
[image: image1.jpg]Microsoft

Windows Server2003

Integration with Mobile Devices
Microsoft Corporation

Published: November 2002
Abstract

This white paper describes the process of serving Web applications to mobile devices and building smart applications on mobile devices. It outlines the use of ASP.NET Mobile Controls and Smart Device Extensions, both of which leverage the power of the .NET Compact Framework and the rich development environment of Microsoft® Visual Studio® .NET.

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2002 Microsoft Corporation. All rights reserved.

Microsoft, SQL Server, Visual Basic, Visual Studio, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Contents

4Integrating Mobile Devices

5Serving Web Applications to Mobile Devices

7Controls and the Design View

9Testing and Debugging Mobile Web Applications

10Serving Both Desktop And Mobile Browsers From The Same URL

11Extending ASP.NET Mobile Controls

11Creating Custom Controls

11Extending the Mobile Internet Runtime

12Security

12Managing Application State

12Mobile Web Forms and ViewState

13IBuySpy Portal

13Building Smart Applications on Mobile Devices

15Smart clients for Web Services

16Differences between the Compact .NET Framework and the .NET Framework

18Similarities

20Conclusion

21Related Links

Integrating Mobile Devices

Windows Server 2003 offers two approaches to integrating phones and handhelds into your enterprise. One is to provide services to clients through an intranet application. This, of course, requires that clients have a Web browser. The other method is to write smart client applications that consume XML Web services. These client applications you would deploy to your mobile devices. Microsoft provides two development tools, the ASP.NET Mobile Controls and Smart Device Extensions to meet the needs of either approach. The following figure shows a typical situation where you have applications running on Windows Server 2003 that are accessing both SQL Server and mainframe data, then delivering data to mobile clients via a Web application and a smart client application.

[image: image2.wmf]M

o

b

i

l

e

W

e

b

W

e

b

S

e

r

v

i

c

e

W

e

b

S

e

r

v

i

c

e

Server

Server

Server

Mainframe

Which you use may depend on the kinds of devices you expect to support. Smart Device Extensions for Visual Studio .NET work with the Compact .NET Framework, which is only available on handheld devices that run a Windows operating system -- for example Pocket PC 2000, Pocket PC 2002, or Windows CE .NET-based devices. Having .NET on both ends will allow you to create sophisticated smart clients that take advantage of .NET Framework security features. Microsoft’s Smart Device Extensions helps you quickly build and deploy .NET Framework applications on these devices. If you need to support more devices, phones, older handhelds, or J2ME-based devices, you should take the server-side approach and write your applications using Microsoft’s Mobile Controls (Mobile Internet Toolkit).

You can find more information about integrating mainframe applications in “Legacy Application Integration Inside the Firewall.”

Serving Web Applications to Mobile Devices

The ASP.NET Mobile Controls consist of the Mobile Internet Designer, a Visual Studio .NET plug-in allowing you to design your Mobile applications in Visual Studio .NET, and the Mobile Internet Controls Runtime that renders those forms in a manner appropriate to whatever device is requesting them. You build your application by logically grouping controls in pages and arranging them to match the desired user experience. The Mobile Controls Runtime automatically adapts the rendering of your application to a variety of devices including Web-enabled cell phones, pagers, and PDAs such as the Pocket PC. The Mobile Controls Runtime automatically generates the correct WML, HTML, and CHTML for the requesting device. A full list of currently tested devices can be found at Tested Devices. As you build the applications, you can test them using a mobile device emulator. Several of these have been tested with the ASP.NET Mobile Controls. You will find them listed at the bottom of the page of tested devices.
To get started, download and install version 1.0 of the Microsoft Mobile Internet Toolkit onto a system that has the .NET Framework installed. To take advantage of the Mobile Internet Designer, however, install it on a system that has Visual Studio .NET. Once installed, launch Visual Studio .NET and you will notice the new project window now includes a Mobile Web Application icon as shown below.

[image: image3.wmf]

To create a new mobile application, select the Mobile Web Application icon, set the location and choose OK. Visual Studio will set up your application and display a blank mobile Web form in design view. The Mobile Internet Designer provides three views in the Microsoft Visual Studio environment: the Design View, the HTML View, and the Code Editor View. The designer's views are panes in the Visual Studio main window. You can switch between the Design and HTML views by clicking the tab at the top of its pane. A quick way to access the code behind is to double click a control. This will take you to the place in the code behind where you would define the logic for an event involving that control.

The Design View displays an interactive rendering of a mobile Web Forms page. To build your application you can drag controls from the Visual Studio Toolbox and drop them onto the page. The Design View is not, however, a completely WYSIWYG development environment, as the form will be rendered differently on various handhelds such as a mobile phone and a Pocket PC. The Designer’s HTML View displays the markup language code the Designer generates for the current Web Forms page. In this view, you can edit the markup code directly. The HTML view might more accurately be called the XML view. This is the markup the Runtime uses to generate HTML or WML. The following figure shows the Visual Studio .NET interface for a simple mobile form.

[image: image4.wmf]

For example, the code for this form is shown below:

<body Xmlns:mobile="http://schemas.microsoft.com/Mobile/WebForm">

<mobile:Form id="Personalization" runat="server">

<mobile:Label id="Label1" runat="server">Enter your name</mobile:Label>

<mobile:TextBox id="NameEdit" runat="server"></mobile:TextBox>

<mobile:Command id="SubmitForm" runat="server">Submit</mobile:Command>

</mobile:Form>

</body>

The form definition is contained entirely inside the <body> tags. Not shown are a few lines of code to wire the page into the .NET Framework. Visual Studio .NET generates all of this code for you. The next figure shows this form rendered in the PocketPC Emulator.

[image: image5.wmf]

On a device that supports HTML, like a Pocket PC shown above, the command will be rendered as a button. Under WML, it will be rendered as an anchor tag invoking a URL associated with the event. You only need to be familiar with how to handle command events, which are handled in exactly the same manner as in other ASP.NET applications. The Runtime engine takes care of the rest for you.

Just as in ASP.NET, the ASP.NET Mobile Controls allows you to separate your business logic from your presentation. The third view, the Code Editor View, displays the contents of a page's code – the logic behind your Mobile Web Form Page.

Controls and the Design View

Development of Mobile Web Applications is very similar to the development of an ASP.NET Web Application. There are however fewer controls, and you have less control over the display screen. There is no grid layout because the devices do not support DHTML.

Many devices can only display one control per line, so the Designer uses a linear layout for all controls. You can set a BreakAfter property on many of the mobile controls to display them side-by-side with the following control on all devices that are capable of doing this. The Designer, however, will continue to display the controls one a line. Insertion of new controls is easy. When adding a control from the Toolbox to a form or panel, ensure that the Designer's cursor is on the right side and toward the bottom of the existing control that you want the new control to follow. The following figure shows a form in Design View.

[image: image6.wmf]

Controls and content in a Mobile Web application reside in containers, which reside in forms, which reside in pages. A mobile Web forms page is directly associated with a URL. Each mobile Web forms page must contain at least one Form control. One is created by default when you start your application. A page can have more than one form control. Form controls contain all of the text and controls that a page displays. All controls except the StyleSheet control must reside in a form control. You will use these containers to organize your applications, grouping together related controls on a single panel, and using commands.

Each Page has a distinct URL. When a page is loaded, all the forms on the page are sent at the same time. The first form on a page is the default form, and it will be loaded first. As a result, only the first form on a page can be addressed from another page. Pages with many forms will take longer to load than pages with few forms. However, moving from form to form on a single page is faster than loading a new page. You also have a limited ability to preserve state information from page to page. Your choice whether to create a new page or add a form to an existing page will depend on each of these factors. The next figure shows a form displayed on the PocketPC Emulator that contains a list of customers. The entire form will grow or shrink to hold the data.

[image: image7.wmf]

You use the panel control to group controls together within a form. Grouping controls allows you to apply style sheet rules, override control properties, or define the behavior of specific devices displaying that panel. Panels also assist applications in determining pagination. The Mobile Internet Controls Runtime module attempts to keep all of the controls in a panel on the screen at the same time. They can also be used as a navigational anchor, similar to how you would use a #reference in an HTML anchor tag.

Testing and Debugging Mobile Web Applications

Mobile Web forms support HTML-based browsers, so you can use your desktop browser to view Web applications. The desktop browser shows detailed error information like compilation and run time errors, making it very useful for debugging your applications. Still, you might want to test how it will look on an actual device.

Many wireless phone manufacturers provide emulators you can use to test your application from the desktop. Some of these include debugging tools you can use to view page source or device state. While some emulators provide direct access to applications installed locally on your workstation, others require a gateway.

Once you have obtained and installed an emulator from the phone manufacturer, you can set up Visual Studio to invoke the mobile device emulator instead of the built-in browser. Visual Studio launches the application in debugging mode whenever you press the F5 key or choose Start from the Debug menu. To install the emulator as the Visual Studio default browser, select Browse With from the File menu and click the Add button, to display the Add Program dialog box. How you set up your emulator depends on what command-line arguments it accepts, if any. If it accepts a URL, use the %URL variable. Visual Studio will replace that variable with the start page for your application. You can now set the browser as the default. You should also change the project file’s “Always use Internet Explorer” property to False.

From here you can select the browser to use from a context menu by right-clicking the name of any .aspx file in the Solution Explorer’s window. When you run the emulator, Visual Studio enters debug mode, and when you close the emulator, Visual Studio returns to design mode. If the emulator does not support command-line arguments, you will have to supply the information (often the URL of the application’s start page) each time you enter debug mode.
For more information, see the following topics:

· Mobile Internet Toolkit QuickStart
· Inside the Mobile Internet Controls Runtime
Serving Both Desktop And Mobile Browsers From The Same URL

The most trusted way to determine whether a browser is a mobile device or not is to check Request.Browser[IsMobileDevice] == “true”. The following codes shows how you might embed that in an ASP.NET page in C#:

<script runat="server" language="c#">

 public void Page_Load(Object sender, EventArgs e)

 {

 if (Request.Browser["IsMobileDevice"] == "true")

 {

 Response.Redirect("MobileDefault.aspx");

 }

 else

 {

 Response.Redirect("DesktopDefault.aspx");

 }

 }

</script>

Because some devices do not accept relative URLs, you must also set useFullyQualifiedRedirectUrl to true in the Web.config file. This sends a fully qualified URL to the client with the session ID appended to the end of the URL. Specifying a relative URL and then converting that URL to a fully qualified URL is necessary to preserve session state. The following example shows the configuration setting.

<configuration>

 <system.web>

 <httpRuntime useFullyQualifiedRedirectUrl="true" />

 </system.web>

</configuration>

For more information, see the following topics:

· Mobile Web Forms and ASP.NET Compatibility Issues
· Comparing Web Controls and Mobile Controls
Extending ASP.NET Mobile Controls

Creating Custom Controls

The Mobile Controls supports four types of programmer-defined controls: mobile user controls, controls extended through inheritance, composite controls, and controls written from scratch.

Mobile User Controls

You create your own controls the same way you create a Web Forms Page. You can fill it with controls and content, and then use it as a control in a page. Mobile user controls are stored in .ascx files and usually have an associated code-behind file. Create a Mobile User Control by selecting Add New Item form the Project menu and choosing the Mobile User Control Icon. The designer will create a blank page to which you can add controls.

Mobile Controls and Inheritance

Your can use inheritance to derive custom controls from existing mobile Web Forms controls. Custom controls can override existing methods and add new properties, methods, and events. You could use this technique, for example, to create custom list controls.
Composite Controls

Composite controls combine existing controls and content. They are nearly identical to mobile user controls. However, they are authored and stored differently. The differences between composite and user controls are the same for Mobile Web Forms as they are for Web Forms.

Controls Written from Scratch
You can create your own controls. They must inherit from the MobileControl class and adhere to a minimum set of guidelines. The code for the control itself must be device-independent. To render your custom control, you must also write device specific adapters for each device type that requires a different type of rendering for your control.

For more information, see Creating Custom Controls.

Extending the Mobile Internet Runtime
You can write a device adapter to support a custom control or to add support for a new or custom device. To make the development of device adapters easier, Microsoft ASP.NET Mobile Controls ships the source to all the device adapters it uses internally. The device adapter source code is installed in the source folder of the default location for the toolkit.

A new device may only require a few changes to your configuration files. The Mobile Internet Runtime reads device information from the .NET Framework Machine.Config file, where it stores the data upon installation in the <browserCaps> section. If the Runtime does not find the device in the .NET Framework’s Machine.Config file, it will pick one based on the device’s specified capabilities. Untested devices may work automatically with the Runtime’s default settings. To add a device, or alter the behavior of a device, you can edit the Machine.Config file. You can also override Machine.Config settings with definitions placed in an application’s Web.Config file.

The Web.Config file is a special application configuration file whose settings can be defined when you design your application. After deployment, these settings can be changed without shutting down the Web server. Multiple configuration files, all named Web.Config, can appear in multiple directories on an ASP.NET Web application server. Each Web.Config file applies configuration settings (IIS authentication settings, for example) to source files in its own directory.
You might wish to avoid changes to the Machine.Config file. As new devices are tested, Microsoft provides updates for the Machine.Config file. Microsoft’s updates for this file can overwrite your changes. If you have made changes, you must save them before you install the update and then copy the changes back into the revised Machine.Config file.

For more information, see Adding New Device Adapters and Device Support.
Security
Security for Mobile Web Forms often comes down to maintaining a secure connection. Windows authentication, provided by the Microsoft Internet Information Server and ASP.NET, supports Basic, Digest, and Integrated Windows models of authentication. Many mobile devices only support the Basic form of authentication. Using Basic authentication transmits user names and passwords in the clear. The same is true of Forms based authentication.

For more information, see the following topics:

· “Securing the Platform”

· “Building in Security for Applications”

Managing Application State

The Mobile Controls actually run on top of ASP.NET and as can use ASP.NET features such as session state management. By default, the ASP.NET session state system uses cookies to track user state. Not all devices support cookies. ASP.NET supports a cookie-less session mode, which passes an identifier along with the URL, but then edits it out, cleaning up addresses.

You can also consider using Hidden Variables. Mobile Web Forms does not include a control for writing out to hidden variables. Instead, it provides a collection called HiddenVariables within the MobilePage class that you can use to specify hidden variables. All name/value pairs stored in this collection are persisted as hidden variables. The HiddenVariables collection is automatically repopulated with these variables when the form is submitted.
This last alternative uses hidden variables on a page. Hidden variables are automatically resubmitted as part of a form submission, whether the submission is to the same page or to another page.
Mobile Web Forms and ViewState

To save on Bandwidth, the Mobile Internet Runtime stores the view state with the session state on the server. A single hidden variable is used to identify session state information. The client returns it to the server as part of a postback operation.

The Runtime keeps a history of view state information in the user’s session. The hidden variable corresponds to a position in this history. The default history size is six, but can be changed by adding an attribute to a tag in Web.config:

<configuration>

 <system.web>

 <mobileControls sessionStateHistorySize="10 />

 </system.web>

</configuration>

Because the view state is saved with the user’s session, the state can expire if the page is not posed back within the session expiration time. If there is no view state available, the runtime will call the OnViewStateExprie method of the page. By default, it throws an exception indicating the view state has expired, but you can override the method, perhaps to restore state manually.

To speed response time, you can disable the view state for an entire page by adding an EnableViewState=”false” attribute to the @Page directive. Even with the view state disabled, the Runtime will still save information like the currently active page.

If you do know that all the devices using your application support cookies, you can edit the SessionState section of your Web.config file setting cookieless="false"
IBuySpy Portal
The IBuySpy Developer Solution Kits, found at www.IBuySpy.com/portal, demonstrate how you can use ASP.NET and the .NET Framework to build either an intranet or Internet portal application. The IBuySpy Portal contains a number of modules that have been developed with the ASP.NET Mobile Controls, providing portal functionality to mobile devices. Visiting www.IBuySpy.com/portal with a ASP.NET Mobile Controls–supported mobile device will present the mobile version of the portal.

Building Smart Applications on Mobile Devices
The Compact .NET Framework is a subset of the .NET Framework that you can use in developing smart client applications for mobile devices such as the Pocket PC 2000, Pocket PC 2002, or other Windows CE .NET-based devices. The Smart Device Extensions package comes with the Compact .NET Framework, additional tools and classes for developing .NET applications and Pocket PC and Windows CE emulator’s that you can use to test your product, even if you do not have a handheld.

To get started developing with the .NET Compact Framework, download the Smart Device Extensions and install them on a workstation with Visual Studio .NET. Once installed, Visual Studio’s new project window will display a Smart Device Application icon. Select the Smart Device Application icon, enter the name and location of your project and choose OK. The following figure shows the new dialog with the Smart Device Application icon selected.

[image: image8.wmf]

This will launch a Smart Device Application wizard which will prompt you for the platform and device you want to target and the type of project you want to create. Once the project is created you can change the targeted device but not the platform

[image: image9.wmf]

Choose Windows Application for one of the available devices and the wizard will set up a blank Form in the Windows Form designer.

From this point the development is essentially the same as it is for creating a Windows Application for the desktop. Drag controls from the Toolbox to the form and edit the code behind those controls so they do what you want.

If you are familiar with using Visual Studio .NET, you might notice several of the controls missing. There are no printing controls, for example, because the Compact .NET Framework does not support printing. The Windows Forms controls for the Compact .NET Framework are targeted explicitly at mobile devices. That is why you see a difference in the types of controls that are supported.

The next figure demonstrates an application that is integrated with SQL Server using ADO.NET on the mobile device.

[image: image10.wmf]

The application is running on the PocketPC emulator in this figure. The application allows the user to view information about customers and review orders for a particular customer. The user can also elect to connect to the SQL Server database (shown as Remote SQL) or use an XML file for temporary storage. This will let the user work in connected mode to retrieve or update data, and work in a disconnected mode when a connection is not available.

Smart clients for Web Services

Developing a client for an XML Web Service is done in the exact same way for Device applications as it is for desktop or ASP.NET applications. In Visual Studio .NET, select Add Web Reference from the Project menu. This brings up a dialog you can use to either enter a URL or search public or local UDDI Servers.

Once you’ve specified or located your service, you can choose add reference. Visual Studio reads the service’s WSDL file and creates a proxy object you can use to invoke methods on the XML Web Service. The proxy object is generally given a name based on the provider of the Web service, but you can change this to make your programming clearer. Use the methods on a proxy object just like you would a method on any other object. You can tie them to events, for example the press of a button, or use them to populate a selection list. The .NET Framework handles all the SOAP translation in the background. To the developer, it’s just another object.

For example, the following code calls function named GetCustomerList in the Customers Web service. The function returns a DataSet which is then loaded in the cboCustomers combo control:

Dim ws As CustServer.Customers
Dim ds As New DataSet()

Try
ws = New CustServer.Customers()

ds = ws.GetCustomerList

cboCustomers.DisplayMember = "CompanyName"

cboCustomers.ValueMember = "CustomerID"

cboCustomers.DataSource = ds.Tables(0)

Catch exc As Exception

MsgBox("An error occurred -- " & exc.Message, _

MsgBoxStyle.Exclamation, "Error in loading customer list")

Finally

ds = Nothing

ws = Nothing

End Try
Also, notice that the Web service is actually instantiated and called inside of the Try/Catch block. Mobile devices are by nature going to connect and disconnect to remote networks such as a LAN or the Internet. You should always write the application so that it gracefully degrades when a connection is not available.

Differences between the Compact .NET Framework and the .NET Framework

Considering the common language runtime of the Compact .NET Framework is only 12 percent the size of its larger cousin, some things had to be left out. Here are the highlights:

Limited Language Support

Initially, the Compact .NET Framework currently only supports C# and Visual Basic.

No COM Interop

You can access functions in native DLLs, but you cannot create COM objects in managed code, or interoperate with ActiveX controls. You call an unmanaged DLL by using platform invoke (PInvoke) with the Declare statement in Visual Basic or the DLLImport attribute in Visual C#.
No OLE DB support
You won’t miss this too much, as the .NET Framework supports a rich version of ADO.NET for devices and contains data provider for SQL Server CE.

Open Trust Security

The Compact .NET Framework’s security policy is wide open, granting full trust to all code. While the Compact .NET Framework provides a subset of System.Security.Permissions and System.Security.Policy classes, it does not provide cryptographic services, role-based security, or zone-based security. You can digitally sign assemblies with a strong name and you can use permission objects to verify the identity of all code calling your code. Future versions of the Compact .NET Framework might not be as trusting.

Here is a more complete listing of differences taken from the Smart Device Extensions documentation.

	Feature
	Differences

	Application domains
	Unlike the full .NET Framework, the .NET Compact Framework does not currently support loading assemblies into a domain-neutral code area for use by multiple application domains.

	ASP.NET
	The .NET Compact Framework is primarily a rich client platform, and as such does not provide ASP.NET support. To develop Web pages for mobile devices, you can use ASP.NET mobile Web controls. To develop Web pages for personal computers or Web service providers see your ASP.NET documentation.

	Classes
	The .NET Compact Framework supports a subset of the .NET Framework Class Library. This subset is appropriate for applications designed to run on resource-constrained devices and is semantically compatible with same-named classes in the .NET Framework.

	COM interop and callback functions
	The .NET Compact Framework does not support interoperating with COM objects, but you can use platform invoke (P/Invoke) to access native DLL functions that can then call COM objects. ActiveX controls, the Windows Scripting Host, and callback functions using COM interop are not supported.

	Data
	The .NET Framework provides a subset implementation of ADO.NET and includes the SQL Server CE .NET data provider.

The System.Data.OleDb namespace is not supported.

	Delegates
	The .NET Compact Framework does not support asynchronous delegates. In the full .NET Framework, you can use asynchronous delegates to defer invoking a method to a queued list.

	Deploying applications
	Deploying is as easy as copying the assembly to the target device by using a cable from the desktop computer or its infrared port or by a wireless Internet or intranet connection.

	Exception description strings
	The .NET Compact Framework provides exception strings as a setup option for conserving space on the device.

	Globalization
	Globalization support, such as date formatting and sort tables appropriate for the locality, defers to the underlying operating system whenever possible for compatibility and size efficiency reasons.

	Input/output (I/O)
	Because of differences in device operating systems, there are constraints and restrictions on the I/O model. The .NET Compact Framework does not provide file change notifications.

	Memory
	The .NET Compact Framework is optimized for battery-powered systems and avoids heavy use of RAM and CPU cycles.

	Networking
	The .NET Compact Framework provides Infrared Data Association (IrDA) classes for making infrared connections and a Web listening classes for servicing HTTP requests to the device. These classes are available only in the .NET Compact Framework.

	Performance testing
	The .NET Compact Framework does not support code profiling or the Perfmon.exe file system monitor. Special-purpose performance tools designed for the .NET Compact are being developed.

	Reflection
	You can shift up to 64 bits using the OpCodes.Shl field. Any larger specification is reset to 64.

	Security
	There are several important security differences and considerations.

	Serialization
	Because of size and performance considerations, the .NET Compact Framework does not support binary serialization using BinaryFormatter or SOAP serialization using SoapFormatter.

There is, however, serialization support for transmitting object data using SOAP in XML Web services.

	String manipulations, Regular Expressions
	To use System.Text.RegularExpressions you must make a reference to System.Text.RegularExpressions.dll in your project.

Applications using regular expressions in the .NET Compact Framework are not binary compatible with applications using regular expressions in the full .NET Framework, but they are source code compatible.

	Windows Forms and graphics
	Windows Forms controls are specially built for the .NET Compact Framework. There are several differences you need to consider.

	XML
	Because of size considerations, the .NET Compact Framework does not support XML schema validation or XPath queries on XML documents. It does support the XML Document Object Model (DOM).

Similarities

Despite its many differences, the .NET Compact Framework has much more in common with the full .NET Framework than differences. The Common Language Runtime for both Frameworks use just-in-time (JIT) code compilation and garbage collection. They both support the Common Language Specification (CLS).

The common language runtime in both Frameworks benefit from managed code execution, just-in-time (JIT) code compilation, and garbage collection. They support the CLS. Applications for both Frameworks use assemblies. Both Frameworks access portable executable (PE) files, which contain the Microsoft intermediate language (MSIL) and metadata that define a .NET Framework application. A PE file can refer to a programming namespace defined and shared by other assembly files.

Although the file formats of both Frameworks are identical, you cannot take a binary component compiled in the .NET Compact Framework and run it in the full .NET Framework. The Compact .NET Framework has much stronger binding rules. You can, however, recompile your application to target either Framework. The Compact .NET Framework is a subset of the .NET Framework.

Both Frameworks have built-in primitive types as well as other types that you can use and derive from when building your application. Both support a multithreaded programming model using the scheduling mechanism of the host system.

Cross-language interoperability is built into the .NET Compact Framework. While the current version only supports Visual C# and Visual Basic .NET, it can support other languages, and probably will in the future.

Both Frameworks have built-in support for XML Web Services.

For more information, see the following topics:

· The .NET Compact Framework—Overview
· Device Development
Conclusion

If you want to develop Web applications that run on a Web server and must be rendered in different formats on different devices, use the Microsoft ASP.NET Mobile Controls. If you want to develop rich client applications that run on a device that uses the .NET Compact Framework, use the Smart Device Extensions.

Both toolkits leverage the power of the .NET Framework, and the rich development environment of Visual Studio .NET. If you have experience working with the Windows Form designer or the Web Form Designer, you already have most of the skills you need to create applications using either toolkit. Windows makes integrating mobile devices fundamentally easier.

If you wish to deploy mobile applications in your organization, you should also plan the wireless network that will be used to support them. This requires not only hardware but also configuration of devices to support encryption and other issues.

Related Links

· What's New in Application Services
· Application Server Technologies

