2 SQL Server 2005 T-SQL Enhancements

styleref "heading 1" 5

Hands-On Lab
Lab Manual

SQL Server™ 2005:

T-SQL Enhancements
Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

SQL Server 2005 T-SQL Enhancements
.

Objectives

In this lab, you will familiarize your self with the new and enhanced features of T-SQL.
After completing this lab, you will be able to:

· Use the new PIVOT and UNPIVOT operators

· Use Recursive Query Expressions

· Create triggers that are invoked by Data Definition Language (DDL) events

· Handle Exceptions in T-SQL
Note

This lab focuses on the concepts in this module and as a result may not comply with Microsoft security recommendations.

Note

The SQL Server 2005 labs are based on beta builds of the product. The intent of these labs is to provide you with a general feel of some of the planned features for the next release of SQL Server. As with all software development projects, the final version may differ from beta builds in both features and user interface. For the latest details on SQL Server 2005, please visit http://www.microsoft.com/sql/2005/.
Estimated time to complete this lab: 60 minutes

Exercise 0
Lab Setup

· Log in using the Administrator user account. The password is pass@word1.

Exercise 1:
PIVOT and UNPIVOT Operators

It is often useful to view relational data in multiple dimensions. For some time now, SQL Server has supported the CUBE and ROLLUP operators. These operators allow data to be viewed in different dimensions and allow aggregations to be displayed along those dimensions.
The 2005 release of SQL Server introduces support for the PIVOT and UNPIVOT operators. These operators are less complex to understand and implement than CUBE and ROLLUP, while still allowing the flexibility to view data along different dimensions. For example, with the PIVOT operator it is almost effortless to rotate rows into columns to look at Product data along different dimensions such as supplier, current inventory, and amounts.
In this exercise, you will learn how to use the PIVOT and UNPIVOT operators, apply them in several queries, and compare their output.
Note

All of the code for this exercise is contained in the script file PIV_UNPIV.sql in the C:\SQL Labs\Lab Projects\T-SQL Lab directory. You can copy and paste from this file to complete any portion of the exercise.

· Task 1: Creating a Management Studio Project
1. Click Start | All Programs | Microsoft SQL Server 2005 | SQL Server Management Studio. If asked to connect, enter localhost in the Server Name text box, and select Windows Authentication in the Authentication drop-down list.
2. Click File | New | Project.

3. In the New Project dialog box, click SQL Server Scripts.

4. Change the Name of the project to TSQLLab.

5. Change the Location to C:\SQL Labs\User Projects.

6. Clear the Create directory for Solution checkbox.

7. Click OK to save the project.
· Task 2: Connecting to the Adventure Works Database

1. In the Solution Explorer, right-click Queries and then click New Query.
2. When prompted for connection information, type “localhost” for the server name, verify that Windows Authentication is selected for the authentication mode, and click Connect.

3. Under Queries, right-click the new script file and click Rename.
4. Rename the script to PIV_UNPIV.sql.
5. Type the following code in the query editor.

USE AdventureWorks

GO
6. Press F5 to execute the statement.
· Task 3: Create a table and populate it with data

1. In the query editor, type the following code to create and populate a table.

CREATE TABLE SalesOrderTotalsMonthly

(

CustomerID int NOT NULL,

OrderMonth int NOT NULL,

SubTotal money NOT NULL

)

GO

INSERT SalesOrderTotalsMonthly

SELECT CustomerID, DATEPART(m, OrderDate), SubTotal

FROM Sales.SalesOrderHeader

WHERE CustomerID IN (1,2,4,6)

To see the capabilities of the PIVOT operator, you are creating a worktable containing the customer ID, the month an order was taken, and the subtotal due on the order. This table will be used in subsequent queries.

2. Select the statements you just typed.
3. Press F5 to execute the statements.
· Task 4: Create a query that uses the PIVOT operator

1. In the query editor, type the following query that will pivot the table so that the sales for each month are output by customer.

SELECT * FROM SalesOrderTotalsMonthly

PIVOT (SUM(SubTotal) FOR OrderMonth IN

([1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12])) AS a

2. Select the statements you just typed.
3. Press F5 to execute the query.

You should see a column for each month across the top of the results. Each row represents a single customer. The customer's total order amounts for a given month are displayed.

You can do a simple select on the SalesOrderTotalsMonthly table to compare the output of the PIVOT results and the original table data.

· Task 5: Create a worktable to PIVOT results by Year

1.
In the query editor, type the following code to create and populate another worktable.

CREATE TABLE SalesOrderTotalsYearly

(

CustomerID int NOT NULL,

OrderYear int NOT NULL,

SubTotal money NOT NULL

)

GO

INSERT SalesOrderTotalsYearly

SELECT CustomerID, YEAR(OrderDate), SubTotal

FROM Sales.SalesOrderHeader

WHERE CustomerID IN (1,2,4,6,35)

2. Select the statements you just typed.
3. Press F5 to execute the statements.

In this case, you are creating a worktable that contains the sales by year for the specified customers. You can now use the PIVOT operator to pivot information based on the year an order was taken.
· Task 6: PIVOT results by year and by Customer

1. In the query editor, type the following queries that will pivot the table so that each year's sales are output by customer.

SELECT * FROM SalesOrderTotalsYearly

PIVOT (SUM(SubTotal) FOR OrderYear IN ([2002], [2003], [2004])) AS a

GO

SELECT * FROM SalesOrderTotalsYearly

PIVOT (SUM(SubTotal) FOR CustomerID in ([1], [2], [4], [6])) AS a

2. Select the queries you just typed.
3. Press F5 to execute the query.

The PIVOT operator is used in two different queries. Each result set is pivoted in a different direction. The first result set shows customer orders by year. In this case, each year is shown as a separate column. Remember that in the original table all years where sales occurred were stored in a single column.

The second result set shows subtotal amounts so that each customer’s data appears as a separate column in the result set.

· Task 7: Create a worktable to show the difference between the PIVOT and UNPIVOT operators

1. In the query editor, type the following queries that will create a worktable and pivot the table so that each year’s sales are output by customer.

CREATE TABLE YearlySalesPivot

(

OrderYear int NOT NULL,

[1] money NULL,

[2] money NULL,

[4] money NULL,

[6] money NULL

)

GO

INSERT YearlySalesPivot

SELECT * FROM SalesOrderTotalsYearly

PIVOT (SUM(SubTotal) FOR CustomerID IN ([1], [2], [4], [6])) AS a

2. Select the statements you just typed.
3. Press F5 to execute the statements. If you receive the message, "Warning: Null value is eliminated by an aggregate or other SET operation," you can safely ignore it.

In addition to the PIVOT operator, there is an UNPIVOT operator which allows you to normalize pre-pivoted data. To compare the output of these two operators, you will create a worktable to hold the pivoted output from a query. This stored output will then be un-pivoted and compared with the original pivoted results stored in the table.

· Task 8: Compare UNPIVOT and PIVOT results

1. In the Query Editor, type the following queries.

SELECT * FROM YearlySalesPivot

UNPIVOT (SubTotal FOR CustomerID IN ([1], [2], [4], [6])) AS a

ORDER BY CustomerID

-- Displays unpivoted results

SELECT * FROM YearlySalesPivot

-- Displays pivoted results stored in the worktable

2. Select the queries you just typed.
3. Press F5 to execute the query.

· Task 9: Drop worktables

1. In the query editor, type the following code to drop the worktables you created.

DROP TABLE YearlySalesPivot

DROP TABLE SalesOrderTotalsYearly

DROP TABLE SalesOrderTotalsMonthly

2. Select the statements you just typed.
3. Press F5 to execute the statements.

Exercise 2:
Common Table Expressions and Recursive Queries

A Common Table Expression (CTE) is a temporary result set derived from a simple query. A CTE can be used in many of the same ways you use a derived table. CTEs can also contain references to themselves. This allows database developers to write recursive queries. CTEs can also be used in place of views.
Note

All of the code for this exercise is contained in the script file CTE_REC.sql in the C:\SQL Labs\Lab Projects\T-SQL Lab directory. You can copy and paste from this file to complete any portion of the exercise.
· Task 1:Add a new script in SQL Server Management Studio
1. Using SQL Server Management Studio, open the TSQLLab project created in the previous exercise, if it's not still open.
2. Right-click Queries in the Solution Explorer and click New Query.
3. When prompted for connection information, type “localhost” for the server name, verify that the authentication method is set to Windows Authentication, and click Connect.

4. Right-click the script file and click Rename.
5. Rename the script as CTE_REC.sql

· Task 2: Using a CTE as a Derived Table

1. In the CTE_REC.sql script, type the following code.

USE AdventureWorks

GO

WITH SalesCTE(ProductID, SalesOrderID)

AS

(

SELECT ProductID, COUNT(SalesOrderID)

FROM Sales.SalesOrderDetail

GROUP BY ProductID

)

SELECT * FROM SalesCTE

--All Products and the number of times that they

--were ordered

2. Select the statements you just typed.
3. Press F5 to execute the query.
· Task 3: Filtering a CTE used as a Derived Table

1. In the CTE_REC.sql script, type the following query.

WITH SalesCTE(ProductID, SalesOrderID)

AS

(

SELECT ProductID, COUNT(SalesOrderID)

FROM Sales.SalesOrderDetail

GROUP BY ProductID

)

SELECT * FROM SalesCTE

WHERE SalesOrderID > 50

--All Products that were ordered more than 50 times

2. Select the query you just typed.
3. Press F5 to execute the query.

Just as you might filter the result set returned by a view, you can filter the result set contained in a Common Table Expression.

· Task 4: Aggregating with CTEs

1. In the CTE_REC.sql script, type the following query.

WITH SalesCTE(ProductID, SalesOrderID)

AS

(

SELECT ProductID, COUNT(SalesOrderID)

FROM Sales.SalesOrderDetail

GROUP BY ProductID

)

SELECT AVG(SalesOrderID)

FROM SalesCTE

WHERE SalesOrderID > 50

--Average number of times a Product was ordered

--for all Products that appeared on an order

--more than 50 times

2. Select the query you just typed.
3. Press F5 to execute the query.

Performing aggregations or other computations on the data returned by a Common Table Expression is similar to doing so for data from a standard table.

· Task 5: Using CTEs Recursively

The most powerful use of Common Table Expressions is to create recursive queries. Since Common Table Expressions allow references to themselves in the same query, a recursive query is relatively straightforward to create.

First, create a new table in the database.

1. Type the following statements in the CTE_REC.sql script.

CREATE TABLE CarParts

(

CarID int NOT NULL,

Part varchar(15),

SubPart varchar(15),

Qty int

)

GO

INSERT CarParts

VALUES (1, 'Body', 'Door', 4)

INSERT CarParts

VALUES (1, 'Body', 'Trunk Lid', 1)

INSERT CarParts

VALUES (1, 'Body', 'Car Hood', 1)

INSERT CarParts

VALUES (1, 'Door', 'Handle', 1)

INSERT CarParts

VALUES (1, 'Door', 'Lock', 1)

INSERT CarParts

VALUES (1, 'Door', 'Window', 1)

INSERT CarParts

VALUES (1, 'Body', 'Rivets', 1000)

INSERT CarParts

VALUES (1, 'Door', 'Rivets', 100)

INSERT CarParts

VALUES (1, 'Door', 'Mirror', 1)

You are creating a table that holds parts and subparts for cars, often called a bill of materials. Bill of materials tables, organization charts, and other hierarchical data structures can easily benefit from the use of recursive Common Table Expressions.

Notice that a given part such as a Body may contain multiple sub parts. For example, there are 1000 rivets in a body, and each door also contains 100 rivets.

2. Select the statements you just typed.
3. Press F5 to execute the query.
4. In the CTE_REC.sql script, type the following query.

WITH CarPartsCTE(SubPart, Qty)

AS

(

-- Anchor Member (AM):

-- SELECT query that doesn’t refer back to CarPartsCTE

SELECT SubPart, Qty

FROM CarParts

WHERE Part = 'Body'

UNION ALL

-- Recursive Member (RM):

-- SELECT query that refers back to CarPartsCTE

SELECT CarParts.SubPart, CarPartsCTE.Qty * CarParts.Qty

FROM CarPartsCTE

INNER JOIN CarParts ON CarPartsCTE.SubPart = CarParts.Part

WHERE CarParts.CarID = 1

)

-- Outer Query

SELECT SubPart, SUM(Qty) AS q

FROM CarPartsCTE

GROUP BY SubPart

Recursive CTEs are constructed from at least two queries. One is a non-recursive query, also referred to as the anchor member (AM). The other is the recursive query, also referred to as the recursive member (RM). These queries are separated by the UNION ALL operator.

5. Select the query you just typed.
6. Press F5 to execute the query.

The query above lists the total quantities of parts required to create a car body. The Common Table Expression is initially populated with data from the simple query, “SELECT SubPart, Qty FROM CarParts WHERE Part = 'Body'”. Then, the set operator UNION ALL combines the results of the first query with the results of a recursive query that multiplies subpart quantities by the number of parts in which they are used. Note that the second query contains a recursive reference in the INNER JOIN statement to the Common Table Expression named CarPartsCTE.

· Task 6: Drop worktables

1.
In the query editor, type the following code to drop the table you created.

DROP TABLE CarParts

4. Select the statement you just typed.
5. Press F5 to execute the statements.

Exercise 3:
DDL Triggers and EventData()

In previous versions of SQL Server, you can define AFTER triggers only for Data Manipulation Language (DML) statements — INSERT, UPDATE, and DELETE. SQL Server 2005 allows you to define triggers for Data Definition Language (DDL), and you can optionally define the scope to be an entire database or even an entire server, not just a single object.
Within a trigger, you can get data regarding the event that initiated it by accessing the EventData() function. This function returns a variable that uses the new xml data type. Each event’s schema inherits the Server Events base schema.

In this exercise you will create DDL triggers and use EventData() to capture information about the calling event.
Note

All of the code for this exercise is contained in the script file DDL_EventData.sql in the C:\SQL Labs\Lab Projects\T-SQL Lab directory. You can copy and paste from this file to complete any portion of the exercise.
· Task 1: Add a new script in SQL Server Management Studio
1. Using SQL Server Management Studio, open the TSQLLab project created in the first exercise, if it's not still open.
2. Right-click Queries in the Solution Explorer and click New Query.
3. When prompted for connection information, type “localhost” for the server name, verify that the authentication method is set to Windows Authentication, and click Connect.

4. Right-click the script file and click Rename.
5. Rename the script DDL_EventData.sql

· Task 2: Creating a DDL Trigger

1. In the DDL_EventData.sql script, type the following code.

USE AdventureWorks

GO

CREATE TABLE DDLTest

(

a int NOT NULL

)

GO

CREATE TRIGGER safety

ON DATABASE

FOR DROP_TABLE

AS

 PRINT 'You must disable Trigger "safety" to drop tables!'

 ROLLBACK

GO

The code above first creates a table, and then creates a DDL trigger that will fire when a user attempts to drop any database table.

2. Select the statements you just typed.
3. Press F5 to execute the query.
4. In the DDL_EventData.sql script, type the following query.

DROP TABLE DDLTest
5. Select the statement you just typed.
6. Press F5 to execute the query.

You will receive the following message:

You must disable Trigger "safety" to drop tables!

Msg 3609, Level 16, State 2, Line 1

Transaction ended in trigger. Batch has been aborted.

The DDL trigger returns an error message and prevents any table in the database from being dropped by rolling back the transaction.

· Task 3: Alter the DDL Trigger to use EventData()

1. In the DDL_EventData.sql script, type the following code.

CREATE TABLE EventLog

(

PostTime datetime,

DBUser nvarchar(100),

Event nvarchar(100),

TSQL nvarchar(2000)

)

GO

ALTER TRIGGER safety

ON DATABASE

FOR DDL_DATABASE_LEVEL_EVENTS

AS

DECLARE @data xml

SET @data = EventData()

INSERT EventLog (PostTime, DBUser, Event, TSQL)

VALUES (GETDATE(), CONVERT(nvarchar(100), CURRENT_USER),

CONVERT(nvarchar(100), @data.query('data(//EventType)')),

CONVERT(nvarchar(2000), @data.query('data(//TSQLCommand)')))

GO

--Test the trigger

CREATE TABLE Foo (a INT)

DROP TABLE Foo

GO

SELECT *

FROM EventLog

The EventData() function returns information about server or database events. This function returns an xml-typed variable.

2. Select the statements you just typed.
3. Press F5 to execute the query.

First, the code creates a log table to catch the event information. Second, the code alters the trigger to write event data to the log table. The code stores the time, user, event, and T-SQL associated with the event in the log table. Finally, the code tests the altered trigger. Since the altered trigger does not include ROLLBACK, the “foo” table is successfully deleted.
· Task 4: Drop worktables and trigger

1. In the query editor, type the following DDL to drop the worktables you created.

DROP TRIGGER safety

ON DATABASE

DROP TABLE DDLTest

DROP TABLE EventLog

2. Select the statement you just typed.
3. Press F5 to execute the DDL statements.

Exercise 4:
Event Handling

Previous versions of SQL Server require that you include error handling code after every statement that might produce an error. SQL Server 2005 introduces two new constructs, TRY and CATCH. These two constructs allow you to handle transaction abort errors that would otherwise have resulted in the termination of a batch, provided that those errors do not cause severance of the connection.
In this exercise, you will learn how to use TRY and CATCH blocks in T-SQL.
Note

All of the code for this exercise is contained in the script file TRY_CATCH.sql in the C:\SQL Labs\Lab Projects\T-SQL Lab directory. You can copy and paste from this file to complete any portion of the exercise.
· Task 1: Add a new script in SQL Server Management Studio
1. Using SQL Server Management Studio, open the TSQLLab project created in the first exercise, if it's not still open.
2. Right-click Queries in the Solution Explorer and click New Query.
3. When prompted for connection information, type “localhost” for the server name, verify that the authentication method is set to Windows Authentication, and click Connect.

4. Right-click the script file and click Rename.
5. Rename the script TRY_CATCH.sql

· Task 2: Creating worktables

1. In the TRY_CATCH.sql script, type the following code.

USE AdventureWorks

GO

CREATE TABLE ExceptionT1

(

a int NOT NULL PRIMARY KEY

)

CREATE TABLE ExceptionT2

(

a int NOT NULL REFERENCES ExceptionT1(a)

)

GO

INSERT INTO ExceptionT1 VALUES (1)

INSERT INTO ExceptionT1 VALUES (3)

INSERT INTO ExceptionT1 VALUES (4)

INSERT INTO ExceptionT1 VALUES (6)

2. Select the statements you just typed.
3. Press F5 to execute the query.
These statements create one table with a primary key and a second table with a foreign key that limits values to those contained in the primary key column of the first table.
· Task 3: Invoking a run-time error

When the SET XACT_ABORT option is set to OFF, only the Transact-SQL statement that raised the error is rolled back and the transaction continues processing.
1. In the TRY_CATCH.sql script, type the following query.

SET XACT_ABORT OFF

BEGIN TRAN

INSERT INTO ExceptionT2 VALUES (1)

INSERT INTO ExceptionT2 VALUES (2) /* Foreign Key Error */

INSERT INTO ExceptionT2 VALUES (3)

COMMIT TRAN

GO

2. Select the statements you just typed.
3. Press F5 to execute the query.

You should receive an error like the following:

Msg 547, Level 16, State 0, Line 1

INSERT statement conflicted with FOREIGN KEY constraint 'FK__ExceptionT2__a__5E1FF51F'. The conflict occurred in database 'AdventureWorks', table 'ExceptionT1', column 'a'.

The statement has been terminated.
Now, view the resulting table values.
4. In the TRY_CATCH.sql script, type the following query.

SELECT *

FROM ExceptionT1

GO

SELECT *

FROM ExceptionT2

5. Select the statements you just typed.
6. Press F5 to execute the query.

The first table, which you populated originally, has all four records. The second table has two records, corresponding to valid primary key values. When SET XACT_ABORT is OFF, the error is handled, but subsequent statements execute successfully and the transaction is successfully committed.

· Task 4: Using the TRY/CATCH construct and invoking a run-time error
1. In the TRY_CATCH.sql script, type the following code.

SET XACT_ABORT OFF
BEGIN TRY

BEGIN TRAN

INSERT INTO ExceptionT2 VALUES (4)

INSERT INTO ExceptionT2 VALUES (5) /* Foreign Key Error */

INSERT INTO ExceptionT2 VALUES (6)

COMMIT TRAN

PRINT 'Transaction committed'

END TRY

BEGIN CATCH

ROLLBACK

PRINT 'Transaction rolled back'

END CATCH

GO

2. Select the statements you just typed.
3. Press F5 to execute the query.

Notice that the results pane displays 'Transaction rolled back'.
4. In the TRY_CATCH.sql script, type the following query.

SELECT *

FROM ExceptionT1

GO

SELECT *

FROM ExceptionT2

5. Select the statements you just typed.
6. Press F5 to execute the query.

Notice that the same two records are in ExceptionT2, even though two of the second INSERT statements would not have violated the foreign key constraint. When an unconditional ROLLBACK statement is issued in a CATCH block, the entire transaction is terminated and rolled back on any error raised in the TRY block, regardless of the SET XACT_ABORT setting.
· Task 5: Drop worktables

1. In the query editor, type the following DDL to drop the worktables you created.

DROP TABLE ExceptionT2

DROP TABLE ExceptionT1

2. Select the statement you just typed.
3. Press F5 to execute the DDL statements.

Last Saved: 9/13/2004 1:35:00 PM
Last Printed: 4/30/2004 10:47:00 AM

