you are very, very likely to run into exactly this pattern. You’ll have to call out into unmanaged code, you will, in order not to cause all of your callers to be hit with an unmanaged code permission check, you have to assert for the right to access unmanaged code, but at that point, your API will be very insecure. If you’re exposing a security-relevant resource, so prior to the assert, you would have to put a security permission check for the kind of permission corresponding to your resource onto an API. Another question, yes?

Q:
Question from the audience.
A:
So let me see if I get the question correctly. This question is from a performance perspective. The order of doing assert or demand should not matter. Is that correct?

Q:
Question from the audience.
A:
That’s correct. So the question was, from a performance perspective, whether you just allow the unmanaged code security check to flow through, or you put an assert there, and then you do your own demand, it should be fairly equivalent because in both cases, you will end up walking the call stack above you, and the call stack below you was walked in either cases. And the answer to that is yes. And in both cases, performance is fairly similar. Another question here?

Q:
Question from the audience.
A:
Okay, so the question was, how finely tuned can I make--let’s just say security policy--to say I trust these sets of code from the Internet or Intranet, or can I be more fine-grained? What’s the level of granularity here? Is that the correct question? Okay. The answer to that question is basically, out of the box you have extremely fine levels you can dial. You can be as coarse-grained as an IE zone. So Internet, Intranet, local machine, or you can be as fine grained as a specific assembly with a specific hash and a specific software publisher. So the rules in the Code Access Security policy can be framed around really broad or really, really fine-grained to the assembly level specific kind of conditions, basically. Another question, yeah?

Q:
Question from the audience.
A:
Yes, yes, I’m sorry. So a sort of long line of code. Yes?

Q:
Question from the audience.
A:
Yes.

Q:
Question from the audience.
A:
So question was: since security permission or any of the security object or objects, and since they’re part of the memory management world of the common language runtime, they will stick around for a longer time than the actual assert operation, since the assert operation works at a per method level of granularity. And the question was, is there basically something insecure about this, or are there any problems with it? I don’t quite know what--

Q:
Question from the audience.
A:
Yes.

Q:
Question from the audience.
A:
All right, good question. So how does a CLR actually know when you’re doing assert, when to stop the assert, and how far the assert reaches, especially since you’re just calling a method on an object, and the object itself might stick around for, you don’t know, quite a long time, definitely, probably longer unless we lock you as garbage collection, then, when we are out of that method. And the answer to that is the assert call translates into an internal CLR call that will put onto the right part of the stack, a stack frame annotation, saying “Hello, security check. Here’s and assert. And the assert state is this.” Okay. So we don’t just trigger our checking of the assert just by creating this object and calling the assert method on it, but the assert method actually internally takes these objects, takes the object here and puts it into the right stack frame corresponding to this method and mocking then this method frame as having an assert annotation on it. Another question, yes?

Q:
Question from the audience.
A:
Good, good question then. And, so the question is, can I basically use this to control not just all of the code in a method, but be as fine-grained as picking the specific execution paths onto which I want to have a security check. And the answer to this is a definite yes. Because all that, the checking of the permission translates in terms of coating factors here, is you create an instance of an object and you call a method on it, and where you place that instantiation and method call is up to you. So you could have five different execution paths in this beep method, four of which are completely benign because they might just pop in message box saying beep, and one of them, one of them is actually calling out to the unmanaged API and trading the actual beep. And yes, all you would need to do is create the permission and place the permission demand call as close as possible to the actual access of the protection where it’s a resource. Does that answer your question? Great. And that’s actually a great segue into switching back to my slides.

Sebastian Lange: So, connecting to your question, there are a couple of ways with which you can actually syntactically annotate your shared library and protect it. One way I’ve shown you, which is basically the instantiation of a security permission and calling the demand method on it. And it has a great advantage that you can choose where exactly in the variety of code paths in your method you might want to make the security check call. Another way of an annotating your shared library however it is by using a custom attribute annotation. And it’s very similar to creating the security permission and calling the demand method on it. You create a custom attribute of the kind of security permission you want to check for, you state what state of the permission should be checked for, and then you say what things should be done with that permission state? Should it be demanded, or should there be some other kind of security action that should take place? The advantage of this is that we have a tool called perm view, which allows you to enumerate all custom attribute security annotations on your code. So if we use these annotations, using this tool makes later security reviews easier because you have an exact printout of all the security annotations on all the methods that you annotated. One of the disadvantages, however, is this: Custom attributes cannot be created based on dynamically, only available state. Custom attributes are basically a just time compilation time creation, and cannot be based off any state that might accrue as part of the execution of the method or the class that this custom attribute added annotates. So if you want to actually protect a resource and need to base your permission check on some dynamic state, such as when certain parts of the file system are accessed, you also would have to use the kind of permission check that I used in my shared library here, which is called imperative security checks, because you are writing code that does a security check, instead of declaratively stating with the custom attribute what the security check should be. And in this little example here, you can see that it’s basically and API that does some file system access and the filename to be accessed is an input argument, so you don’t know at coding time, exactly what file of the security check should be made out for. So you want to base your security check on the dynamic state, unless you want to go the far less optimal route, and just demand the right to all parts of the file system from the callers, which would be secure, but which would also overshoot your target and possibly reduce the number of valid callers to your API. So, having the ability to put this kind of security check on whatever execution path is appropriate while not cluttering benign execution paths, as well as taking dynamic state into account are the two main advantages of this kind of security check annotation.

And, for the sake of time, I’m just going to go along with the slides. There is one other interesting part of the .NET framework security system that you should know about, namely trying to protect your public APIs and making those public APIs accessible only to callers, at least only two semi-trusted callers that you designate. So, it is possible that you might have a public API that you need to make public because there is some Internet application, say that runs in the sandbox from Microsoft or some other software publisher that needs a public API. But you don’t want to make that public API generally available to all semi-trusted callers. And it is actually possible to build your own accessibility model on top of your public API, basing that accessibility model on whatever kind of code identity you deem fit for that. So it’s possible to use what’s called a link demand, which is a security action that only checks immediate caller, and check for a specific code identity, such as, you can see in this example, where we have protected an API’s access with a link demand for a specific strong name, meaning that only semi-trusted callers who have been granted that particular strong name can actually access that API. So that, it’s basically a nice little future I just want to let you know about, that allows you to again build your own accessibility model over your public APIs.

Now, let’s come to the other interesting part of this talk, namely all the security problems, or some of the main security problems that we have found when we implemented the .NET framework. We basically had to be the guinea pigs of both the security system and of trying to come up with secure coding practices. And while we were reviewing our APIs just before we shipped 1.0, we discovered quite a few interesting security issues, or main patterns of security issues that I’d like to share with you now. First of all, not a big secret, always do very, very, very good argument checking. Even if the API you call from your managed code is an unmanaged API, you don’t necessarily want to rely on that APIs argument checking. Make sure that you check for even the most outlandish kind of argument combination. Far too long input argument or arguments with special characters, such as this example, which is again taken from a real live pre-release coding base, where we discovered this, fortunately, just in time, where basically we had an input argument that just took a string which represented basically WSDL address in xml, and then used that to do dynamic compilation with this address, and running code dynamically and accessing some information at that address. Well, basically, what the developer of this API didn’t take into account was that a part of the string could be a number of special characters, such as a special character to do the carriage return and semicolon and so on, so that--and also given the fact that this input string was part of the C# dynamic compilation that the shared component then did under the covers, would allow a potentially malicious person trying to trick this API into doing something evil to basically be able to carriage return out of the simple SOAP adverse information, and just ride arbitrary C# code, as you can see up there, that translates into exactly these lines of code that were then compiled by the shared component and run by the shared component within the security context of the shared component, which, since it is a shared component and installed in the GAC, was full trust. So basically this benign little API allowed you to supply a SOAP adverse as a string, translates into the ability to run and execute arbitrary C# code, within fully trust security context. If in doubt, rather check too much than too little. Another thing to take into account, if, and easily forgotten is that of course common language runtime provides for a multi-threaded environment, and multi-threaded environment have their own security gotcha’s. I mean this method looks very benign, right. The programmer has even put a position check in there making sure that this memory string reader doesn’t go beyond some global maximum length, and thereby no part of memory will get revealed that shouldn’t be revealed out of this API. And this is perfectly legit and a simple-threaded environment. However, let’s just imagine that this runs in a multi-threaded environment. After the position check here, there could be a threat context switch. And thread two could come in, and reading the stream, updating the global position variable, beyond the maximum lengths constraint, and then there would be a threat context, which back to thread one, which had presumed all along, oh, I’d already checked the maximum position I’m okay to read, causing the memory to be returned to be outside of the maximum constraints of that memory string, meaning that this little benign API could potentially be used by a multi-threaded attack to read arbitrary memory state, which is from privacy and security perspective, obviously a nightmare. So, what went wrong? Well, one way to fix this would be to not update and rely on your check on a global variable because the threat context, which could happen anywhere, while being in that piece of code, but just copy the variable that you used to make your range check into a local variable, and then just use that variable in your position checks, and also in your memory readout. But again, this is just one instance of the many possible security issues that could arise in multi-threaded environments. So, when you do your security reviews and thread modeling for your components, just be sure to always also remember that your APIs could be run in a multi-threaded environment and could be tried to be attacked in a multi-threaded manner. The other thing we ran into was the use, or rather, misuse of the read-only keyword. They read-only keyword does not lock instance value. It just locks the location of variable. Okay, so, in this example here, we have the variable value, and it is declared read-only, but that does not prevent anyone from changing the value stored at the location of value. Okay? So, read-only does not mean read-only for the instances value of a variable. It just means the location of the variable cannot be changed. Another great thing about the .NET framework is that you have various ways of dynamically generating code for the .NET framework. So you can write a shared component, as many people have already done, that actually takes some string input or some other user input and does code compilation on-the-fly and then executes that code. The number of ways of doing it, you can just have an array of bytes. And then, if they are properly formed, you can just read them in as load bytes methods, and construct an assembly of it, and start to run it. It’s really powerful for any plug-in scenario that you might have for your applications or your shared components. So if you have any sort of third party macro plug-ins that you want to enable for your scenarios, that’s one nice way to go about and implement it. However, if you use the default overloads of the methods that create the dynamically generated assembly, that assembly will be executed in the security context of your shared component. And since your shared component is installed in the global assembly cache, it receives full trust by default policy. So in other words, any code generated via the dynamic cogeneration APIs default overloads will run exactly within the security context of the assembly creating it. And often that’s not what you want. And we’ve had quite a few security issues that simply boil down to the fact that people should have used the overloads that take some identity information about the assembly that is about to be created. So there are overloads that take an evidence argument, where it can basically tell the security system, “Okay, treat the thing that I’m creating right now as if it comes from the Internet, or Intranet.” And then Code Access Security policy will say, “Oh, this thing seems to come from the Internet or Intranet, I’d better grant it the sandbox level of permissions, instead of just automatically copying the security context of the creator of that dynamically generated assembly.”

Another thing that we basically started to come up with as we went along with our .NET framework, at one point, all effort was to have very consistent and far-reaching security review processes. And it really, really helps if as part of your product planning, from the get-go, you allow time and resources to do thread modeling, which means that as part of your specification design and review process for any feature, you are sure to also write a document that states what are the potential risks, what are the potential attack surfaces, any threats, and what are the mitigations for that. And this starts to be standardized throughout Microsoft. So I definitely encourage you to be very proactive concerning the thread modeling of your features. And then there are also a number of tools that you should use regularly. FxCop you might already be familiar with. And we keep updating the security checks and security roles built into FxCop, but if you get a security warning, be sure to investigate it. Make sure that if FxCop tells you, well, you have used these suppress unmanaged code attribute. Are you sure that you will put the right security check onto your API? Because, otherwise, callers will potentially be able to access the arbitrary resource that you’ve just exposed in that API. So make sure that you honor the work of the people who have put FxCop together. Another thing that we found very helpful was basically over the several milestones and versions that we shipped, keeping very good documentation of the kind of security threats and security attacks that we found and mitigated, to come back to whenever we do another set of security reviews, and making sure that any new features don’t share the same security vulnerabity to, or that any fixes to all features haven’t also turned off the effects for the security issue that we thought we had mitigated. Another thing that helps a lot is if you have designated security experts. Even if you don’t have a designated security PM like myself or your feature team, have a couple people on the QA team on your PM team and Dev team whose tasks and part of the review goals is to be the security experts for the feature area. And finally, one thing that we are actually currently planning for our release is to do a division-wide security post. So, I don’t know if you need to do it at the division level, but definitely prior to your release, doing a all hands-onboard effort to find whatever security issues might be lurking in your product is one of the most effective ways of double-checking that throughout your development and design process, you had done the right things concerning security. Security processes are not good to retroactively secure something, but they’re very good at fixing remaining issues and getting you a status quo of where you are with respect to security in your product.

A few more security tools I want to mention beyond FxCop, of course are prefast and prefix that many of you have probably heard of, are familiar with. There’s a new Whidbey tool called PermCalc, which heuristically determines what the level of permissions Code Access Security permissions are, that a shared library API, or an application trying to run on the .NET framework might need. So you can use this tool to get a mechanistic estimate of your partial trust API security requirements. And if it flies completely off the chart of either needing no permissions, apparently, while you actually expose environment variable access or registry access, or requiring full trust while you thought partially trusted calls could call into those APIs, that could be a good indicator for you to review your APIs implementation, make sure that you have either put the right security check on there in the first case, or that you haven’t over demanded too many permissions. There is the .NET framework configuration tool, which basically gives you a graphic representation of the security system I was describing in the beginning of this presentation, and it will allow you to set of security policies such as what I did with my test machine to test certain applications or assemblies within a specific security context. There’s the command line equivalent of this tool, called CasPol, which is a command line tool that you can use to batch-script any security context changes, or a lot of our testers have been using that to set up a temporary security context for applications or assemblies that they were testing. And if you are starting to develop with a Whidbey version, a studio version there are a couple of other exciting futures in a virtual studio. First of all, the PermCalc tool is directly integrated into the IDE. There’s a big button on the security pane of your project. You just press that button, and the IDE will basically call through to the PermCalc tool and give you back a graphic representation of the estimated security context for any application that your trying to develop in the IDE. There’s also a feature called a debug and zones, were basically you can set up a security context for an assembly of one application and then debug within that security context. So press F7 after you’ve set up a Code Access Security set of permissions for that assembly. And every security arrow will be called to end. Often you’ll get some either contact-specific help for the kind of Security exception you’ve got. So if you’ve got a filer or security permission exception, you will get some help information telling you, well, if you need to process state and semi-trusted applications, that’s something like isolated storage. Or you, if you implement an application in the new click once program model, you will have the choice of just adding that permission to the minimum required security context of your application in the application manifest of that application. And there are a few other features I don’t have time to go over in Visual Studio. But, check it out, if you have the new Visual Studio for Whidbey, any public version already lying around, there will be deeper integration into the IDE, helping developers better interface with the security system.

So, that brings us to the end of this talk, and the major things I want you to take away from this presentation is first of all remembering that Code Access Security is based not, never on user or user roles, but on code identity. Has a pulse system that’s like a big black box. It collects information about where an assembly is coming from, and based on that information, the policy system makes a trust assertion for that specific assembly. And that is enforced by a stack walks that are triggered when an assembly tries to access an API that is protected with a security permission demand. Okay, and that security permission demand is the main practical takeaway from this talk for you because that is the line of code--if nothing else--the line of code that you should remember from his presentation. Because that’s what you need to add to your assembly, assemblies public API, if that public API exposes some security relevant resource.

And I just want to mention, there’s a pretty good document out there called the secure coding guidelines. And at the end of the slide there’s a link to it, which basically goes in more detail about all the different aspects you need to take into account when you construct your shared library. And just review the common security mistakes I’ve just showed and be familiar with those general considerations, multi-threading, argument-checking, read-only, dynamic assembly generation. Just have those in mind when you do your thread modeling and when you write your code. And with that, I like to thank you for your attendance and open it up to questions. I, I guess I’ll start over there.

Q:
Question from the audience.
A:
Oh, of linked demands? Question is: what’s the cost of linked demands, versus the full stack walk demands. So, linked demands are basically enforced just-in-time compilation time of one method, as a method is linked to another method by the JIT compiler, the linked demand is checked, so that is fairly efficient. It’s actually very efficient, and very, very little overhead accrues.

Q:
Question from the audience.
A:
So the question, the follow-up question is what is the performance overhead for the runtime check for the .demand method call basically I showed in my sample. And the answer to that is not very straightforward because it really, what happens internally, as I mentioned, is that the call stack is being crawled and the demand of permission instance is compared against all the granted permissions of all the callers on the call stack. Now, we have a lot of performance optimizations that we put into place to make sure that this operation is extremely fast and efficient, so that for instance, if you have code executing in a fully trusted execution environment, so of all callers on the calls that have been granted full trust by the Code Access Security system, which often is the case on, in which client scenarios, because the default policy of Code Access Security currently grants full trust to all bits that have been explicitly installed on the local hard drive. In those scenarios, we can optimize out the security check pretty quickly because we know everyone’s fully trusted on the call stack, so there we go. In scenarios where I do have sandbox callers, you have--it’s really hard to say what the exact overhead is, because again, it’s proportional to the length of the call stack. But, I, to grab a number that I remember from one of the performance checks I’ve done is 4.1 second, 0.1 seconds for the whole check and comparison of a fairly large call stack scenario. But this number I remember, it’s a couple years old, and we’ve worked continuously on performance, so it’s probably improved by now. Two other points about this. The SQL server team, as you might know in the Yukon, the upcoming SQL server release is integrating the common language runtime into the SQL server process, so CLR runs in proc with SQL server. And you can have manage.procedure, so you can write in managed COBOL a start procedure for Yukon in the future. And part of that security story is to basically have various partial trusts contexts for various trust levels of start procedures. So, the most common start procedure is the trust level of execute only. So no Code Access Security permissions are going to accept the permission to just run and compute. Which is the most common case in many of the start procedure and query scenarios. And so that’s a partial trust scenario, and those start procedures will access .NET framework libraries. And by all accounts, the performance of a managed.procedures against T-SQL are really, really outstanding. And so we’ve, basically what I’m saying is, we, we have very performance-conscience customers such as ASP and SQL, who have pushed us to make this particular code pass extremely performant for the last four years, basically. So, that’s a sort of the level of organizational assurance I can give you that we are quite performant when it comes to doing our security demands. And if you need more particular numbers on that, I can try and get you some numbers. Next question, yes, over here, first, yes?

Q:
Question from the audience.
A:
Yes.

Q:
Question from the audience.
A:
Good, good question. So the question is, so what exactly is the scope of an assert, once you put the assert into a method, and then follow-up question is, well if I want to be really security-conscious, is there a way to actually revert the assert so that I only assert exactly what I want to assert and don’t have any potential mishaps that could result in security issues in my code. And so they, the assert applies for the remainder of the method unless, and that answers second question, you explicitly revert or revoke it. So I think it’s assert, revert, or revoke. I forget the exact name, but there is a revocation method that basically you can call in your code to basically have the combination runtime pull that stack frame annotation out at that point, so that if you make another call and fall into unmanaged code after you’ve done the revert and you actually wanted the unmanaged code permission security check to flow up to your callers, that would be a possibility that would be very possible for this.

Q:
Question from the audience.
A:
I believe the question is: is that the method on the permission class. And if I remember correctly, and I’m not sure I want to be quoted or taped on that, for that matter, I believe it’s on the method level. I mean, I’m sorry, on the permission class. But I will need to double check on that.

Q:
Question from the audience.
A:
Oh, I’m sorry, yes, actually, let’s take your question next.

Q:
Question from the audience.
A:
So let me try and repeat the question. So is it the case that for any shared library that tries to do any file access, that that shared library that I might be writing needs to have the permissions check for the file I/O permission in there?

Q:
Yeah.

A:
And the answer to that is, yes, unless you write your APIs on top of the already existing .NET framework file I/O APIs, in which case, they are ready protected with the file I/O permission check. And unless you assert that permission, that permission check will flow through you, into any of your callers, you see.

Q:
Question from the audience.
A:
Yeah, question, so if you do write on top of the file or existing managed file I/O APIs, will the demand of those APIs actually apply to your code and your callers? And answer to that is yes. And, actually I promised to take him next.

Q:
Question from the audience.
A:
Question is: what happens if I download malicious code from the Internet and it gets onto my local machine, I invoke it, how will it be treated by security policy? It depends on how, what exactly you mean by downloading. If you click on say an object link that has a managed object on a Web page, and even if that is cached by IE on the local machine, we integrate with IE so that those things will be treated as if they come from the actual URL from which you downloaded them. However, if someone did an explicit file save onto the local hard drive, then explicitly went to that location, double-clicked on that executable, then from Code Accesses Security Policies’ perspective, that will be treated as fully trusted. And therein lies one of the social engineering attack vector dangers against the system still. But we are working on, in our long-term version, towards actually increasing the richness of the sandbox that we deliver, such that many client applications by default can just run within the sandbox, and making the sandbox basically the pervasive default for all managed code, irrespective of their network location of origin. And some, there’s already a programming model out there, Avalon, that is actually applying that paradigm, that every Avalon application by default runs within the sandbox. And if it needs to step out of the sandbox, there need to be some explicit security steps taken in order to enable that application to actually run outside of the sandbox. And that will take place at installed time of the application. But yes, I recognize the problem behind your question, and we are trying to address that in the long term. But, in the short-term, it was very hard to both deliver an extremely rich sandbox and ship in time, or to deliver a smaller sandbox and not disable some of the very, very important which clients now, is that we wanted to enable this managed code. Next question, yeah?

Q:
Question from the audience.
A:
Question is, can unverifiable assemblies be annotated with the allow partial trust of callers attribute? I believe the answer is yes, and though we are actually looking into whether we should continue to allow this or not, but it is currently possible, and it is perfectly possible to have an unverifiable assembly whose public APIs are security reviewed and are perfectly safe to be called from even malicious code. The security review bar and the security trust modeling and, the bar you basically you need to meet is probably a little higher in that you need to be extra careful not to have buffer overrun problems, or taking in any arguments that are going to be recast into another type of things like this. But, if you do the appropriate security reviews, it is perfectly possible to have an unverifiable safe shared libraries that allows malicious callers into its public APIs, as scary as it sounds. Next question, yes.

Q:
Question from the audience.
A:
Good question. The question is, if we do have an unverifiable assembly or if you need to make the decision to write unverifiable code, what is the current and potential future downside of making that strategic decisions? Is that a correct summary of your question? Yeah. Well, the, the current downside is that, as I stated before--now I was actually told I have three more questions and then I need to stop--that we have a default policy in the common language runtime regarding security that doesn’t allow any code that’s unverifiable to run from the Intranet or Internet. Now, in many cases, the Internet scenario isn’t that much a problem. A few people need to write managed C++ code that runs as managed objects on a Website. But if you write an Intranet application, making it unverifiable immediately bumps up the bar for having to make a drastic policy change, at least for that application, in order for it to run on an enterprise network. The future downside and some other downsides are for instance, Yukon server--when you register a storage managed procedure, they’re going to make sure that the stored procedure you register is verifiable, unless you have the right to register basically the got-like, all permissions on the server, sort of extended stored procedure, and that will typically not be granted very frequently. So that was another disadvantage. And in the future, as we are moving towards a sandbox by default model, such code would continue to have to be granted exceptions via some administrative action.

Q:
Question from the audience.
A:
The question is: would that be the Longhorn sidebar.

Q:
Question from the audience.
A:
I mean we are still working on the exact Longhorn approach of the sandbox. Definitely in the post-Longhorn releases, there will be much more emphasis on the sandbox only. In Longhorn, as I said, obviously Avalon programming model, and it’s only allowing applications that run within the sandbox, to run without any other explicit security interaction. That would already be quite a drawback if you needed to write any Avalon-facing code, in the Longhorn timeframe. And I think I can take one more question and I need to be cut off. Yes?

Q:
Question from the audience.
A:
Uh-huh.

Q:
Question from the audience.
A:
Very good question. Question is can you compare and contrast the two approaches. Sounds like an essay for a computer science test. Can you compare and contrast the two approaches of securing dynamic assembly, securing assemblies that are dynamically generated? Either using the evidence overload, or using the approach of creating another app-domain verse app-domain policy. The more secure approach always requires quite a bit more code, but the far more secure approach would be to create a separate app-domain with, with appropriate app-domain policy, because you will get the app-domain isolation for free, which if you load this assembly just as the evidence *permeator, into an app-domain, that assembly might still be able to read a static state of another assembly that had more permissions. And that other assembly might have stored into the static accidentally either some information or even object instance that the lesser-trusted assembly shouldn’t have had access to. For instance, an assembly that had filer-or rights might do the somewhat unintelligent thing of storing for instance, of a file reader into a static field. And then that field might be read by another assembly, which didn’t have *filer-or permission, and sense in the filer-or classes we only do the permissions check at object to creation time, that would basically open a security hole. So, if you want to just prevent such possible security holes via programming errors of other more highly trusted assemblies from happening, creating a separate app-domain with a particular security context that you want to have for all assemblies running within it is probably the safest thing to do.

Designing .NET Class Libraries

Page 16 of 16
© 2004 Microsoft Corporation

