[image: image1.jpg]

Microsoft® Windows Vista™:

An Inflection Point for

Kernel Security and 64-Bit Computing

White Paper

October 2006

For more information, press only:

Rapid Response Team

Waggener Edstrom Worldwide

+1 (503) 443-7070

rrt@waggeneredstrom.com

Microsoft EMEA Response Centre

+44 870 243 0515

emearesponse@waggeneredstrom.com
The information contained in this document represents the current view of Microsoft Corp. on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), or for any purpose, without the express written permission of Microsoft Corp.

Microsoft may have patents, patent applications, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights or other intellectual property.

© 2006 Microsoft Corp. All rights reserved.

Microsoft, Windows, Windows Vista, Windows Server, Visual Studio and Windows NT are either registered trademarks or trademarks of Microsoft Corp. in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

Unbounded changes to the operating system “kernel” can lead to system instability as well as the complete compromise of all software programs and hardware resources on a system. Consequently, the operating system kernel environment needs to be the most secure, reliable and trustworthy piece of code in Microsoft® Windows®.

The purpose of this paper is to explain how Microsoft Corp. is protecting the Windows operating system kernel to improve reliability and protect against evolving security threats. This paper will discuss the pitfalls that must be avoided now as well as the future direction of the kernel platform. Microsoft’s efforts are intended to make sure that future versions of the Windows operating system are more secure and reliable and are able to take advantage of the latest hardware and software innovations. At the same time, Microsoft is committed to continuing its work with its hardware and software partners to drive new capabilities and standards to provide a more secure computing environment for the broadest possible set of users.

The history of Windows, perhaps more than any other operating system, highlights the challenges that success can bring to a product as it evolves along with hardware and industry changes. Changes from 16-bit to 32-bit computing hardware, the introduction of virtual memory and protected memory mode to create separate program address spaces, the rapid growth of networking, and a more visual and interactive Internet each represent a significant change that required Microsoft to balance backward compatibility with product innovation.

For the past several years, hardware and software developers have, as a whole, worked to improve security. Security has become even more important as a result of the exponential growth of the Internet as part of our everyday lives. Today, because of innovations by Intel Corporation and AMD Inc. resulting in the decreasing cost of 64-bit processors, 64-bit computing is on the horizon as the next significant PC computing architecture.

Microsoft Windows Vista™ is not only the next version of Microsoft’s operating system; it is also an inflection point for security and 64-bit computing. How these two critical ecosystem changes are handled in Windows Vista will set the stage for the long-term vision of Windows as an even more secure and reliable operating system.

A Long-Term Vision of Windows Security

Four years ago, Microsoft Chairman Bill Gates signaled a dramatic shift in the company’s strategy. Microsoft introduced Trustworthy Computing, which made making a more secure, private and reliable computing experience one of the company’s highest priorities. Trustworthy Computing includes a security pillar that has as its goal the development of Microsoft software that is “secure by design, secure by default and secure in deployment.” Trustworthy Computing applies not just to products under development but also to future products that may not even be fully conceived.

As part of this initiative, in 2002, Microsoft adopted a new process for the development of software that needs to withstand malicious attack. Known as the Security Development Lifecycle (SDL), the process encompasses the addition of a series of security-focused activities and deliverables to each of the phases of Microsoft’s software development process.
 Windows Server® 2003 was the first Microsoft operating system release to benefit from the SDL process and contained enhanced security as well as new protective technologies, architecture improvements and a reduced attack surface. Windows XP Service Pack 2 and Windows Server 2003 SP1 delivered further defense-in-depth security improvements. More recently, products such as Visual Studio® 2005 were shipped with tools designed to help improve the security quality of software products developed by independent software vendors (ISVs) that support the Microsoft platform.

Trustworthy Computing and SDL are driving innovations that will help provide increased reliability and extra layers of protection against evolving security threats. Indeed, the forthcoming release of Windows Vista contains security features that will enable existing processes to be performed in a more reliable, secure and private manner than previously possible.

In addition to the immediate security benefits of Windows Vista, Microsoft also recognizes that the 64-bit version of Windows Vista will become the base on which Microsoft will build future versions of Windows. Consequently, and taking into account corresponding future hardware innovations, decisions made today about securing the Windows operating system will create momentum for either future improvements or future limitations.

Learning From History
The past several years have shown that attempts to leverage unsupported interfaces (commonly known as “undocumented APIs”) are frequently a cause of system instability. These instabilities can manifest themselves in many ways, ranging from sluggish system performance to user- or system-level crashes and data loss. Also, when unsupported interfaces are modified, applications may cease to work or cause system crashes or data corruption. In sum, the use of undocumented interfaces is the wrong architectural approach to building a reliable and secure operating system.

The solution to this problem is to have the operating system provide supported interfaces that are designed to solve ISV and customer requirements at the outset.

Another source of stability and security issues has been unsigned drivers. Driver signing enables third parties to add secure identification to their drivers so that users are informed of the source of the driver and can block installation of the driver if it appears that malicious tampering has occurred. Although Microsoft introduced the concept of signed drivers in Windows 2000, because Windows 2000 and later Windows XP did not enforce signed drivers via the default configuration, there was little motivation for vendors to get their drivers signed. As a result, unsigned drivers became the de facto standard. This situation caused customers to “accept” installation of unknown drivers as normal, a practice that installers of Trojans and other malicious software have used to their advantage. IT administrators could also block installation of unsigned drivers via Group Policy, but the large installed base of unsigned drivers made this impractical in most situations.

The use of undocumented APIs and the lack of enforced driver signing on 32-bit systems illustrate the momentum that can be created by the existing software base, the standard way of doing things, and the desire to provide application compatibility and a positive user experience. The challenge, however, is to not let past momentum become a barrier to future innovation.

It is important to keep in mind how the use of documented APIs and evolving best practices can have positive long-term consequences and can smooth out transitions to new architectures. In fact, the use of documented APIs and parameters provides a predictable software platform that enables application interoperability across operating systems, provides fully documented interfaces that avoid ambiguity for software developers, and also supports activities such as peer review and penetration testing. In addition, bugs or design flaws related to out-of-specification behavior found in standardized APIs are fixed based on customer reports, whereas unpublished interfaces receive no such support, and can change at any time.

The Current Wave of Hardware Innovation

Transitions continue to occur that will have a huge impact on computing. Each emerging hardware capability represents exciting possibilities for improving the computing experience. Two emerging hardware capabilities that are likely to drive significant change in computing are 64-bit processor architectures and support for virtualization.

Many PCs are already being shipped with 64-bit processors and running seamlessly in 32-bit compatibility mode. When a Windows-based system is running in native 64-bit mode, the vast majority of existing 32-bit software will run unmodified. A notable exception to this is kernel mode software, which must be designed and rebuilt to run as native 64-bit code. This definitely recalls the transition from 16-bit to 32-bit architectures that happened in the 1990s. Microsoft released 64-bit versions of Windows XP and Windows Server 2003 in March 2005, but adoption is still slow relative to their 32-bit counterparts due to a limited set of 64-bit applications and drivers. This architecture upgrade in Windows Vista is expected to stimulate greater market demand for 64-bit Windows.

Recently garnering a lot of discussion, hardware virtualization support is also a candidate for driving significant changes in future versions of Windows. Both Intel (VTX extension) and AMD (SVM extensions) have introduced hardware capabilities that support virtualization. These extensions enable innovation and have spurred discussions about hypervisors and secure hypervisor possibilities across the industry. Recently, the Blue Pill demo at the 2006 Black Hat conference demonstrated how critical virtualization support can be for security. This demonstration showed that any kernel security breach could be used to take control of all hardware, including installing a malicious virtualization-based hypervisor. Virtualization extensions are not yet used by any version of Windows, but Microsoft is actively building a hypervisor solution that leverages these extensions.
Protecting the Kernel in 32-Bit vs. 64-Bit Windows

Microsoft’s vision of a more reliable and secure Windows requires a core set of software that provides the operating system with protection from tampering or attack. At a basic level, this means that the design and development of privileged code (kernel mode code) needs to have a rigorous, security-focused design, development, test and release process. Microsoft has been doing exactly this since 2002 through its Security Development Lifecycle (SDL) process. The Windows Vista development team had an overall goal of improving the reliability and security in Windows. This was a challenge because of the need to maintain backward application compatibility as well as a secure platform.

The reality of 32-bit versions of Windows is that, over time, third-party developers used unsupported and undocumented interfaces in many applications used by Windows users. In fact, in addition to simply using undocumented interfaces, a particular technique called kernel “hooking” or “patching,” whereby kernel instructions and data structures are directly manipulated to modify system behavior, has become prevalent in certain types of both malicious and non-malicious software. This is akin to someone opening up a stereo and rewiring the electronics to try to get the desired behavior instead of simply using the connectors on the back of the box to extend its functionality — a practice that is certain to void the product warranty and electrical certification.

Even without malicious intent, the use of these techniques can easily introduce instability into the system, through coding mistakes or just because the original design did not account for them. Such instability will affect the specific programs as well as the operating system itself and can ultimately lead to situations such as sluggish system performance or user data loss in the case of a crash in kernel mode code. Furthermore, during the normal course of improving the product, parameters and function prototypes associated with kernel routines — the “contract” between developers and the system — can change between operating system releases and because of periodic updates. If supported interfaces are used, when changes are made developers are informed about them through Microsoft documentation and can update their code to properly handle the changes. In contrast, changes to undocumented interfaces are not tracked and will almost certainly lead to crashes or other unexpected side effects when kernel patching techniques are used. Moreover, unsupported patching techniques commonly patch undocumented kernel interfaces, so it’s questionable whether a product that uses these techniques is actually providing desired functionality without also introducing side effects such as reducing security in the system or introducing deadlock and hang conditions.

These issues are compounded when multiple software packages attempt to “chain” together to use unsupported patching techniques; for example, the order of calls from one package to the next is undefined, as well as the behavior when one package is removed from the “chain.” This can lead to race conditions and other subtle problems that are very difficult to diagnose, and they may happen with varying frequency. In general, these techniques are bad computer science practice, and the inherent undefined behavior and “rule violations” do not support more common computer science engineering disciplines.

A recent high-profile example of kernel patching gone bad, even with good intentions, is the case of the copy protection scheme included on some audio CDs in 2005. The copy protection software employed stealth techniques similar to those used by malicious rootkits to silently hook itself into the kernel and monitor use of the audio CD when it was played through a PC. Purchasers of the audio CDs that included this software were unaware of what the software actually did on their systems. To make matters worse, security vulnerabilities were discovered in the kernel extensions used by the copy protection software that granted malicious attackers privileged kernel access.
 With malicious intent, rootkits can be much worse, allowing malicious software to hide and protect itself while monitoring and capturing all user activity and keystrokes, as well as controlling access to all software, files, the network connection, and hardware. These malicious activities can lead to theft of online banking passwords or identity theft, to name a few possibilities.

Over the past two years, senior software architects within the Windows team have examined this problem and determined that it is technically possible to implement changes that could help protect the integrity of the kernel and, at the same time, raise the bar for security. Kernel Mode Code Signing (KMCS) implements digital signature enforcement of kernel code, which is one change that provides identification of kernel code and a load time integrity check. Another set of code changes, collectively known as Kernel Patch Protection (KPP) (aka “PatchGuard”) was designed to limit potentially destabilizing extensions to the kernel.

Unfortunately, making these changes to existing 32-bit systems would have a significant compatibility impact and would effectively render obsolete a great deal of current kernel mode software. To reduce this impact, Microsoft made the decision to implement these changes only on 64-bit versions of Windows, where the “clean start” with native 64-bit drivers and software makes it possible for the ecosystem to adapt to these changes. Since all 64-bit drivers are new, changes such as digital signing can be implemented during the driver development process, and software developers would not have to go back and change 32-bit products already on the market.

KPP was introduced in the first 64-bit versions of Windows —Windows XP Professional and Windows Server 2003 SP1— in March 2005. Given the slow adoption of these 64-bit versions, many ISVs chose to forgo support of 64-bit Windows when it was initially released, and instead continued to focus on their traditional 32-bit implementations. Recently, more attention has been given to KPP due to the increased availability and lower cost of 64-bit hardware, combined with greater expectations for 64-bit versions of Windows Vista.

In the 64-bit version of Windows Vista, KPP was improved over its initial implementation in Windows Server 2003 SP1, and KMCS was made mandatory. In addition, KPP receives ongoing updates on 64-bit Windows 2003 and 64-bit Windows XP64 SP2 in response to published information from security researchers and monitoring of activities in the hacking community. Together, KMCS and KPP have been developed to eliminate the use of unsupported kernel patching techniques as well as to provide identification and integrity around supported kernel extension techniques.

Extending Kernel Functionality

Designing extensions to the operating system that are desirable to Windows software developers and customers is a core part of Microsoft’s business. Accordingly, another step in protecting the kernel is providing a defined way to extend it for useful functionality in a supported manner. These potential extensions are planned and then reviewed and tested thoroughly during product development. Having a stable foundation eliminates uncertainty around API behavior, provides predictable product support, and enables integration with future updates and product versions.

Microsoft’s security products do not make use of unsupported patching techniques, and never will. Likewise, some security ISVs have chosen to use only supported APIs and have released products with significant customer value. But some security ISVs have chosen to use risky and unsupported kernel patching techniques in their products, either because Windows has not provided an appropriate API that supports their desired capability or because unsupported patching was chosen as a potential short cut over using a supported approach. These unsupported kernel patching approaches have never been endorsed or supported by Microsoft, and Microsoft has repeatedly recommended that ISVs not attempt or engage in kernel patching due to the implications for system stability and support.

Microsoft has evolved its methods for developing software that is more secure and has taken actions to harden and protect sensitive areas of the system from potential malicious hackers. In addition, Windows architects have also been working cooperatively with security vendors worldwide to design and build documented interfaces that enable additional security capabilities to supplement, or in some cases replace, the fundamental Windows security capabilities. A few examples of extensible APIs specifically added for ISVs so that they don’t need to extend the kernel in unsupported ways are file system filters, registry filtering and the Windows Filtering Platform.
File System Filters

File system filtering capability was built into Windows NT® and made it possible for an API to enable synchronous content filtering during file system access. The capability was significantly enhanced for ISVs with the Mini-Filter Framework in Windows XP SP2 and has since been improved and made available on Windows 2000, Windows Server 2003 and Windows Vista. A file system filter driver intercepts requests targeted at a file system or another file system filter driver. By intercepting the request before it reaches its intended target, the filter driver can extend or replace functionality provided by the original target of the request. Examples of software that commonly use file system filter drivers include anti-virus software, backup agents and file encryption products.

Filter drivers can be stacked on top of each other. This stacking leads to many interesting and complex interoperability scenarios. It is common to find an anti-virus filter, an encryption filter and a snapshot filter active on a given system. Microsoft spends a considerable amount of time and effort working with industry partners to ensure interoperability and functionality testing in these complex scenarios. Imagine a vendor trying to do the same thing through kernel patching techniques; the solutions would be unable to detect the presence of other code in the kernel and would step on each other when modifying kernel instructions and data structures. Even when it is done with the best of intentions, this is a recipe for disaster.

Registry Filtering

Windows XP introduced an enhanced registry filtering capability that is very similar in usage and operation to the file system filter model. Registry filtering provides a defined interface to synchronously intercept registry operations, allowing the application not only to monitor changes to the registry, but also to modify or block the changes if necessary. This capability is useful for anti-virus, anti-spyware or other management and security monitoring applications. The facility has also been enhanced in Windows Vista to support new registry capabilities in the operating system.

Windows Filtering Platform

The Windows Filtering Platform (WFP) is a new architecture included in Windows Vista that allows access to the TCP/IP packet processing path so outgoing and incoming packets can be examined or changed before being processed further. With WFP, ISVs have a well-defined alternative to patching the kernel when implementing networking software such as firewalls, anti-virus software, intrusion detection and prevention, diagnostic software, and other types of applications and services.

While this list of supported interfaces is not exhaustive, it clearly illustrates Microsoft’s commitment to enabling reliable and supported means of extending the system. Additional changes will be made to the system over time based on ISV requests, customer needs, and changes in the hardware and software ecosystem. Microsoft evaluates the need for “back-porting” new features to already shipped operating systems on a case-by-case basis.

Long-Term Security Investments

As discussed above, Microsoft developed KMCS and KPP to help protect the integrity of the Windows operating system, help make Windows more secure and provide a more reliable computing experience. With that in mind, the next question is: Can these new technologies succeed?

Already some security vendors have asked Microsoft for an unbounded exception to KPP in Windows Vista. Their argument is that they should be allowed to continue to use their unsupported kernel patching techniques to extend kernel functionality in 64-bit Windows. Once again, it is important to underscore that Microsoft has never endorsed or supported kernel patching in any version of Windows. If an API were created to support such an exception, this would surely be leveraged by malicious software to disable security functionality; moreover, it would likely be used as a crutch by legitimate software vendors to avoid using the correct API or approach to accomplish the predictable and desired results. Adding an unbounded exception to KPP would also increase the external attack surface to the operating system kernel image and would also introduce a performance penalty to the kernel, forcing it to examine a “safe list” with every operation to ensure it could truly trust itself to perform the operation.

In addition, the operating system itself is designed and tested prior to release with the assumption that the kernel will remain unmodified. Programs such as the user interface, default hardware drivers and applets are tested against, and expect at all times, an unmodified kernel. Creating exceptions will only create problems with respect to system stability and performance.

Some security vendors have suggested that Microsoft create an API to bypass KPP that can be called only by signed and identified software programs, such as security software. Unfortunately, this would lead to a situation where attackers could simply “bundle” into their malicious payload enough of the identified program in order to bypass the detection and protection, which can be accomplished simply by running the identified program. This would be similar to providing a master key that is readily available and can be freely copied and utilized by criminals. Adding a signing check would add no more than a trivial level of indirection, which could be easily defeated by malicious software. As illustrated by the audio CD rootkit story above, the fact that a binary file comes from a reputable vendor does not guarantee that it can also be trusted not to include malicious content.

Some security researchers have pointed out ways to attack KPP, and this has been cited by some security vendors as a reason why Microsoft should create an exception-based API to bypass KPP. However, it is important to note that Microsoft regularly updates the operating system in response to external research and findings in the researcher community. In fact, KPP has been updated several times since its initial release in response to such attacks. These updates have not changed the underlying enforcement policy or restrictions imposed by KPP. Microsoft will continue to evaluate the need for updates if additional attacks surface.

It is also important to consider the future impact on kernel security that will result from allowing kernel patching in 64-bit Windows. Based on the historical precedent concerning 16-bit and 32-bit Windows (which shows how certain bad practices can become pervasive and greatly limit compatibility and user experience), it is foreseeable that, if kernel patching is allowed in 64-bit Windows, it will become a serious impediment to leveraging new security enhancements, such as those brought about by use of virtualization. For the purpose of illustrating this point, one example will be discussed.

Today, KPP enforces a straightforward policy that says that certain sensitive regions of memory should never be modified by any code in the system. Thus, if a modification is detected, the system will shut down to prevent a possible security breach and damage to the computer. These are regions of memory “owned” by the operating system kernel, such as the Interrupt Dispatch Table or Service Dispatch Table. Today, the enforcement logic for this policy is inside the operating system kernel, which means the system is open to attacks that can already load code into the kernel, such as is the case with a rootkit that is digitally signed for a 64-bit system. Tomorrow, Microsoft wants this enforcement logic to live in a separate security domain: specifically, inside a virtual machine hypervisor. In this new model, Microsoft could use evolving CPU hardware to ensure that certain regions of memory are “read-only” and tamper-proof. Attempts to write to these sensitive memory regions inside the operating system, including by the kernel itself, will fail. This can be implemented with a feature called Page-Table-Edit-Control (PTEC). The problem is that, if the operating system permits third parties to modify these memory regions, then the future hardware security feature outlined above will not work. One could argue that this problem could be addressed with configuration control; however, this brings up the same set of security issues discussed above. Specifically, if an exception mechanism is created that provides a way to turn the security feature off, then malicious software will ultimately use it.

In summary, it is not possible to provide a secure means to provide exceptions to KPP. Creating any such exception would degrade the platform today, be misused by malicious software, and inhibit the introduction of important security and reliability features in the future. It is necessary to enforce kernel security in the existing 64-bit and Windows Vista operating systems, to the extent possible with existing hardware and software, so that the full potential of kernel protection can be reached in the future.

Conclusion

The history of Windows and hardware innovation shows that the best time to make significant operating system changes is when the platform evolves. Microsoft has learned from this history and has made changes in 64-bit versions of Windows as a result of its focus on Trustworthy Computing to create and deliver more secure, private and reliable computing experiences based on sound business practices.

The evolving threat model requires new thinking about how to make the Windows operating system more secure. The shift from 32-bit to 64-bit platforms provides a unique opportunity to change the thinking about how software is (and should be) written for Windows. This opportunity only comes along once every many years. By making this change during the transition to 64-bit computing, Windows will provide better security and reliability for the kernel, thereby improving the overall experience for all users.

The key to providing improved security is the ability for Windows to protect itself and to provide protection during all user activities. KPP and KMCS can help Windows provide that protection. It is not technically possible to provide an API or signing model that allows kernel security features to be disabled in a secure fashion, and attempting to do so would provide malicious software authors with an easy way to continue using malicious kernel patching techniques. Allowing these features to be disabled would also severely limit the ability to implement additional software and hardware based security controls in the future. Allowing kernel patching in this new pristine ecosystem would result in the same long-term problems that plague us in the 32-bit world. Microsoft is fully committed to working with partners to build a sustainable, supportable, open way of extending kernel functionality without having to resort to such measures.

#########

� More information about the SDL can be found online at http://msdn.microsoft.com/msdnmag/issues/05/11/sdl.

� Information on the Audio CD based software, including security holes created in the system that were leveraged by malware, can be found at http://www.pcpro.co.uk/news/79728/virus-targets-sonybmg-rootkit-drm.html.

PAGE

