[image: image1.png]Microsoft

[image: image2.jpg]

DLinq

.NET Language Integrated Query
for Relational Data

September 2005 DOCVARIABLE Version * MERGEFORMAT
Notice

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents

11. Introduction

2. A Quick Tour
3
2.1 Creating Entity Classes
3
2.2 The DataContext
3
2.3 Defining Relationships
4
2.4 Querying Across Relationships
6
2.5 Modifying and Saving Entities
6
3. Queries In Depth
7
3.1 Query Execution
7
3.2 Object Identity
8
3.3 Relationships
9
3.4 Projections
11
3.5 SQL Translation
14
4. The Entity Life Cycle
17
4.1 Tracking Changes
17
4.2 Submitting Changes
19
4.3 Simultaneous Changes
20
4.4 Transactions
21
4.5 Stored Procedures
23
5. Entity Classes In Depth
25
5.1 Using Attributes
25
5.2 Graph Consistency
30
5.3 Change Notifications
32
6. Advanced Topics
35
6.1 Creating Databases
35
6.2 Interoperating with ADO.NET
36
6.3 The Entity Class Generator Tool
37
6.4 Generator Tool XML Reference
39
7. Future Directions
45
7.1 Inheritance
45
7.2 Mapping
45
7.3 Databinding
46
7.4 Multi-tier Applications and Web Services
46

1. Introduction

Most programs written today manipulate data in one way or another and often this data is stored in a relational database. Yet there is a huge divide between modern programming languages and databases in how they represent and manipulate information. This impedance mismatch is visible in multiple ways. Most notably is that information in databases is accessed by programming languages through API’s that require queries to be specified as text strings. These queries are significant portions of the program logic yet they are opaque to the language, unable to benefit from compile-time verification and design-time features like Intellisense.

Of course the differences go far deeper than that. How information is represented, its data model, is quite different between the two. Modern programming languages define information in the form of objects. Relational databases use rows. Objects have unique identity as each instance is physically different from another. Rows are identified by primary key values. Objects have references that identify and link instances together. Rows are left intentionally distinct requiring related rows to be tied together loosely using foreign keys. Objects stand alone, existing as long as they are still referenced by another object. Rows exist as elements of tables, vanishing as soon as they are removed.

It is no wonder that applications expected to bridge this gap are difficult to build and maintain. It would certainly simplify the equation to get rid of one side or the other. Yet relational databases provide critical infrastructure for long-term storage and query processing, and modern programming languages are indispensable for agile development and rich computation.

Until now, it has been the job of the application developer to resolve this mismatch in each application separately. The best solutions so far have been elaborate database abstraction layers that ferry the information between the application’s domain specific object models and the tabular representation of the database, reshaping and reformatting the data each way. Yet by obscuring the true data source these solutions end up throwing away the most compelling feature of relational databases; the ability for the data to be queried.

DLinq, a component of the LINQ Project, provides a run-time infrastructure for managing relational data as objects without giving up the ability to query. It does this by translating language integrated queries into SQL for execution by the database and then translating the tabular results back into objects you define. Your application is then free to manipulate the objects while DLinq stays in the background tracking your changes automatically.

DLinq is designed to be non intrusive to your application. It is possible to migrate current ADO.Net solutions to DLinq in a piecemeal fashion, sharing the same connections and transactions, since DLinq is simply another component in the ADO.Net family.

DLinq applications are easy to get started. Objects linked to relational data can be defined just like normal objects, only decorated with attributes to identify how properties correspond to columns. Of course, its not even necessary to do this by hand. A design-time tool is provided to automate translating pre-existing relational database schemas into object definitions for you.

Together, the DLinq run-time infrastructure and design-time tools significantly reduce the work load for the database application developer. The following chapters provide an overview of how DLinq can be used to perform common database related tasks. It is assumed that the reader is familiar with Language Integrated Query and the Standard Query Operators.

DLinq is a language-agnostic. Any language built to provide Language Integrated Query can use it to enable access to information stored in relational databases. Although the samples in this document are shown in C#, DLinq can be used with the LINQ-enabled version of the VB.NET compiler as well.
2. A Quick Tour

The first step in building a DLinq application is declaring the object classes you will use to represent your application data. Let’s walk through an example.

2.1 Creating Entity Classes

We will start with a simple class Customer and associate it with the customers table in the Northwind sample database. To do this, we need only apply a custom attribute to the top of the class declaration. DLinq defines the Table attribute for this purpose.

[Table(Name="Customers")]
public class Customer
{

public string CustomerID;

public string City;
}

The Table attribute has a Name property that you can use to specify the exact name of the database table. If no Name property is supplied DLinq will assume the database table has the same name as the object class. Only object instances of classes declared as tables will be able to be stored in the database. Instances of these types of classes are known as entities, and the classes entity classes.
In addition to associating classes to tables you will need to denote each field or property you intend to associate with a database column. For this, DLinq defines the Column attribute.

[Table(Name="Customers")]
public class Customer
{

[Column(Id=true)]

public string CustomerID;

[Column]

public string City;
}
The Column attribute has a variety of properties you can use to customize the exact mapping between your fields and the database’s columns. One property of note is the Id property. It tells DLinq that the database column is part of the table’s primary key.

As with the Table attribute, you only need to supply information in the Column attribute if it differs from what can be deduced from your field or property declaration. In this example, you need to tell DLinq that the CustomerID field is part of the table’s primary key yet you don’t have specify the exact name or type.

Only fields and properties declared as columns will be persisted to or retrieved from the database. Others will be considered as transient parts of your application logic.

2.2 The DataContext

The DataContext is the main conduit by which you retrieve objects from the database and submit changes back. You use it in the same way that you would use an ADO Connection. In fact, the DataContext is initialized with a connection or connection string you supply. The purpose of the DataContext is to translate your requests for objects into SQL queries made against the database and then assemble objects out of the results. The DataContext enables Language Integrated Query by implementing the same operator pattern as the Standard Query Operators such as Where() and Select().

For example, you can use the DataContext to retrieve customer objects whose city is London as follows:

// DataContext takes a connection string
DataContext db = new
DataContext("c:\\northwind\\northwnd.mdf");
// Get a typed table to run queries
Table<Customer> Customers = db.GetTable<Customer>();
// Query for customers from London
var q =

from c in Customers

where c.City == "London"

select c;
foreach (var cust in q)

Console.WriteLine("id = {0}, City = {1}", cust.CustomerID, cust.City);

Each database table is represented as a Table collection accessible via the GetTable() method using its entity class to identify it. It is recommended that you declare a strongly typed DataContext instead of relying on the basic DataContext class and the GetTable() method. A strongly-typed DataContext declares all Table collections as members of the context.

public partial class Northwind : DataContext
{

public Table<Customer> Customers;

public Table<Order> Orders;

public Northwind(string connection): base(connection) {}
}

The query for customers from London can then be expressed more simply as:

Northwind db = new Northwind("c:\\northwind\\northwnd.mdf");
var q =

from c in db.Customers

where c.City == "London"

select c;

foreach (var cust in q)

Console.WriteLine("id = {0}, City = {1}",cust.CustomerID, cust.City);

We will continue to use the strongly-typed Northwind class for the remainder of the overview document.

2.3 Defining Relationships

Relationships in relational databases are typically modeled as foreign key values referring to primary keys in other tables. To navigate between them you must explicitly bring the two tables together using a relational join operation. Objects, on the other hand, refer to each other using property references or collections of references navigated using ‘dot’ notation. Obviously, dotting is simpler than joining, since you need not recall the explicit join condition each time you navigate.

For data relationships such as these that will always be the same, it becomes quite convenient to encode them as property references in your entity class. DLinq defines an Association attribute you can apply to a member used to represent a relationship. An association relationship is one like a foreign-key to primary-key relationship that is made by matching column values between tables.

[Table(Name="Customers")]
public class Customer
{

[Column(Id=true)]

public string CustomerID;

...

private EntitySet<Order> _Orders;

[Association(Storage="_Orders", OtherKey="CustomerID")]

public EntitySet<Order> Orders {

get { return this._Orders; }

set { this._Orders.Assign(value); }

}
}

The Customer class now has a property that declares the relationship between customers and their orders. The Orders property is of type EntitySet because the relationship is one-to-many. We use the OtherKey property in the Association attribute to describes how this association is done. It specifies the names of the properties in the related class to be compared with this one. There was also a ThisKey property we did not specify. Normally, we would use it to list the members on this side of the relationship. However, by omitting it we allow DLinq to infer them from the members that make up the primary key.
Notice how in the definition for the Order class, this is reversed.

[Table(Name="Orders")]
public class Order
{

[Column(Id=true)]

public int OrderID;

[Column]

public string CustomerID;

private EntityRef<Customer> _Customer;

[Association(Storage="_Customer", ThisKey="CustomerID")]

public Customer Customer {

get { return this._Customer.Entity; }

set { this._Customer.Entity = value; }

}
}

The Order class uses the EntityRef type to describe the relationship back to the customer. The use of the EntityRef class is required to support deferred loading (discussed later). The Association attribute for the Customer property specifies the ThisKey property, since the non-inferable members are now on this side of the relationship.
Also take a look at the Storage property. It tells DLinq which private member is used to hold the value of the property. This allows DLinq to by-pass your public property accessors when it stores and retrieves their value. This is essential if you want DLinq to avoid any custom business logic written into your accessors. If the storage property is not specified, the public accessors will be used instead. You may use the Storage property with Column attributes as well.

Once you start introducing relationships in your entity classes, the amount of code you need to write grows as you introduce support for notifications and graph consistency. Fortunately, there is a tool (described later) that can be used to generate all the necessary definitions as partial classes, allowing you to use a mix of generated code and custom business logic.

For the rest of this document, we assume the tool has been used to generated a complete Northwind data context and all entity classes.
2.4 Querying Across Relationships

Now that you have relationships you can use them when you write queries simply by referring to the relationship properties defined in your class.

var q =

from c in db.Customers, o in c.Orders

where c.City == "London"

select new { c, o };

The above query uses the Orders property to form the cross product between customers and orders, producing a new sequence of Customer and Order pairs.

It’s also possible to do the reverse.

var q =

from o in db.Orders

where o.Customer.City == "London"

select new { c = o.Customer, o };

In this example, the orders are queried and the Customer relationship is used to access information on the associated Customer object.

2.5 Modifying and Saving Entities
Few applications are built with only query in mind. Data must be created and modified too. DLinq is designed to offer maximum flexibility in manipulating and persisting changes made to your objects. A soon as entity objects are available, by either retrieving them through a query or constructing them anew, you may manipulate them as normal objects in your application, changing their values or adding and removing them from collections as you see fit. DLinq tracks all your changes and is ready to transmit them back to the database as soon as you are done.

The example below uses the Customer and Order classes generated by a tool from the metadata of the entire Northwind sample database. The class definitions have not been shown for brevity.

Northwind db = new Northwind("c:\\northwind\\northwnd.mdf");

// Query for a specific customer
string id = "ALFKI";
var cust = db.Customers.First(c => c.CustomerID == id);
// Change the name of the contact
cust.ContactName = "New Contact";
// Delete an existing Order
Order ord0 = cust.Orders[0];
// Removing it from the table also removes it from the Customer’s list
db.Orders.Remove(ord0);
// Create and add a new Order to Orders collection
Order ord = new Order { OrderId = 12345 };
cust.Orders.Add(ord);
// Ask the DataContext to save all the changes
db.SubmitChanges();
On the call to SubmitChanges(), DLinq automatically generates and executes SQL commands in order to transmit the changes back to the database. It is also possible to override this behavior with custom logic or to direct changes to calls on specified database stored procedures.

3. Queries In Depth

DLinq provides an implementation of the standard query operators for objects associated with tables in a relational database. This chapter describes the DLinq-specific aspects of queries.

3.1 Query Execution

Whether you write a query as a high-level query expression or build one out of the individual operators, the query that you write is not an imperative execution. It is a description. For example, in the declaration below the local variable ‘q’ refers to the description of the query not the result of executing it.

var q =

from c in db.Customers

where c.City == "London"

select c;

foreach (Customer c in q)

Console.WriteLine(c.CompanyName);

The actual type of ‘q’ in this instance is Query<Customer>. It’s not until the application requests to enumerate the contents of the query that it actually executes. In this example the foreach statement causes the execution to occur.

A Query object is similar to an ADO command object. Having one in hand does not imply that a query was executed. A command object holds onto a string that describes a query. Likewise, a Query object holds onto a description of a query encoded as a data structure known as an Expression. A command object has an ExecuteReader() method that causes execution, returning results as a DataReader. A Query object has a GetEnumerator() method that causes the execution, returning results as an IEnumerator<Customer>.

Therefore, it follows that if a query is enumerated twice it will be executed twice.

var q =

from c in db.Customers

where c.City == "London"

select c;

// Execute first time
foreach (Customer c in q)

Console.WriteLine(c.CompanyName);
// Execute second time
foreach (Customer c in q)

Console.WriteLine(c.CompanyName);
This behavior is known as deferred execution. Just like with an ADO command object it is possible to hold onto a query and re-execute it.

Of course, application writers often need to be very explicit about where and when a query is executed. It would be unexpected if an application were to accidentally execute a query multiple times simply because it needed to examine the results more than once. For example, you may want to bind the results of a query to something like a DataGrid. The control may enumerate the results each time it paints on the screen.

To avoid executing multiple times convert the results into any number of standard collection classes. It is easy to convert the results into a List or Array using the Standard Query Operators.

var q =

from c in db.Customers

where c.City == "London"

select c;

// Execute once using ToList() or ToArray()
var list = q.ToList();
foreach (Customer c in list)

Console.WriteLine(c.CompanyName);
foreach (Customer c in list)

Console.WriteLine(c.CompanyName);

One benefit of deferred execution is that queries may be piecewise constructed with execution only occurring when the construction is complete. You can start out composing a portion of a query, assigning it to a local variable and then sometime later continue applying more operators to it.

var q =

from c in db.Customers

where c.City == "London"

select c;

if (orderByLocation) {

q =

from c in q

orderby c.Country, c.City

select c;
}
else if (orderByName) {

q =

from c in q

orderby c.ContactName

select c;
}

foreach (Customer c in q)

Console.WriteLine(c.CompanyName);
In this example ‘q’ starts out as a query for all customers in London. Later on it changes into an ordered query depending on application state. By deferring execution the query can be constructed to suit the exact needs of the application without requiring risky string manipulation.

3.2 Object Identity

Objects in the runtime have unique identity. If two variables refer to the same object they are actually referring to the same object instance. Changes made via a path through one variable are immediately visible through the other since they in fact refer the same instance. Rows in a relational database table do not have unique identity. They do have a primary key and that primary key may be unique, meaning no two rows may share the same key. Yet this only constrains the contents of the database table. So as long as we only ever interact with the data through remote commands it amounts to about the same thing.

However, this is rarely the case. Most often data is brought out of the database and into a different tier where an application manipulates it. Clearly, this is the model that DLinq is designed to support. When the data is brought out of the database as rows, there is no expectation that two rows representing the same data actually correspond to the same row instances. If you query for a specific customer twice, you get two rows of data, each containing the same information.

Yet with objects you expect something quite different. You expect that if you ask the DataContext for the same information again it will in fact give you back the same object instance. You expect this because objects have special meaning for your application and you expect them to behave like normal objects. You designed them as hierarchies or graphs and you certainly expect to retrieve them as such, without hordes of replicated instances merely because you asked for the same thing twice.

Because of this the DataContext manages object identity. Whenever an object is retrieved from the database it is logged in an identity table by its primary key. Whenever that same object is retrieved again the original object instance is handed back to the application. In this way the DataContext translates the database’s concept of identity (keys) into the language’s concept (instances). The application only ever sees the object in the state that it was first retrieved. The new data, if different, is thrown away.

You might be puzzled by this, since why would any application throw data away? As it turns out this is how DLinq manages integrity of the local objects and is able to support optimistic updates. Since the only changes that occur after the object is initially created are those made by the application, the intent of the application is clear. If changes by an outside party have occurred in the interim they will be identified at the time SubmitChanges() is called. More of this is explained in the section of chapter 4, Simultaneous Changes.
Of course, if the object requested by the query is easily identifiable as one already retrieved no query is executed at all. The identity table acts a cache of all previously retrieved objects.

3.3 Relationships

As we saw in the quick tour, references to other objects or collections of other objects in your class definitions directly correspond to foreign-key relationships in the database. You can use these relationships when you query by simply using dot notation to access the relationship properties, navigating from one object to another. These access operations translate to more complicated joins or correlated sub-queries in the equivalent SQL, allowing you to walk through your object graph during a query. For example, the following query navigates from orders to customers as a way to restrict the results to only those orders for customers located in London.

var q =

from o in db.Orders

where o.Customer.City == "London"

select o;

If relationship properties did not exist you would have to write them out manually as joins just as you would do in a SQL query.

var q =

from c in db.Customers, o in db.Orders

where c.CustomerId == o.CustomerID && c.City == "London"

select o;

The relationship property allows you to define this particular relationship once enabling the use of the more convenient dot syntax. However, this is not the reason why relationship properties exist. They exist because we tend to define our domain specific object models as hierarchies or graphs. The objects we choose to program against have references to other objects. It’s only a happy coincidence that since object-to-object relationships correspond to foreign-key style relationships in databases that property access leads to a convenient way to write joins.

So in that respect, the existence of relationship properties is more important on the results side of a query than as part of the query itself. Once you have your hands on a particular customer, its class definition tells you that customers have orders. So when you look into the Orders property of a particular customer you expect to see the collection populated with all the customer’s orders, since that is in fact the contract you declared by defining the classes this way. You expect to see the orders there even if you did not particularly ask for orders up front. You expect your object model to maintain an illusion that it is an in memory extension of the database, with related objects immediately available.

DLinq implements a technique called deferred loading in order to help maintain this illusion. When you query for an object you actually only retrieve the objects you asked for. The related objects are not automatically fetched at the same time. However, the fact that the related objects are not already loaded is not observable since as soon as you attempt to access them a request goes out to retrieve them.

var q =

from o in db.Orders

where o.ShipVia == 3

select o;

foreach (Order o in q) {

if (o.Freight > 200)

SendCustomerNotification(o.Customer);

ProcessOrder(o);
}
For example, you may want to query for a particular set of orders and then only occasionally send an email notification to particular customers. You would not necessary need to retrieve all customer data up front with every order. Deferred Loading allows you to defer the cost of retrieving extra information until you absolutely have to.

Of course, the opposite might also be true. You might have an application that needs to look at customer and order data at the same time. You know you need both sets of data. You know your application is going to drill down through each customer’s orders as soon as you get them. It would be unfortunate to fire off individual queries for orders for every customer. What you really want to happen is to have the order data retrieved together with the customers.

var q =

from c in db.Customers

where c.City == "London"

select c;

foreach (Customer c in q) {

foreach (Order o in c.Orders) {

ProcessCustomerOrder(o);

}
}

Certainly, you can always find a way to join customers and orders together in a query by forming the cross product and retrieving all the relative bits of data as one big projection. Except then you would no longer be retrieving entities. objects you could modify and graphs you could edit, objects the rest of you application may require. Worse, you would be retrieving a huge amount of redundant data as each customer repeats for each order.

What you really need is a way to retrieve a set of related objects at the same time, a delineated portion of a graph so you would never be retrieving any more or any less than was necessary for your intended use.

DLinq allows you to request Immediate Loading of a region of your object model for just this reason. It does this by defining a new query operator called Including() that allows you to specify the relationships you want to retrieve up front with the rest of your query at the time you make the query.

var q = (

from c in db.Customers

where c.City == “London”

select c)

.Including(c => c.Orders);

Each use of the Including() operator can refer to an expression that references a single relationship property. The operator itself does not change the meaning of the query, except that more data is retrieved. You may follow an Including() operator with another Including() operator or any other query operator for that matter. The use of Including() need not be the final operation though that may make for better readability. The expression inside the Including() operator may also make use of a nested Including() operator. This is the only operation allowed aside from the immediate reference to a relationship property.

var q = (

from c in db.Customers

where c.City == “London”

select c)

.Including(c => c.Orders.Including(o => o.OrderDetails));
This example uses nested Including() operators to retrieve an entire hierarchy, customers, orders and order details all at once. Note that other relationships like order-details to products is not immediately loaded.
3.4 Projections
So far, we have only looked at queries for retrieving entities, objects directly associated with database tables. We need not constrain ourselves to just this. The beauty of a query language is that you can retrieve information in any form you want. You will not be able to take advantage of automatic change tracking or identity management when you do so. However you can get just the data you want.

For example, you may simply need to know the company names of all customers in London. If this is the case there is no particular reason to retrieve entire customer objects merely to pick out names. You can project out the names as part of the query.

var q =

from c in db.Customers

where c.City == "London"

select c.CompanyName;
In this case, ‘q’ becomes a query that retrieves a sequence of strings.

If you want to get back more than just a single name, but not enough to justify fetching the entire customer object you can specify any subset you want by constructing the results as part of your query.

var q =

from c in db.Customers

where c.City == "London"

select new { c.CompanyName, c.Phone };
This example uses an anonymous type initializer to create a structure that holds both the company name and phone number. You may not know what to call the type, but with local type inference in the language you do not necessarily need to.

var q =

from c in db.Customers

where c.City == "London"

select new { c.CompanyName, c.Phone };
foreach(var c in q)

Console.WriteLine(“{0}, {1}”, c.CompanyName, c.Phone);
If you are consuming the data immediately, anonymous types make a good alternative to explicitly defining classes to hold your query results.

You can also use projections to construct your own result hierarchies. For example, in addition to company name and phone, you may want to know the five most recent order dates for a customer.

var q =

from c in db.Customers

where c.City == "London"

select new {

c.CompanyName,

c.Phone,

OrderDates = (

from o in c.Orders

orderby o.OrderDate descending

select o.OrderDate)

.Take(5)

};

This query produces a series of objects each containing a company name, phone number and a collection called OrderDates containing the five most recent dates.

Of course, its also possible to mix and match projections, including entire entities with other projected values.

var q =

from c in db.Customers

where c.City == "London"

select new {

Customer = c,

OrderDates = (

from o in c.Orders

orderby o.OrderDate descending

select o.OrderDate)

.Take(5)

};

This query produces almost the same results as the previous query, except that entire Customer objects are retrieved with the five most recent order dates. These customers are true customer entities, with relationship properties that are defer loaded. You can even use the Including() operator to immediate load other entities related to each customer.

You can use the same practice to actually form cross products of entire objects, though you might rarely have a reason to do so.

var q =

from c in db.Customers, o in c.Orders

where c.City == “London”

select new { c, o };
This query constructs a sequence of pairs of customer and order objects.

It’s also possible to make projections at any stage of the query. You can project data into newly constructed objects and then refer to those objects’ members in subsequent query operations.

var q =

from c in db.Customers

where c.City == “London”

select new {Name = c.ContactName, c.Phone} into x

orderby x.Name

select x;

Be wary of using parameterized constructors at this stage, though. It is technically valid to do so, yet it is impossible for DLinq to track how constructor usage affects member state without understanding the actual code inside the constructor.

var q =

from c in db.Customers

where c.City == “London”

select new MyType(c.ContactName, c.Phone) into x

orderby x.Name

select x;

Because DLinq attempts to translate the query into pure relational SQL locally defined object types are not available on the server to actually construct. All object construction is actually postponed until after the data is retrieved back from the database. In place of actual constructors, the generated SQL uses normal SQL column projection. Since it is not possible for the query translator to understand what is happening during a constructor call it is unable to establish a meaning for the Name field of MyType.
Instead, the best practice is to always use object initializers to encode projections.

var q =

from c in db.Customers

where c.City == “London”

select new MyType { Name = c.ContactName, HomePhone = c.Phone } into x

orderby x.Name

select x;

The only safe place to use a parameterized constructor is in the final projection of a query.

var e =

new XElement(“results”,

from c in db.Customers

where c.City == “London”

select new XElement(“customer”,

new XElement(“name”, c.ContactName),

new XElement(“phone”, c.Phone)

)

);

You can even use elaborate nesting of object constructors if you desire, like this example that constructs XML directly out of the result of a query. It works as long as it’s the last projection of the query.

Still, even if constructor calls are understood, calls to local methods may not be. If your final projection requires invocation of local methods it is unlikely that DLinq will be able to oblige. Method calls that do not have a known translation into SQL cannot be used as part of the query. One exception to this rule is method calls that have no arguments dependent on query variables. These are not considered part of the translated query and instead are treated as parameters.

Still elaborate projections (transformations) may require local procedural logic to implement. For you to use your own local methods in a final projections you will need to project twice. The first projection extracts all the data values you’ll need to reference and the second projection performs the transformation. In between these two projections is a call to the ToSequence() operator that shifts processing at that point from a DLinq query into a locally executed one.

var q =

from c in db.Customers

where c.City == “London”

select new { c.ContactName, c.Phone };
var q2 =

from c in q.ToSequence()

select new MyType {

Name = DoNameProcessing(c.ContactName),

Phone = DoPhoneProcessing(c.Phone)

};
Note that the ToSequence() operator, unlike ToList() and ToArray(), does not cause execution of the query. It is still deferred. The ToSequence() operator merely changes the static typing of the query, turning a Query<T> into an IEnumerable<T>, tricking the compiler into treating the rest of the query as locally executed.

3.5 SQL Translation

DLinq does not actually execute Language Integrated Queries; the relational database does. DLinq translates the queries you wrote into equivalent SQL queries and sends them to the server for processing. Because execution is deferred DLinq is able to examine your entire query even if assembled from multiple parts.

Since the relational database server is not actually executing IL, aside from the CLR integration in SQL Server 2005, the queries are not transmitted to the server as IL. They are transmitted as parameterized SQL queries in text form.

Of course, SQL, even T-SQL with CLR integration, is incapable of executing the variety of methods that are locally available to your program. Therefore the queries you write must be translated into equivalent operations and functions that are available inside the SQL environment.

Most common methods and operators have direct translations into SQL. Some can be produced out of the functions that are available. The ones that cannot be translated are disallowed.

Standard Query Operators that cannot actually be supported by SQL are marked as Obsolete when used with DLinq. This causes compiler warnings when you try to use them. Hopefully, a compile feature will be added that will allow errors to be generated instead of mere warnings. Until then, it is possible that you may accidentally write queries using these forbidden functions. If so, a runtime exception will alert you to the problem.

The following Standard Query Operators currently have no translation into SQL.

ElementAt

OfType

SkipWhile

EqualAll

Repeat

TakeWhile

Fold

Reverse

Some of them actually do have proper translations, though the work to implement them has simply not been done yet. In addition, specific overloads of standard query operators that provide an index or position variable cannot be translated to SQL. And of course, most of the .Net frameworks libraries are unavailable. DLinq has chosen to focus on translating some of the most common methods used on primitive data types.

You will find that simple math operators (addition, subtraction, multiplication, division, etc) can all be translated, as well as string concatenation, equality, inequality, relational operators (<,>,<=,>=) and logical operators (and, or, not). You can call constructors on objects and use initializers as projections, even though the types are not known to the server. You can coerce types, converting between float and int for example. You can call ToString() to convert any primitive into a string. You can even refer to Value and HasValue on Nullable types.

In addition, many properties and methods on DateTime and String have translations into SQL built-in functions.

System.DateTime

System.String

Year

Length

Month

Contains

Day

StartsWith

DayOfYear

EndsWith

Hour

Insert

Minute

Remove

Second

Replace

Millisecond

Substring

Trim

ToLower

ToUpper

Of course, many other translations are possible as well. So many, we have not had time to implement them yet.
4. The Entity Life Cycle

DLinq is more than just an implementation of the Standard Query Operators for relational databases. In addition to translating queries it is a service that manages your objects throughout their lifetime, aiding you in maintaining the integrity of your data and automating the process of translating your modifications back into the store.

In a typical scenario objects are retrieved through the use of one or more queries and then manipulated in some way or another until the application is ready to send the changes back to the server. This process may repeat a number of times until the application no longer has use for this information. At that point the objects are reclaimed by the runtime just like normal objects. The data however remains in the database. Even after being erased from their runtime existence objects representing the same data can still be retrieved. In this sense the object’s true lifetime exists beyond any single runtime manifestation.

The focus of this chapter is the Entity Life Cycle where a cycle refers to the time span of a single manifestation of an entity object within a particular runtime context. The cycle starts when the DataContext becomes aware of an new instance and ends when the object or DataContext is no longer needed.

4.1 Tracking Changes

After objects are retrieved from the database you are free to manipulate them, passing them back and forth between functions, processing them, adding and removing them, linking them together and tearing them apart. They are your objects; use them as you will. As you do this DLinq will be tracking what you do. Not so it can report your misdeeds. It tracks changes for you so that it can persist them into the database on your behalf.

DLinq starts tracking your objects the moment they are retrieved from the database, before you ever lay your hands on them. Indeed the identity management service discussed earlier has already kicked in as well. Change tracking costs very little in additional overhead until you actually start making changes.

Customer cust = db.Customers.First(c => c.CustomerID == "ALFKI");
cust.CompanyName = “Dr. Frogg’s Croakers”;
As soon as the CompanyName is assigned in the example above, DLinq becomes aware of the change and is able to record it. The original values of all data members is retained by the change tracking service. It is possible to undo all changes using the RejectChanges() method on the DataContext.

db.RejectChanges();
// Show the original name
Console.WriteLine(cust.CompanyName);

The change tracking service also records all manipulations of relationship properties. You use relationship properties to establish the links between your objects, even though they may be linked by key values in the database. There is no need to directly modify the object members associated with the key columns. DLinq automatically synchronizes them for you before the changes are submitted.

Customer cust1 = db.Customers.First(c => c.CustomerID == custId1);

foreach (Order o in db.Orders.Where(o => o.CustomerID == custId2)) {

o.Customer = cust1;
}

You can move orders from one customer to another by simply making an assignment to their Customer property. Since the relationship exists between the customer and the order, you can change the relationship by modifying either side. You could have just as easily removed them from cust2’s Orders collection and added them to cust1’s collection, as shown below.

Customer cust1 = db.Customers.First(c => c.CustomerID == custId1);
Customer cust2 = db.Customers.First(c => c.CustomerID == custId2);
// Pick some order
Order o = cust2.Orders[0];
// Remove from one, add to the other
cust2.Orders.Remove(o);
cust1.Orders.Add(o);
// Displays ‘true’
Console.WriteLine(o.Customer == cust1);

Of course, if you assign a relationship the value null, you are in fact getting rid of the relationship all together. Assigning a Customer property of an order to null actually removes the order from the customer’s list.

Customer cust = db.Customers.First(c => c.CustomerID == custId1);
// Pick some order
Order o = cust.Orders[0];
// Assign null value
o.Customer = null;
// Displays ‘false’
Console.WriteLine(cust.Orders.Contains(o));

Automatic updating of both sides of a relationship is essential for maintaining consistency of your object graph. Unlike normal objects, relationships between data are often bi-directional. DLinq allow you to use properties to represent relationships, however, it does not offer a service to automatically keep these bi-directional properties in sync. This is a level of service that must be baked directly into your class definitions. Entity classes generated using the code generation tool have this capability. In the next chapter we will show you how to do this to your own hand written classes.

It is important to note, however, that removing a relationship does not imply that an object has been deleted from the database. Remember, the lifetime of the underlying data persists in the database until the row has been deleted from the table. The only way to actually delete an object is to remove it from its Table collection.

Customer cust = db.Customers.First(c => c.CustomerID == custId1);
// Pick some order
Order o = cust.Orders[0];
// Remove it directly from the table (I want it gone!)
db.Orders.Remove(o);
// Displays ‘false’.. gone from customer’s Orders
Console.WriteLine(cust.Orders.Contains(o));
// Displays ‘true’.. order is detached from its customer
Console.WriteLine(o.Customer == null);

Like with all other changes the order has not actually been deleted yet. It just looks that way to us since its been removed and detached from the rest of our objects. When the order object was removed from the Orders table it was marked for deletion by the change tracking service. The actually deletion from the database will occur when the changes are submitted on a call to SubmitChanges(). Note that the object itself is never deleted. The runtime manages the lifetime of object instances, so it sticks around as long as you are still holding a reference to it. However, after an object has been removed from its Table and changes submitted it is no longer tracked by the change tracking service.

The only other time an entity is left untracked is when it exists before the DataContext is aware of it. This happens whenever you create new objects in your code. You are free to use instances of entity classes in your application without ever retrieving them from a database. Change tacking and identity management only apply to those objects representing actually rows in database tables. Therefore neither service is enabled for newly created instances until you make the DataContext aware of them.

This can occur in one of two ways. You can call the Add() method on the related Table collection manually.

Customer cust =

new Customer {

CustomerId = “ABCDE”,

ContactName = “Frond Smooty”,

CompanyTitle = “Eggbert’s Eduware”,

Phone = “888-925-6000”

};

// Add new customer to Customers table
db.Customers.Add(cust);
Or you can attach a new instance to an object that the DataContext is already aware of.
// Add an order to a customer’s Orders
cust.Orders.Add(

new Order { OrderDate = DateTime.Now }
);
The DataContext will discover your new object instances even if they are attached to other new instances.

// Add an order and details to a customer’s Orders
Cust.Orders.Add(

new Order {

OrderDate = DateTime.Now,

OrderDetails = {

new OrderDetail {

Quantity = 1,

UnitPrice = 1.25M,

Product = someProduct

}

}

}
);
Basically, the DataContext will recognize any entity in your object graph that is not currently tracked as a new instance, whether or not you called the Add() method.
4.2 Submitting Changes

Regardless of how many changes you make to your objects, those changes were only made to in memory replicas. Nothing yet has happened to the actual data in the database. Transmission of this information to the server will not happen until you explicitly request it by calling SubmitChanges() on the DataContext.

Northwind db = new Northwind("c:\\northwind\\northwnd.mdf");
// make changes here
db.SubmitChanges();
When you do call SubmitChanges() the DataContext will attempt to translate all your changes into equivalent SQL commands, inserting, updating or deleting rows in corresponding tables. These actions can be overridden by your own custom logic if you desire, however the order of submission is orchestrated by a service of the DataContext known as the change processor.

The first thing that happens when you call SubmitChanges() is the set of known objects are examined to determine if new instances have been attached to them. These new instances are added to set of tracked objects. Next, all objects with pending changes are ordered into a sequence of objects based on dependencies between them. Those objects whose changes depend on other objects are sequenced after the those they depend on. Foreign key constraints and uniqueness constraints in the database play a big part in determining the correct ordering of changes. Then just before any actual changes are transmitted, a transaction is started to encapsulate the series of individual commands unless one is already in scope. Finally, one by one the changes to the objects are translated into SQL commands and sent to the server.

At this point, any errors detected by the database will cause the submission process to abort and an exception will be raised. All changes to the database will be rolled back as if none of the submissions ever took place. The DataContext will still have a full recording of all changes so it is possible to attempt to rectify the problem and resubmit them by calling SubmitChanges() again.

Northwind db = new Northwind("c:\\northwind\\northwnd.mdf");
// make changes here

try {

db.SubmitChanges();
}
catch (Exception e) {

// make some adjustments

...

// try again

db.SubmitChanges();
}
When the transaction around the submission completes successfully the DataContext will accept the changes to the objects by simply forgetting the change tracking information. You can do this manually anytime you want by calling the AcceptChanges() method. However, failure of the transaction to complete successfully will not lead to a call to the RejectChanges() method. A rollback of the SQL commands does not imply a rollback of the local change tracking state. As shown above, it may be necessary to resubmit the changes.

4.3 Simultaneous Changes

There are a variety of reasons why a call to SubmitChanges() may fail. You may have created an object with an invalid primary key, one that’s already in use, or with a value that violates some check constraint of the database. These kinds of checks are difficult to bake into business logic since they often require absolute knowledge of the entire database state. However, the most likely reason for failure is simply that someone else made changes to the objects before you.

Certainly, this would be impossible if you surrounded your use of the objects with a fully serialized transaction. However, this style of programming (pessimistic concurrency) is rarely used since it is expensive and true clashes seldom occur. The most popular form of managing simultaneous changes is to employ a form of optimistic concurrency. In this model, no locks against the database rows are taken at all, since usually a transaction is not brought into scope until the moment when SubmitChanges() is called. That means any number of changes to the database could have occurred between the time you first retrieved your objects and the time you submitted your changes.

So unless you want to go with a policy that the last update wins, wiping over whatever else occurred before you, you probably want to be alerted to the fact that the underlying data was changed by someone else.

The DataContext has built in support for optimistic concurrency. Individual updates only succeed if the database’s current state matches the state you understood the data to be in when you first retrieved your objects. This happens on a per object basis, only alerting you to concurrency violations if they happen to objects you have made changes to.

You can control the degree to which the DataContext uses optimistic concurrency when you define your entity classes. Each Column attribute has a property called UpdateCheck that can be assigned one of three values; Always, Never, and WhenChanged. If not set the default for a Column attribute is Always, meaning the data values represented by that member are always checked for concurrency violation. That is, unless there is an obvious tie-breaker like a version stamp. A Column attribute has an IsVersion property that allows you to specify whether the data value constitutes a version stamp maintained by the database. If a version exists, then the version is used instead to determine all concurrency violations.

When an optimistic concurrency violation does occur an exception will be thrown just as if it were any other error. The transaction surrounding the submission will abort yet the DataContext will remain the same allowing you the opportunity to rectify the problem and try again.

while (retries < maxRetries) {

Northwind db = new Northwind("c:\\northwind\\northwnd.mdf");

// fetch objects and make changes here

try {

db.SubmitChanges();

break;

}

catch (OptimisticConcurrencyException e) {

retries++;

}
}

If you are making changes on a middle-tier or server, the easiest thing you can do to rectify an optimistic concurrency violation is to simply start over and try again, recreating the context and reapplying the changes.

4.4 Transactions

A transaction is a service provided by a databases or any other resource manager that can be used to guarantee a series of individual actions occur atomically, meaning either they all succeed or they all don’t, and if they don’t then they are also all automatically undone before anything else is allowed to happen. If no transaction is already in scope, the DataContext will automatically start a database transaction to guard updates when you call SubmitChanges().

You may choose to control the type of transaction used, its isolation level or what it actually encompasses by initiating it yourself. The transaction isolation that the DataContext will use is known as ReadCommitted.

Product prod = q.First(p => p.ProductId == 15);
if (prod.UnitsInStock > 0)

prod.UnitsInStock--;

using(TransactionScope ts = new TransactionScope()) {

db.SubmitChanges();

ts.Complete();
}
The example above initiates a fully serialized transaction by creating a new transaction scope object. All database commands executed within the scope of the transaction will be guarded by the transaction.

Product prod = q.First(p => p.ProductId == 15);

if (prod.UnitsInStock > 0)

prod.UnitsInStock--;

using(TransactionScope ts = new TransactionScope()) {

db.ExecuteCommand(“exec sp_BeforeSubmit”);

db.SubmitChanges();

ts.Complete();
}

This modified version of the same example uses the ExecuteCommand() method on the DataContext to execute a stored procedure in the database right before the changes are submitted. Regardless of what the stored procedure does to the database, we can be certain its actions are part of the same transaction.

Likewise, you can wrap a transaction around both the query and the changes to force the database to engage pessimistic locks around the data your are manipulating.
using(TransactionScope ts = new TransactionScope()) {

Product prod = q.First(p => p.ProductId == 15);

if (prod.UnitsInStock > 0)

prod.UnitsInStock--;

db.SubmitChanges();

ts.Complete();
}

If the transaction completes successfully the DataContext automatically accepts all changes to the objects it is tracking. It does not, however, rollback the changes to your objects if the transaction fails. This allows you the maximum flexibility in dealing with problems during change submission.

It is also possible to use a local SQL transaction instead of the new TransactionScope. DLinq offers this capability to help you integrate DLinq features into pre-existing ADO.Net applications. However, if you go this route you will need to be responsible for much more.

Product prod = q.First(p => p.ProductId == 15);

if (prod.UnitsInStock > 0)

prod.UnitsInStock--;

db.LocalTransaction = db.Connection.BeginTransaction();
try {

db.SubmitChanges();

db.LocalTransaction.Commit();

db.AcceptChanges();
}
catch {

db.LocalTransaction.Abort();

throw;
}
finally {

db.LocalTransaction = null;
}
As you can see, using a manually controlled database transaction is a bit more involved. Not only do you have to start it yourself, you have to tell the DataContext explicitly to use it by assigning it to the LocalTransaction property. Then you must use a try-catch block to encase you submit logic, remembering to explicitly tell the transaction to commit and to explicit tell the DataContext to accept changes, or to abort the transactions if there is failure at any point. Also, don’t forget to set the LocalTransaction property back to null when you are done.

4.5 Stored Procedures

When SubmitChanges() is called DLinq generates and executes SQL commands to insert, update and delete rows in the database. These actions can be overridden by application developers and in their place custom code can be used to perform the desired actions. In this way, alternative facilities like database stored procedures can be invoked automatically by the change processor.

Consider a stored procedure for updating the units in stock for the Products table in the Northwind sample database. The SQL declaration of the procedure is as follows.

create proc UpdateProductStock

@id

int,

@originalUnits
int,

@decrement

int
as

...
You can use the stored procedure instead of the normal auto-generated update command by defining a method on your strongly-typed DataContext. Even if the DataContext class is being auto-generated by the DLinq code generation tool, you can still specify these methods in a partial class of your own.

public partial class Northwind : DataContext
{

...

[UpdateMethod]

public void OnProductUpdate(Product original, Product current) {

// Execute the stored procedure for UnitsInStock update

if (original.UnitsInStock != current.UnitsInStock) {

int rowCount = this.ExecuteCommand(

"exec UpdateProductStock " +

"@id={0}, @originalUnits={1}, @decrement={2}",

original.ProductID,

original.UnitsInStock,

(original.UnitsInStock - current.UnitsInStock)

);

if (rowCount < 1)

throw new OptimisticConcurrencyException();

}

...

}
}
The attribute UpdateMethod tells the DataContext to uses this method in place of a generated update statement. The original and current parameters are used by DLinq for passing in the original and current copies of the object of the specified type. The two parameters are available for optimistic concurrency conflict detection. Note that is you are override the default update logic, conflict detection is your responsibility.

The stored procedure UpdateProductStock is invoked using the ExecuteCommand() method of the DataContext. It returns the number of rows affected and has the following signature:

public int ExecuteCommand(string command, params object[] parameters);
The object array is used for passing parameters required for executing the command.

Similar to the update method, insert and delete methods may be specified using the InsertMethod and DeleteMethod attributes. Insert and delete methods take only one parameter of the entity type to be updated. For example methods to insert and delete a Product instance can be specified as follows:

[InsertMethod]
public void OnProductInsert(Product prod) { ... }

[DeleteMethod]
public void OnProductDelete(Product prod) { ... }

The method names can be arbitrary but the attributes are required and the signatures must follow the specified patterns.
5. Entity Classes In Depth

5.1 Using Attributes

An Entity Class is just like any normal object class that you might define as part of your application, except that is annotated with special information that associates it with a particular database table. These annotations are made as custom attributes on your class declaration. The attributes are only meaningful when you use the class in conjunction with DLinq. They are similar in nature to the XML serialization attributes in the .Net framework. These ‘data’ attributes provide DLinq with enough information to translate queries for your objects into SQL queries against the database and changes to your objects into SQL insert, update and delete commands.
5.1.1 Database Attribute

The Database attribute is used to specify the default name of database if it is not supplied by the connection. Database attributes can be applied to strongly-typed DataContext declarations. Use of this attribute is optional.
	Property
	Type
	Description

	Name
	String
	Specifies the name of the database. The information is only used if the connection itself does not specify the database name. If these Database attribute does not exist on context declaration and one is not specified by the connection, then database is assumed to have the same name as the context class.

[Database(Name="Database#5")]
public class Database5 : DataContext {

...
}

5.1.2 Table Attribute

The Table attribute is used to designate a class as an entity class associated with a database table. Classes with the Table attribute will treated specially by DLinq. They are
	Property
	Type
	Description

	Name
	String
	Specifies the name of the table. If this information is not specified it is assumed that the table has the same name as the entity class.

[Table(Name="Customers")]
public class Customer {

...
}

5.1.3 Column Attribute

The Column attribute is used to designate a member of a entity class that represents a column in a database table. It can be applied to any field or property, public, private or internal. Only members identified as columns are persisted when DLinq saves changes to the database.
	Property
	Type
	Description

	Name
	String
	The name of the column in the table or view. If not specified the column is assumed to have the same name as the class member

	Storage
	String
	The name of the underlying storage. If specified it tells DLinq how to bypass the public property accessor for the data member and interact with the raw value itself. If not specified DLinq gets and sets the value using the public accessor.

	DbType
	String
	The type of database column specified using database types and modifiers. This will be the exact text used to define the column in a T-SQL table declaration command. If not specified the database column type is inferred from the member type. The specific database type is only necessary if CreateDatabase() method is expected to be used to create an instance of the database.

	Id
	bool
	If set to true the class member represents a column that is part of the table’s primary key. If more than one member of the class is designated as the Id, the primary key is said to be a composite of the associated columns.

	AutoGen
	bool
	Identifies that the member’s column value is auto-generated by the database. Primary keys that are designated AutoGen=true should also have a DbType with the IDENTITY modifier. AutoGen members are synchronized immediately after the data row is inserted and are available after SubmitChanges() completes.

	IsVersion
	bool
	Identifies the member’s column type as a database timestamp or a version number. Version numbers are incremented and timestamp columns are updated every time the associated row is updated. Members with IsVersion=true are synchronized immediately after the data row is updated. The new values are visible after SubmitChanges() completes.

	UpdateCheck
	UpdateCheck
	Determines how DLinq implements optimistic concurrency conflict detection. If no member is designate as IsVersion=true detection is done by comparing original member values with current database state. You can control which members DLinq uses during conflict detection by giving each member an UpdateCheck value.

Always - always use this column for conflict detection
Never - never use this column for conflict detection
WhenChanged – only use this column when the member has been changed by the application

A typical entity class will use Column attributes on public properties and store actual values in private fields.

private string _city;

[Column(Storage="_city", DbType="NVarChar(15)")]
public string City {

get { ... }

set { ... }
}

The DbType is only specified so that the CreateDatabase() method can construct the table with the most precise type. Otherwise, the knowledge that the underlying column is limited to 15 characters is unused.

Members representing the primary key of a database type will often be associated with auto generated values.

private string _orderId;

[Column(Storage="_orderId", Id=true, AutoGen=true,

DbType="int NOT NULL IDENTITY")]
public string OrderId {

get { ... }

set { ... }
}

If you do specify the DbType make sure to include the IDENTITY modifier. DLinq will not augment a custom specified DbType. However, if the DbType is left unspecified DLinq will infer that the IDENTITY modifier is needed when creating the Database via the CreateDatabase() method.

Likewise, if the IsVersion property is true, the DbType must specify the correct modifiers to designate a version number or timestamp column. If no DbType is specified DLinq will infer the correct modifiers.

You can control access to a member associated with an auto-generated column, version stamp or any column you might want to hide by designating the access level of the member, or even limiting the accessor itself.

private string _customerId;

[Column(Storage="_customerId", DbType="NCHAR(5) ")]
public string CustomerId {

get { ... }
}

The Order’s CustomerId property can be made read-only by not defining a set accessor. DLinq can still get and set the underlying value through the storage member.

You can also make a member completely inaccessible to the rest of the application by placing a Column attribute on a private member. This allow the entity class to contain information relevant to the classes business logic without exposing it in general. Even though private members are part of the translated data, since they are private you cannot refer to them in a language integrated query.

By default, all members are used to perform optimistic concurrency conflict detection. You can control whether a particular member is used by specifying its UpdateCheck value.

[Column(Storage="_city", UpdateCheck=UpdateCheck.WhenChanged)]
public string City {

get { ... }

set { ... }
}

The following table shows the permissible mappings between database types and the corresponding CLR type. This matrix is currently not enforced but is strongly recommended. Use this table as a guide when determine which CLR type to use to represent a particular database column.

	Database Type
	.NET CLR Type
	Comments

	bit, tinyint, smallint, int, bigint
	Byte, Int16, Uint16, Int32, Uint32, Int64, Uint64
	Lossy conversions possible. Values may not roundtrip

	Bit
	Boolean
	

	decimal, numeric, smallmoney, money
	Decimal
	Scale difference may result in lossy conversion, may not roundtrip

	real, float
	Single, double
	Precision differences

	char, varchar, text, nchar, nvarchar, ntext
	String, LargeString
	Locale differences possible

	datetime, smalldatetime
	DateTime
	Different precision may cause lossy conversion and roundtrip problems

	Uniqueidentifier
	Guid
	Different collation rules. Sorting may not work as expected.

	Timestamp
	Byte[], Binary
	Byte array is treated as a scalar type. User is responsible for allocating adequate storage when constructor is called. It is considered immutable and is not tracked for changes.

	binary, varbinary
	Byte[], Binary, LargeBinary
	

The LargeString, Binary and LargeBinary types are provided by DLinq and are found in the System.Data.DLinq namespace.
5.1.4 Association Attribute
The Association attribute is used to designate a property that represents a database association like a foreign-key to primary-key relationship.
	Property
	Type
	Description

	Name
	string
	The name of the association. This is often the same as the database’s foreign-key constraint name. It is used when the CreateDatabase() is used to create an instance of the database in order to generate the relevant constraint. It is also used to help distinguish between multiple relationships in a single entity class referring to the same target entity class. In this case, relationship properties on sides of the relationship (if both are defined) must have the same name.

	Storage
	string
	The name of the underlying storage member. If specified it tells DLinq how to bypass the public property accessor for the data member and interact with the raw value itself. If not specified DLinq gets and sets the value using the public accessor. It is recommended that all association member be properties with separate storage members identified.

	ThisKey
	string
	A comma separated list of names of one or more members of this entity class that represent the key values on this side of the association. If not specified, the members are assumed to be the members that make up the primary key.

	OtherKey
	string
	A comma separated list of names of one or more members of the target entity class that represent the key values on the other side of the association. If not specified, the members are assumed to be the members that make up the other entity class’s primary key.

	Unique
	bool
	True if there a uniqueness constraint on the foreign key, indicating a true 1:1 relationship. This property is seldom used as 1:1 relationships are near impossible to manage within the database. Mostly entity models are defined using 1:n relationships even when they are treated as 1:1 by application developers.

Association properties either represent a single reference to another entity class instance or they represent a collection of references. Singleton references must be encoded in the entity class using the EntityRef<T> value type to store the actual reference. The EntityRef type is how DLinq enables deferred loading of references.

class Order
{

...

private EntityRef<Customer> _Customer;

[Association(Name="FK_Orders_Customers", Storage="_Customer",

ThisKey="CustomerID")]

public Customer Customer {

get { return this._Customer.Entity; }

set { this._Customer.Entity = value; }

}
}
The public property is typed as Customer, not EntityRef<Customer>. It is important not to expose the EntityRef type as part of the public API, as references to this type in a query will not be translated to SQL.

Likewise, an association property representing a collection must use the EntitySet<T> collection type to store the relationship.

class Customer
{

...

private EntitySet<Order> _Orders;

[Association(Name="FK_Orders_Customers", Storage="_Orders",

OtherKey="CustomerID")]

public EntitySet<Order> Orders {

get { return this._Orders; }

set { this._Orders.Assign(value); }

}
}

However, since an EntitySet<T> is a collection, it is valid to use the EntitySet as the return type. It is also valid to disguise the true type of the collection, using the ICollection<T> interface instead.

class Customer
{

...

private EntitySet<Order> _Orders;

[Association(Name="FK_Orders_Customers", Storage="_Orders",

OtherKey="CustomerID")]

public ICollection<Order> Orders {

get { return this._Orders; }

set { this._Orders.Assign(value); }

}
}

Make certain to use the Assign() method on the EntitySet if you expose a public setter for the property. This allows the entity class to keep using the same collection instance since it may already be tied into the change tracking service.

5.2 Graph Consistency

A graph is a general term for a data structure of objects all referring to each other by references. A hierarchy (or tree) is a degenerate form of graph. Domain specific object models often describe a network of references that are best described as a graph of objects. The health of your object graph is vitally important to the stability of your application. That’s why is important to make sure references within the graph remain consistent to your business rules and/or constraints defined in the database.

DLinq does not automatically manage consistency of relationship references for you. When relationships are bi-directional a change to one side of the relationship should automatically update the other. Note that it is uncommon for normal objects to behave this way so it is unlikely that you would have designed your objects this way otherwise.

DLinq does provide a few mechanism to make this work easy and a pattern for you to follow to make sure you are managing your references correctly. Entity classes generated by the code generation tool will automatically implement the correct patterns.

public Customer() {

this._Orders =

new EntitySet<Order>(

delegate(Order entity) { entity.Customer = value; },

delegate(Order entity) { entity.Customer = null; }

);
}

The EntitySet<T> type has a constructor that allow you to supply two delegates to be used as callbacks, the first when an item is added to the collection, the second when it is removed. As you can see from the example, the code you specify for these delegates can and should be written to update the reverse relationship property. This is how the Customer property on an Order instance is automatically changed when an order is added to a customer’s Orders collection.

Implementing the relationship on the other end is not as easy. The EntityRef<T> class is value type defined to contain as little additional overhead from the actual object reference as possible. It has no room for a pair of delegates. Instead the code managing graph consistency of singleton references should be embedded in the property accessors themselves.

[Association(Name="FK_Orders_Customers", Storage="_Customer",

ThisKey="CustomerID")]
public Customer Customer {

get {

return this._Customer.Entity;

}

set {

Customer v = this._Customer.Entity;

if (v != value) {

if (v != null) {

this._Customer.Entity = null;

v.Orders.Remove(this);

}

this._Customer.Entity = value;

if (value != null) {

value.Orders.Add(this);

}

}

}
}

Take a look at the setter. When the Customer property is being changed the order instance is first removed from the current customer’s Orders collection and then only later added to the new customer’s collection. Notice that before the call to Remove() is made the actual entity reference is set to null. This is done to avoid recursion when the Remove() method is called. Remember, the EntitySet will use is callback delegates to assign this object’s Customer property to null. The same thing happens right before the call to Add(). The actually entity reference is updated to the new value. This will again curtail any potential recursion and of course accomplish the task of the setter in the first place.

The definition of a one-to-one relationship is very similar to the definition of a one-to-many relationship from the side of the singleton reference. Except instead of Add() and Remove() being called in their respective slots, you’ll need the same code that went into the EntitySet delegates, assignment to new value and assignment to null.

Again, it is vital that relationship properties maintain the consistency of the object graph. Consider using the code generation tool to do the work for you.
5.3 Change Notifications

Your objects may participate in the change tracking process. It is not required that they do but if they do they can considerably reduce the amount of overhead needed to keep track of potential object changes. It is likely that your application will retrieve many more objects from queries than will end up being modified. Without proactive help from your objects, the change tracking service is limited in how it can actually track changes.

Since there is no true interception service in the runtime, the formal tracking does not actually occur at all. Instead, duplicate copies of the objects are stored when there are first retrieved. Later, when you call SubmitChanges() these copies are used to compare against the ones you’ve been given. If their values differ then the object has been modified. This means that every object requires two copies in memory even if you never change them.

A better solution is to have the objects themselves announce to the change tracking service when they are indeed changed. This can be accomplished by having the object implement an interface that exposes a callback hook. The change tracking service can then wire up each object and receive notifications when they change.

[Table(Name="Customers")]
public partial class Customer : IChangeNotifier
{

public event ObjectChangingEventHandler ObjectChanging;

private void OnChanging() {

if (this.ObjectChanging != null) {

this.ObjectChanging(this, System.EventArgs.Empty);

}

}

private string _CustomerID;

[Column(Storage="_CustomerID", Id=true)]

public string CustomerID {

get {

return this._CustomerID;

}

set {

if ((this._CustomerID != value)) {

this.OnChanging();

this._CustomerID = value;

}

}

}
}
To assist in improved change tracking your entity classes must implement the IChangeNotifier interface. It only requires you to define an event called ObjectChanging. The change tracking service then registers with your event when your objects come into its possession. All you are required to do is raise this event immediately before you are about to change the object’s state.

Don’t forget to put the same event raising logic in your relationship property setters too. For EntitySet’s, raise the events in the delegates you supply.

public Customer() {

this._Orders =

new EntitySet<Order>(

delegate(Order entity) {

this.OnChanging();

entity.Customer = value;

},

delegate(Order entity) {

this.onChanging();

entity.Customer = null;

}

);
}
6. Advanced Topics

6.1 Creating Databases

Since entity classes have attributes describing the structure of the relational database tables and columns it is possible to use this information to create new instances of your database. You can call the CreateDatabase() method on the DataContext to have DLinq construct a new database instance with a structure defined by your objects. There are many reasons you might want to do this. You might be building an application that automatically installs itself on a customer system or a client application that needs a local database to save its offline state. For these scenarios the CreateDatabase() is ideal, especially if a known data provider like SQL Server Express 2005 is available.

However, the data attributes may not encode everything about an existing database’s structure. The contents of user defined functions, stored procedures, triggers and check constraints are not represented by the attributes. The CreateDatabase() function will only create a replica of the database using the information it knows. Yet, for a variety of databases this is sufficient.

Here is an example of how you can create a new database named MyDVDs.mdf.

[Table(Name="DVDTable")]
public class DVD
{

[Column(Id = true)]

public string Title;

[Column]

public string Rating;
}

public class MyDVDs : DataContext
{

public Table<DVD> DVDs;

public MyDVDs(string connection) : base(connection) {}
}
The object model can be used for creating a database using SQL Server Express 2005 database as follows:

MyDVDs db = new MyDVDs("c:\\mydvds.mdf");
db.CreateDatabase();
DLinq also provides an API to drop an existing database prior to creating a new one. The database creation code above can be modified to first check for the an existing version of the database using DatabaseExists() and then drop it using DeleteDatabase().

MyDVDs db = new MyDVDs("c:\\mydvds.mdf");

if (db.DatabaseExists()) {

Console.WriteLine("Deleting old database...");

db.DeleteDatabase();
}
db.CreateDatabase();
After the call to CreateDatabase() the new database exists and is able to accept queries and commands like SubmitChanges() to add objects to the MDF file.

Its also possible to use CreateDatabase() with normal SQL server, using either an MDF file or just a catalog name. It all depends on what you use for your connection string. The information in the connection string is used to define the database that will exist, not necessarily one that already exists. DLinq will fish out the relevant bits of information and use it to determine what database to create and on what server to create it. Of course, you will need database admin rights or equivalent on the server to do so.

6.2 Interoperating with ADO.NET

DLinq is part of the ADO.NET family of technologies. It based on services provided by the ADO.NET provider model, so it is possible to mix DLinq code with existing ADO.NET applications.

When you create a DLinq DataContext you can supply it with an existing ADO.NET connection. All operations against the DataContext including queries will use the connection you provided. If the connection was already opened DLinq will honor your authority over the connection and leave it as is when finished with it. Normally DLinq closes its connection as soon as an operation is finished unless a transaction is in scope.

SqlConnection con = new SqlConnection(...);
con.Open();
...
// DataContext takes a connection
Northwind db = new Northwind(con);
...
var q =

from c in db.Customers

where c.City == “London”

select c;

You can always access the connection used by your DataContext through the Connection property and close it yourself.

db.Connection.Close();
You can also supply the DataContext with your own database transaction, in case you application has already initiated one and you desire the DataContext to play along with it.

IDbTransaction = con.BeginTransaction();
...

db.LocalTransaction = myTransaction;
db.SubmitChanges();
db.LocalTransaction = null;

Whenever a LocalTransaction is set, the DataContext will use it whenever is issues a query or executes a command. Don’t forget to assign the property back to null when you are done.

However, the preferred method of doing transactions in the post .Net 2005 world is to use the TransactionScope object. It allows you to make distributed transactions that work across databases and other memory resident resource managers. The idea is that transaction scopes start cheap, only promoting themselves to full on distributed transaction when actually do refer to multiple databases or multiple connection with the scope of the transaction.

using(TransactionScope ts = new TransactionScope()) {

db.SubmitChanges();

ts.Complete();
}

If you are not dealing with integration issues around using a pre-existing transaction, switching to transaction scopes makes using transaction a bit easier. Unfortunately, not all ADO.NET provider play nicely with the new darling. The SqlClient connection is incapable of promoting system transactions when working against a SQL Server 2000 server. SQL Server 2005 servers work fine. Instead, it automatically enlists to a full distributed transaction whenever its sees a transaction scope in use.

This is not likely what you want at all. Your application will seldom find itself engaged in a true distributed transaction, so why pay the cost? If you know you don’t need the power you can instruct the DataContext to prohibit the SqlClient connection from engaging in this gregarious activity.

using(TransactionScope ts = new TransactionScope()) {

db.UseLocalTransactionsOnly = true;

db.SubmitChanges();

ts.Complete();
}

The UserLocalTransactionsOnly property can be set to force the system transaction into using local database transactions only. This property must be set on the data context with the connection currently closed or it will have not effect. If later a request to promote to a true distributed transaction comes along it will be denied.

Connections and transactions are not the only way you can interoperate with ADO.NET. You might find that in some cases the query or submit changes facility of the DataContext is insufficient for the specialized task you may want to perform. In these circumstances it is possible to use the DataContext to issue raw SQL commands directly to the database.

The ExecuteQuery() method lets you execute a raw SQL query and the converts the result of your query directly into objects. For example, assuming that the data for the Customer class is spread over two tables customer1 and customer2, the following query returns a sequence of Customer objects.
IEnumerable<Customer> results = db.ExecuteQuery<Customer>(

@"select c1.custid as CustomerID, c2.custName as ContactName

 from customer1 as c1, customer2 as c2

 where c1.custid = c2.custid"
);

As long as the column names in the tabular results match column properties of you entity class DLinq will materialize your objects out of any SQL query.
The ExecuteQuery() method also allows parameters. In the following code, a parameterized query is executed:

IEnumerable<Customer> results = db.ExecuteQuery<Customer>(

”select contactname from customers where city = {0}”,

“London”
);

The parameters are expressed in the query text using the same curly notation used by Console.WriteLine() and String.Format(). In fact, String.Format() is actually called on the query string you provide, substituting the curly braced parameters with generated parameter names like @p0, @p1 …, @p(n)
6.3 The Entity Class Generator Tool

If you have an existing database it is unnecessary to create a complete object model by hand just to represent it. The DLinq distribution comes with a tool called SQLMetal. It is a command line utility that automates the task of creating an entity classes by inferring the appropriate classes from the database metadata..
You can use SQLMetal to extract SQL metadata from a database and generate a source file containing entity class declarations. Or you can split the process into two steps, first generating an XML file representing the SQL metadata and then later translating that XML file into a source file containing class declarations. This split process allows you to retain the metadata as a file so you may edit it. The extraction process producing the file make a few inferences along the way about appropriate class and property names given the table and column names of the database. You might find it necessary to edit the XML file in order for the generator to produce more pleasing results or to hide aspects of the database that you don’t want present in your objects.

The simplest scenario to use SQLMetal is to directly generate classes from an existing database. Here is how to invoke the tool:

SqlMetal /server:.\SQLExpress /database:Northwind /delayfetch /pluralize /namespace:nwind /code:Northwind.cs

Executing the tool creates a Northwind.cs file that contains the object model generated by reading the database metadata. This usage works well if the names of the tables in the database are similar to the names of the objects that you want to generate. If not you’ll want to take the two step approach.
To instruct SQLMetal to generate an XML file use the tool as follows:

SqlMetal /server:.\SQLExpress /database:Northwind /pluralize /xml:Northwind.xml

Once the xml file is generated, you can go ahead and annotate it with class and property attribute to describe how tables and columns map to classes and properties. Once you have finished annotating the xml file, you can generate your object model by running the following command:

SqlMetal /namespace:nwind /code:Northwind.cs Northwind.xml
The SQLMetal usage signature is as follows:

SqlMetal [options] [filename]
The following is a table showing the available command line options for SQLMetal.

	Option
	Description

	/server
	indicates the server to connect to in order to access the database

	/database
	indicates the name of the database to read metadata from

	/code:<filename>
	indicates that the output of the tool is a source file of entity class declarations.

	/xml:<filename>
	indicates that the output of the tools is an XML file describing the database metadata and the first guess approximation of class and property names

	/pluralize
	indicates that the tool should perform Matt’s whiz-bang English language pluralizing / de-pluralizing heuristic to the names of the tables in order to produce appropriate class and property names.

	/namespace:<name>
	indicates the namespace the entity classes will be generated in

Note: In order to extract the meta data from an .mdf file, you must specify the .mdf filename after all other options. If no /server is specified localhost/sqlexpress is assumed.

6.4 Generator Tool XML Reference

The XML file is foremost a description of the SQL metadata for a given database. It contains attributes that mark up the metadata to describe simple object mapping, such as name changes or exclusion of tables or columns.

Here is a prototypical example of the XML syntax:

<Database

Name = “database-name”

Access = “public|internal”

Class = ”context-class-name”>

<Schema

Name = “schema-name”

Hidden = “true|false”

Access = “public|internal”

Class = “schema-class-name”>

<Table

Name = “…”

Hidden = “true|false”

Access = “public|internal”

Class = “element-class-name”

Property = “context-or-schema-property-name”>

<PrimaryKey

Name = “primary-key-constraint-name”

Hidden=”true|false”>

<Column Name=”key-column-name” />

...

</PrimaryKey>

...

<Unique

Name = “uniqueness-constraint-name”

Hidden = “true|false”>

<Column Name = “column-name” />

...

</Unique>

 ...

<Index

Name = “index-name”

Hidden = “true|false”

Style = “db-style-info like clustered etc”

IsUnique = “true|false”>

<Column Name = “column-name” />

...

</Index>

...

<Column

Name = “…”

Hidden = “true|false”

Access = “public|private|internal|protected”

Property=”property-name”

DbType=”database-type”

Type=”CLR-type”

Nullable=”true|false”

IsIdentity=”true|false”

IsAutoGen=”true|false”

IsVersion=”true|false”

IsReadOnly=”true|false”

UpdateCheck=”Always|Never|WhenChanged” />

...

<Association

Name=”…”

Hidden=”true|false”

Access=”public|private|internal|protected”

Property=”property-name”

Kind=”relationship-kind”

Target=”target-table-name”

UpdateRule=”database-on-update-rule”

DeleteRule=”database-on-delete-rule”>

<Column Name = “key-column-names” />

...

</Association>

...

</Table>

...

</Schema>

...

</Database>
The elements and their attributes are described as follows.

6.4.1 General Element Attributes
These attributes apply to all elements.
	Attribute Name
	Description

	Name
	Describes the name used by the database for the given element. This attribute is required for all elements.

	Hidden
	For all elements, hidden refers to whether the code generation considers this node or not. Hidden columns or associations won’t appear in the generated class code. Hidden containers (schemas/tables/etc) hide all their contents. The purpose of hidden is to allow the tree to maintain representation for all the database schema regardless of whether it is used in the given translation, so that subsequent changes to the database schema can be identified and merged into the document properly.

	Access
	The access attribute refers to the code access mode used for the associated code generated item. If not specified, access is assumed to be ‘public’.

6.4.2 Database Element

The Database element describes a database. It may contain one or more Schema elements.

	Attribute Name
	Description

	Class
	The name used by the code generator for the strongly-typed context class

6.4.3 Schema Element

The Schema element describes a database schema. It may contain one or more Table elements.
	Attribute Name
	Description

	Class
	The name used by the code generator for the schema class. Schema classes are used to extended the apparent namespace of the strongly-typed context class, allowing addition tables to be listed as members of a schema class. A schema with named dbo is treated specially by the code generator. All tables that are part of the dbo schema become top-level table collections on the generated context object.

	Property
	The property name for the schema on the context class or parent schema class.

6.4.4 Table Element

The Table element describes metadata for a database table. It may contain at most one PrimaryKey element, zero or more Unique elements, zero or more Index elements, one or more Column elements and zero or more Association elements.
	Attribute Name
	Description

	Class
	The name used by the code generator for the entity class.

	Property
	The property name for the table collection on the context class or parent schema class.

6.4.5 PrimaryKey Element

The PrimaryKey element describes a database primary key constraint. It contains one or more key-column elements that form the identity of the table.
6.4.6 Unique Element
The Unique element describes a database uniqueness constraint. It contains one or more key-column elements that together form a value that is must be unique within the table.
6.4.7 Index Element

The Index element describes a database index definition. Primary keys and unique column groups are good candidates for indices. SQL server will define indices automatically for these types of constraints. However, since additional indices may be specified and the even the style of an otherwise implied index may be customized all indices are defined explicitly within the metadata. The Index element contains one or more key-column elements that determine the columns used to define the index.

	Attribute Name
	Description

	Style
	The style attribute describes the database’s index style, which for SQL server may be something like CLUSTERED or NONCLUSTERED.

	IsUnique
	The IsUnique attribute describes whether the index is based on unique values. This may indeed be redundant information, given the uniqueness constraints. However, to date SQL maintains these values separately.

6.4.8 Column Element
The Column element describes a database column.
	Attribute Name
	Description

	Type
	The CLR type of the column. This determines the type for the property used in the generated class. This attribute is required.

	Property
	The name of the code generated property. If the attributes is not specified it is the name of the property is the same as the Name attribute.

	DbType
	The database type of the column. If not specified, it is inferred from the CLR type.

	IsIdentity
	Describes whether the column is part of the overall primary key. This is information redundant given the PrimaryKey element and may be removed.

	IsAutoGen
	Describes whether the column is a server generated identity.

	IsVersion
	Describes whether the column is a server generated version number or timestamp.

	IsReadOnly
	Describes whether the column is read-only. Also controls whether the property has a setter. Currently auto-generated identities and version stamps are considered read-only in the sense that they have no setter even if this property is not explicitly set to “true”. Computed columns should appear as read-only.

	UpdateCheck
	Matches the DLinq UpdateCheck enum values and semantics

 public enum UpdateCheck {

Always,

Never,

WhenChanged

}

6.4.9 Association Element

The Association element describes a value-based association between two tables. Association elements are originally inferred by SQLMetal from foreign-key relationship in the database. The Association element contains one or more key-column elements.
	Attribute Name
	Description

	Property
	The name of the code generated property. If the attributes is not specified it is the name of the property is the same as the Name attribute.

	Kind
	Describes the kind of relationship and the side of the relationship that it represents. This information is currently not carried forward directly into code attribute form. It controls the code generation in determination of use of EntitySet or EntityRef and associated logic. This attribute is required.

 public enum RelationshipKind {

OneToOneChild,

OneToOneParent,

ManyToOneChild,

ManyToOneParent

}

	Target
	Describes the target table name. If the association is not the child (the one containing the foreign key), the target table must contain a definition of a reverse association sharing the same association name. This attribute is required.

	UpdateRule
	Database specific update rule that controls how this table is modified when the related row is update. Currently used only to persist and re-generated SQL metadata.

	DeleteRule
	Database specific update rule that controls how this table is modified when the related row is deleted. Currently used only to persist and re-generated SQL metadata.

7. Future Directions

The DLinq project is continuing to evolve beyond the technology preview described in this document. Here is a list of some of the features that we are considering. Please note that this is our early thinking and is likely to evolve and change. Your feedback will also help us shape the DLinq features
7.1 Inheritance

A feature we will likely consider in the future is support for inheritance. There are three commonly used inheritance mappings:

· Single table mapping: the whole inheritance hierarchy is stored in a single database table

· One table per class: each class in the hierarchy (abstract or not) is mapped to a table. Each table contains just the data associated with its class, which means that no table contains data for the ancestors of a class

· One table per concrete class: each concrete class is associated with a table that contains data not just for the class itself, but also for the ancestors of the class

We are considering support for the single table mapping case, because of the good performance characteristics for many different categories of queries.

We are also planning support for polymorphic queries. A polymorphic query allows the programmer to query for a particular type and get as result all the objects of that type and also of types inheriting from it.

For example, given an inheritance hierarchy comprising a Person class and an Employee class inheriting from Person and given a List<Person> called persons, then the following query will return Person and Employee objects.

var results =
from p in persons
where p.City == “London”
select p;

We are not planning any support for querying over interfaces. Imagine the same scenario as before, but instead Person is now an interface and persons a list of such interfaces. In this scenario it will not be possible to query over the person interface and retrieve all the objects that implement it.
7.2 Mapping

One of the primary design goals for DLinq is simplicity. It is unlikely that we’ll expand the set of mappings that the framework supports to encompass all the possible mappings between objects and relational tables. Relational databases already provide a very rich set of capabilities in the form of views that can be used for many mapping features and scenarios.

A particular mapping we are considering is many to many mapping. In the database a many to many relationship is represented using an ‘intermediate’ table that contains pointers to the primary keys of the two sides of the relationship. In many cases there is data in such intermediate table other than the two primary keys. In those cases it is conceptually appropriate to represent the table as an entity in the object model, to be able to gain access to that additional data. In other cases, there is no additional data in the intermediate table or the data that is there is not important. In these latter cases, the object model is simplified if an entity is not required for the intermediate table . In such a case, the entities on the two sides of the many to many relationship have collections to represent the relationship. We are considering adding such a support to DLinq.

Currently, relationships are assumed to be associations – the related objects can exist independent of each other. Going forward, we will explore other variants of relationships like composition and containment. A weaker form of composition is modeled in databases through cascade delete constraints on foreign keys and may be suitable for DLinq relationships.

The .NET framework and database types that can be mapped is another area for exploration. Examples include enums, BLOBs and CLOBs.
7.3 Databinding

Entities are just normal objects. The current .NET infrastructure is designed to data bind directly to objects and collections. However, we will investigate change notification support for EntitySet for a better editing experience.
7.4 Multi-tier Applications and Web Services

The .NET framework provides a rich support for remoting and web services. The entities and collections of entities retrieved by DLinq are just normal .NET objects and hence easily usable with web services. However, we will explore better ways to integrate DLinq change tracking with web services and remoting.

Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2005

IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

Copyright SYMBOL 211 \f "Symbol" Microsoft Corporation 2005

IF DATE \@ "yyyy" = "1998" "1998-" . All Rights Reserved.

