2 SQL CLR Integration with SQL Server 2005 and Visual Studio 2005

styleref "heading 1" 5

Hands-On Lab
Lab Manual

SQL Server™ 2005:

SQL CLR Integration
Information in this document is subject to change without notice. The example companies, organizations, products, people, and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarked, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

2004 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, MS, Windows, Windows NT, MSDN, Active Directory, BizTalk, SQL Server, SharePoint, Outlook, PowerPoint, FrontPage, Visual Basic, Visual C++, Visual J++, Visual InterDev, Visual SourceSafe, Visual C#, Visual J#, and Visual Studio are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

SQL CLR Integration with SQL Server 2005 and Visual Studio 2005
Objectives

After completing this lab, you will be able to work with SQL Server Projects, work with the in-process managed provider, leverage the .NET Framework in database development, understand managed code permissions, create triggers using managed code, creating user-defined types and user-defined aggregates, compare and Contrast T-SQL to managed code, and explore new features in ADO.NET.
Note

This lab focuses on the concepts in this module and as a result may not comply with Microsoft security recommendations.

Note

The SQL Server 2005 labs are based on beta builds of the product. The intent of these labs is to provide you with a general feel of some of the planned features for the next release of SQL Server. As with all software development projects, the final version may differ from beta builds in both features and user interface. For the latest details on SQL Server 2005, please visit http://www.microsoft.com/sql/2005/.

Estimated time to complete this lab: 90 minutes

Exercise 0
Lab Setup

· Log in using the Administrator user account. The password is pass@word1.

Exercise1:
Working with SQL Server Projects
In this exercise, you will learn how to work with Visual Studio 2005 and Microsoft SQL Server 2005 in tandem by creating a SQL Server project, and a basic user-defined function whose implementation is in managed code. Then you will build a Windows Form application that displays the result returned from the user-defined function. The goal of this exercise is to lay a foundation for subsequent exercises by introducing how Visual Studio 2005 and Microsoft SQL Server 2005 work together.

· Task 1: Creating a SQL Server Project
1. Start Visual Studio 2005.
2. Select the File | New | Project menu command.
Visual Studio displays the New Project dialog:

1. In the Project Types pane, indicate that you want to create a Visual Basic project.

2. In the Templates pane, select SQL Server Project.

3. In the Name field, enter “SqlServerProject”.

4. In the Location field, enter "C:SQL Labs\User Projects".

5. Click OK.
Visual Studio displays the Connection Properties dialog box (as shown in Figure 2).
[image: image1.png]Specify the folowing to conect to SQL Server data:.
1. Select o enter a server name:

I
2. Enter informaton toog on to the server:
 Use Windows NT Integrated Secuity

€ Use a speciic user ID and password:
L ——
passord

I Save my password|
5, @ Selector enter a detabase nane!

€ pittact » databise il s o e e

Usig th feree:

|

Test Conection

Figure 2: The Connection Properties dialog box

A SQL Server project is associated with a specific database. This dialog box lets you select the database to which you will be deploying managed code. Database References are shown in the Solution Explorer and become part of the Visual Studio 2005 environment. As you open and close different projects, Database References are saved so they can be reused.
· Task 2: Creating a Database Reference
1. In the server name field, enter “localhost”.
2. Select Use Windows NT Integrated security.
3. In the database field, enter “SQLCLRIntegration”.
4. Click OK to dismiss the Add Database Reference dialog box.
· Task 3: Using a User-Defined Function Template
1. In the Solution Explorer, right-click SqlServerProject and select Add | New Item from the context menu.
2. In the Add New Item dialog box, click User-Defined Function.

3. Click Add.

In SQL Server, a user-defined function is similar to a function in other programming languages. Unlike a stored procedure, which can return only an integer or result set, a user-defined function can return a variety of data types. You also can treat a user-defined function similarly to a table or view, issuing SELECT statements directly against the function. In prior versions of SQL Server, you could only create a user-defined function using T-SQL. With Microsoft SQL Server 2005, you can now create user-defined functions using managed code. Visual Studio includes a pre-defined template to use in your SQL Server Projects to make the process easier.

4. In the Solution Explorer, open the TestScripts folder, right-click test.sql and select Open.

Notice that when you used the User-Defined Function template, Visual Studio automatically added an additional file to your project named test.sql. You can use the script in test.sql for debugging your code. This script performs the actions in the database that are required to start and test your database object.
5. In the Solution Explorer, right-click Function1.vb and select View Code.

6. In the Code Editor, before the End Class statement, type the following code:

<SqlFunction()> _

Public Shared Function GetTodaysDate As Date

 Return System.DateTime.Today

End Function

7. In the Solution Explorer, right-click test.sql and select Open.
8. Change the first line to:

select dbo.GetTodaysDate()

Task 4: Deploying a .NET Assembly to SQL Server
1. In the Solution Explorer, right-click SqlServerProject and select Deploy.
Before an assembly can be used by a database, it must first be deployed to the database server. Visual Studio 2005 makes deploying an assembly to Microsoft SQL Server 2005 easy to do. Just by right-clicking the project name in the Solution Explorer and selecting the Deploy menu item, Visual Studio 2005 will automatically build and deploy your assembly to Microsoft SQL Server 2005. The assembly is also deployed and debugged simply by pressing F5.

2. Once the deployment process has completed, press F5.

Note

If execution stops on an ALTER PROCEDURE statement, press F5 again.

You can see that execution has stopped at the breakpoint. From here, you can step through your routine, with full debugging capabilities.
3. Press F5.
4. In the Output window, in the Show output from drop-down list, select Database Output.

You can see that the output from the user-defined function is displayed in the Output window, allowing you to fully test your managed routines without leaving Visual Studio 2005.

Note

In the current builds of SQL Server 2005, debugging from within Visual Studio 2005 may not work.

· Task 5: Accessing a User-Defined Function from a Windows Application
1. Select the File | Add | New Project menu command.

2. When prompted to save the existing project, select the C:\SQL Labs\User Projects folder.
3. In the Project Types pane, select Visual Basic Projects.

4. In the Templates list, select Windows Application.

5. In the Name field, enter :"SqlServerProjectWinApp”. In the Location field, enter "C:\SQL Labs\User Projects".
6. Click OK to dismiss the dialog box.
7. If the DataSource Fields window appears, you may close it.

8. In the Solution Explorer window, right-click SqlServerProjectWinApp, and select Add Reference from the context menu. Scroll the list of components until you find System.Data.dll, and click OK to accept the new reference.

9. From the Toolbox, drag a Button control to the design surface of Form1.

Note

If the Toolbox window isn’t visible, select View | Toolbox to display it.

10. Double-click Button1.

11. Scroll to the top of the code file, and enter the following Imports statement:

Imports System.Data.SqlClient
12. In the Code Editor, type the following code within the Button1_Click event handler:

Dim connectionString As String = "Data Source=localhost;" & _

 "Integrated Security=SSPI;" & _

 "Initial Catalog=SQLCLRIntegration"

Using conn As New SqlConnection(connectionString)

 conn.Open()

 Dim cmd As New SqlCommand(_

 "SELECT dbo.GetTodaysDate()", conn)

 Dim result As Object = cmd.ExecuteScalar()

 Dim d As Date = CDate(result)

 MessageBox.Show(d.ToString())

End Using
This code is very straightforward. It opens a connection to the database and executes a simple command to display today’s date in a message box. Note that the code required to call a managed code user-defined function is the same as the code to call a T-SQL user-defined function.
13. In the Solution Explorer, right-click SqlServerProjectWinApp and select Set as StartUp Project.

14. Select the Debug | Start menu command (or press F5).

15. Click Button1.

You can see that the user define function, implemented as managed code, is accessed from the client exactly like a user-defined function written using T-SQL.

16. Click OK.

17. Close Form1.

18. Select the File | Close Solution menu command.

This exercise provided an introduction to working with Visual Studio 2005 and Microsoft SQL Server 2005. You also learned how to create SQL Server projects and how to write user-defined functions with managed code.
Exercise 2:
Leveraging the .NET Framework in Database Development
In this exercise, you will learn how to leverage the .NET Framework when doing database development. You will learn how to create a user-defined function that uses regular expressions to validate input. In the past, this would have been difficult to accomplish with only T-SQL. Validating data passed to a procedure or function is a common database operation, and this exercise shows how easily this task can be accomplished using managed code.
· Task 1: Creating a User-Defined Function
1. Select the File | New | Project menu command.
2. Create a new C# project, selecting the SQL Server Project template.
3. In the Name field, enter “UserDefinedFunction”.
4. In the Location field, enter “C:\SQL Labs\User Projects”.
5. Click OK.
6. In the Add Database Reference dialog box, select the existing reference to the SQLCLRIntegration database.
7. Click OK.
8. In the Solution Explorer, right-click UserDefinedFunction and select Add | New Item from the context menu.
9. In the Add New Item dialog, click User-Defined Function.
10. Click Add.
11. In the Code Editor, change the existing function declaration line to the following code:

public static bool IsValidZipCode(string ZipCode)

You will now create a user-defined function that validates a ZIP code. Note that the function is decorated with a [SqlFunction] attribute. This tells the compiler that the function is a SQL Server user-defined function.

12. Delete the following two lines of code:

// Put your code here

return "Hello";

13. Inside IsValidZipCode, type the following line of code:

return System.Text.RegularExpressions.Regex.IsMatch(

 ZipCode, @"^\s*(\d{5}|(\d{5}-\d{4}))\s*$");

Regular expression support is just one area of additional functionality that the .NET Framework provides. In fact, as a database developer, you now will have access to literally thousands of pre-built classes that you can reuse in your database objects.

14. Select the File | Save All menu item to save the project. Save the project in the C:\SQL Labs\User Projects folder.

· Task 2: Calling a User-Defined Function from a Windows Application
1. Select the File | Add | New Project menu command.

2. Ensure that Visual C# is still selected in the Project Types pane.

3. In the Templates list, select Windows Application.

You will now create a Windows Forms application that will test the IsValidZipCode user-defined function.

4. In the Name field, enter “UserDefinedFunctionWinApp”.

5. In the Location field, enter "C:\SQL Labs\User Projects"

6. Click OK.

7. From the Toolbox, drag a TextBox control to the design surface of Form1.

The user will enter ZIP codes into the TextBox control.
8. From the Toolbox, drag a Button control to the design surface of Form1.

9. Double-click button1.

10. In the Code Editor, type the following code within the button1_Click procedure:

string connectionString = "Data Source=localhost;" +

 "Integrated Security=SSPI;" +

 "Initial Catalog=SQLCLRIntegration";

using (SqlConnection conn =

 new SqlConnection(connectionString))

{

 conn.Open();

 SqlCommand cmd = new SqlCommand(

 "SELECT dbo.IsValidZipCode(@ZipCode)", conn);

 cmd.CommandType = CommandType.Text;

 cmd.Parameters.Add("@ZipCode", SqlDbType.VarChar);

 cmd.Parameters["@ZipCode"].Value = textBox1.Text;

 Object result = cmd.ExecuteScalar();

 MessageBox.Show(result.ToString());

}
This code opens a connection to the database, and executes a simple command to call the user-defined function, passing in a value submitted by the user. This value will then be compared to a regular expression to insure that it is a properly formatted zip code.

11. In the Code Editor, at the top of Form1.cs, type the following line of code:

using System.Data.SqlClient;

12. In the Solution Explorer, right-click UserDefinedFunctionWinApp and select Set as StartUp Project.
13. Select the File | Save All menu command.

14. Select the Debug | Start menu command (or press F5).
15. In the text box enter “555-5555”.

To test IsValidZipCode, you will first enter data that is invalid.
16. Click Button1.

The application calls the user-defined function and displays a message box indicating that the data is not a valid ZIP code.
17. Click OK.
18. In the text box, enter “12345”.

19. Click button1.
Because “12345” is a valid ZIP code, the code displays True.

20. Click OK.
21. Close Form1.
22. Select the File | Close Solution menu command.

In this exercise, you learned how to create a user-defined function in managed code using Visual Studio 2005. By leveraging the Base Class Library in the .NET Framework, you saw how you can use managed code to create powerful database objects.
Exercise 3:
Understanding Managed Code Permissions
In this exercise, you will understand how different permission sets can be applied to assemblies running in Microsoft SQL Server 2005. You will create a stored procedure that uses the .NET Framework to write to an external file. By default, managed code within Microsoft SQL Server 2005 is constrained so that it cannot access external resources. Therefore, appropriate permission must be granted to the assembly in order for it to write to the file. You will also learn how to load and unload assemblies manually using DDL statements within SQL Server Management Studio.
· Task 1: Creating a Stored Procedure that Writes to a File
1. Select the File | New | Project menu command.

2. Using Visual Basic, create a new SQL Server project..

3. In the Name field, enter “Permissions”.

4. In the Location field, enter “C:\SQL Labs\User Projects”

5. Click OK.

6. In the Add Database Reference dialog box, select the existing reference to the SQLCLRIntegration database.
7. Click OK.
8. In the Solution Explorer, right-click Permissions and select Add | New Item from the context menu.
9. In the Add New Item dialog box, select Stored Procedure.
10. Click Add.
11. In the Code Editor, change the existing subroutine declaration line to the following:
Public Shared Sub WriteToFile(_

 ByVal fileName As String, ByVal message As String)

Note
Note:

Be careful to not delete the SqlProcedure attribute preceding the declaration.

You will now create the body of the stored procedure that writes to the file. The procedure accepts two parameters: the file to write to, and the text to write.

12. Inside the WriteToFile subroutine, type the following lines of code:

Using sw As New System.IO.StreamWriter(fileName, True)

 sw.WriteLine(message)

End Using
This routine leverages the inherent functionality present in the .NET Base Class Library to write to the file.

13. In the Solution Explorer, right-click Permissions and select Build.
14. Select the File | Save All menu item, and save the project.

· Task 2: Introducing SQL Server Management Studio
For this exercise, you will use SQL Server Management Studio to load the assembly. This will give you an opportunity to see how to load and unload assemblies manually using DDL statements.
1. From the Windows Task Bar, navigate to Start | All Programs | Microsoft SQL Server 2005 | SQL Server Management Studio.
2. When prompted to connect, ensure that the Server type value is set to SQL Server, the Server name is set to localhost, and Authentication is set to Windows Authentication. Click Connect.
Microsoft SQL Server 2005 introduces a brand new tool for database management named SQL Server Management Studio. This serves as a replacement for Enterprise Manager and the Query Analyzer.

3. Select the View | Registered Servers menu command to ensure that the Registered Servers window is visible.

The Registered Servers window displays all the SQL Servers that have been registered.
4. Select the View | Object Explorer menu command to ensure that the Object Explorer window is visible.

The Object Explorer window displays various objects for a particular server. Specifically, it will show databases and their associated diagrams, tables, views, stored procedures, triggers, types, etc.
· Task 3: Registering a Server in SQL Server Management Studio
1. In Registered Servers, right-click Microsoft SQL Servers and select New | Server Registration.

2. In the Server instance field, enter “localhost”.
3. In the Authentication drop-down list, ensure that Windows Authentication is selected.

4. Click Test.

After a few seconds, a message box displays indicating the connection has been successful.

5. Click OK.

6. Click Save.

7. In Registered Servers, double-click localhost.
8. In the Object Explorer window, expand localhost | Databases | SQLCLRIntegration.
9. On the toolbar, click New Query, and then select New SQL Server Query.
Microsoft SQL Server 2005 displays the Connect to SQL Server dialog box.
10. In the Server instance field, enter “localhost”.

11. Ensure that the Authentication drop-down list has Windows Authentication selected.

12. Click Connect.

13. In the query window, type the following line of code:

USE SQLCLRIntegration
14. Press F5.

· Task 4: Loading an Assembly Manually using DDL Statements
1. Type the following lines of code into the query window:

CREATE ASSEMBLY Permissions
FROM 'C:\SQL Labs\User Projects\ Permissions\Permissions\bin\Permissions.dll'

Note

Make sure that there are no line breaks in the folder name when typing the code.

2. Select the above lines of code.

3. Press F5.

Running this DDL statement loads the Permissions.dll assembly into Microsoft SQL Server 2005. Up until now, you have been using Visual Studio 2005 to deploy all assemblies. This exercise demonstrates how to load an assembly manually using DDL for two reasons. First, loading the assembly automatically doesn’t allow you to configure the permissions for an assembly, and the ability to configure a permission set will be needed later in the exercise. Second, this gives you a great opportunity to see what is going on under the covers.

4. Type the following lines of code:

CREATE PROCEDURE WriteToFile

@FILENAME NVARCHAR(256),

@MESSAGE NVARCHAR(4000)

AS

EXTERNAL NAME Permissions.[Permissions.StoredProcedures]. WriteToFile
5. Select the above lines of code.

6. Press F5.

Running this DDL statement will create an entry point for the managed stored procedure in the assembly you just loaded.

7. Type the following line of code:

EXEC WriteToFile 'c:\test.txt', 'This is a test'
8. Select the above line of code.

9. Press F5.

Running this T-SQL will cause an error indicating that you don't have permission to write to the file you specified, with text looking something like this (the actual text may be slightly different):
Msg 6522, Level 16, State 1, Procedure WriteToFile,
Line 0

A CLR error occurred during execution of 'WriteToFile':
System.Security.SecurityException: Request for the permission of type
'System.Security.Permissions.FileIOPermission, mscorlib, Version=1.2.3400.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089' failed.

This error is expected. To ensure the security of the server, Microsoft SQL Server 2005 only grants a limited set of permissions to an assembly. The file is a secured resource and by default a stored procedure is not allowed to access secured resources. If an assembly needs additional permissions, it must be specifically granted.

· Task 5: Unloading an Assembly and Stored Procedure Manually Using DDL Statements
1. Type the following two lines of code:

DROP PROCEDURE WriteToFile
DROP ASSEMBLY Permissions
2. Select the above lines of code.
3. Press F5.

This will unload the stored procedure and assembly.

· Task 6: Loading an Assembly with a Specific Permission Set
1. Type the following lines of code:

CREATE ASSEMBLY Permissions
FROM 'C:\SQL Labs\User Projects\Permissions\Permissions\bin\Permissions.dll'

WITH PERMISSION_SET = EXTERNAL_ACCESS
Note

Make sure that there are no line breaks in the folder name when typing the code.

An important distinction between this CREATE ASSEMBLY statement and the previous one is that this time you’re specifying the permission set to be used by the assembly. There are three different permission sets: SAFE, EXTERNAL_ACCESS, and UNSAFE.

SAFE is the default permission set and works for the majority of scenarios. When code in an assembly runs under the SAFE permission set, it can only do computation and data access within the server via the in-process managed provider.

EXTERNAL_ACCESS is a code permission set that addresses scenarios where the code needs to access resources outside the server such as the files, network, registry and environment variables.

UNSAFE code permission is for those situations where an assembly is not verifiably safe or requires additional access to restricted resources, such as the Win32 API.

2. Highlight the above lines of code so that they are selected.

3. Press F5.

Running this DDL statement loads the Permissions.dll assembly into Microsoft SQL Server 2005 with the EXTERNAL_ACCESS permission set.

4. Type the following lines of code again (or highlight the ones you had typed previously):

CREATE PROCEDURE WriteToFile

@FILENAME NVARCHAR(256),

@MESSAGE NVARCHAR(4000)

AS

EXTERNAL NAME Permissions.[Permissions.StoredProcedures]. WriteToFile
5. Select the above lines of code.

6. Press F5.

7. Type the following line of code:

EXEC WriteToFile 'c:\test.txt', 'This is a test'

8. Highlight the above line of code so that it is selected.

9. Press F5.

This time, the command is completed successfully.

10. In SQL Server Management Studio, select the File | Exit menu command. If prompted to save your changes, click No.
· Task 7: Viewing the File
1. Open Windows Explorer and find the file you just created.
2. Double-click the file to load it into NotePad.
You can see that the message was written from the managed code into this file.

3. Close Notepad.
In this exercise, you began working with SQL Server Management Studio, part of Microsoft SQL Server 2005. You learned that .NET assemblies are loaded into Microsoft SQL Server 2005 using a giver permission set. By default, assemblies are loaded with limited privileges and cannot access external resources such files. To give an assembly access to external resources, it must be loaded with a different additional permission set such as EXTERNAL_ACCESS. You also learned how to manually load and unload assemblies and stored procedures using DDL.

Exercise 4:
Creating User-Defined Types and User-Defined Aggregates
In this exercise, you will learn how to extend the type system by creating user-defined types as well as how you can extend the list of installed aggregate functions by creating new user-defined aggregates whose implementation is in managed code.

· Task 1: Using the User-Defined Type Template

1. In Visual Studio 2005, select the File | New | Project menu command.

2. Create a new Visual Basic project, using the SQL Server Project template.

3. In the Name field, enter “UserDefinedTypes”.
4. In the Location field, enter "C:\SQL Labs\User Projects".

5. Click OK.
6. In the Add Database Reference dialog box, select the existing reference to the SQLCLRIntegration database.
7. Click OK.
8. In the Solution Explorer, right-click UserDefinedTypes and select Add | New Item.
9. In the Add New Item dialog, click User-Defined Type.
10. In the Name field, enter “Seat”.
11. Click Add.
12. In the Code Editor, before the Public Class Seat statement, scroll to the following code:

<Serializable()> _

<SqlUserDefinedType(Format.SerializedDataWithMetadata, MaxByteSize:=512)> _

Public Class Seat
The first attribute is the Serializable attribute, which allows the class to be serialized. The next attribute, SqlUserDefinedType, specifies key information about the class such as the maximum size of the class when serialized.

13. In the Code Editor, after the Public Class Seat statement, scroll through the following code:

 Implements INullable

 Public Overrides Function ToString() As String

 Dim s As String = "null"

 ' Put your code here

 Return s

 End Function

 Public ReadOnly Property IsNull() As Boolean _

 Implements INullable.IsNull

 Get

 ' Put your code here

 Return True

 End Get

 End Property

 Public Shared ReadOnly Property Null As Seat

 Get

 Dim h As Seat = New Seat

 Return h

 End Get

 End Property

 Public Shared Function Parse(ByVal s As SqlString) As Seat

 If s.IsNull Or s.Value.ToLower().Equals("null") Then

 Return Null

 End If

 Dim u As Seat = New Seat

 ' Put your code here

 Return u

 End Function

 ' This is a place-holder method

 Public Shared Function Method1() As SqlString

 ' Put your code here

 Return new SqlString("Hello")

 End Function

This is boilerplate code supplied for user-defined types, and some of it will need to be changed. First, a User-Defined Type (UDT) must implement the INullable interface. This interface contains a single property that you must implement, named IsNull. In addition to implementing the INullable interface, the ToString, Parse, and Null members must be supplied. These routines allow the user of the UDT to query some basic information about the UDT, obtain a string representation of the current instance, and support a conversion operation using the Convert operator via the Parse function.

14. In the Seat class, in the (Declarations) section, before the ToString method, type the following code:

Private m_isNull As Boolean
Private m_size As String

Private m_type As String

The remainder of the code for a UDT is implementation specific. The first line declares a module-level variable that indicates whether the type is null. The two lines declare variables to hold the values of the class’s custom properties.
15. In the Code Editor, in the IsNull routine, delete the following code:

' Put your code here

Return True

These lines of code will be replaced with implementation-specific code.

16. In the Code Editor, in the IsNull routine, before the End Get statement, type the following code:

Return m_isNull

This statement will return to the caller whether or not the type is null. Without this line, your user-defined type will not work.

17. In the Code Editor, before the End Class statement, type the following code:

Public Property Size() As String

 Get

 Return m_size

 End Get

 Set(ByVal Value As String)

 m_size = Value

 End Set

End Property

Public Property Type() As String

 Get

 Return m_type

 End Get

 Set(ByVal Value As String)

 If Value = "Racing" Or Value = "Cruising" Or _

 Value = "Banana" Then

 m_type = Value

 Else

 Throw New ArgumentException("Type must be " & _

 "either Racing, Cruising, or Banana")

 End If

 End Set

End Property

The Size and Type properties allow the user to specify the size and type of the seat. The type of seat is constrained to one of three possible values.

The completed code for the Seat class should look like this:

Imports System

Imports System.Data.Sql

Imports System.Data.SqlTypes

<Serializable()> _

<SqlUserDefinedType(Format.SerializedDataWithMetadata, MaxByteSize:=512)> _

Public Class Seat

 Implements INullable

 Private m_isNull As Boolean

 Private m_size As String

 Private m_type As String

 Public Overrides Function ToString() As String

 Dim s As String = "null"

 ' Put your code here

 Return s

 End Function

 Public ReadOnly Property IsNull() As Boolean Implements INullable.IsNull

 Get

 Return m_isNull

 End Get

 End Property

 Public Shared ReadOnly Property Null As Seat

 Get

 Dim h As Seat = New Seat

 Return h

 End Get

 End Property

 Public Shared Function Parse(ByVal s As SqlString) As Seat

 If s.IsNull Or s.Value.ToLower().Equals("null") Then

 Return Null

 End If

 Dim u As Seat = New Seat

 ' Put your code here

 Return u

 End Function

 ' This is a place-holder method

 Public Shared Function Method1() As SqlString

 ' Put your code here

 Return new SqlString("Hello")

 End Function

 Public Property Size() As String

 Get

 Return m_size

 End Get

 Set(ByVal Value As String)

 m_size = Value

 End Set

 End Property

 Public Property Type() As String

 Get

 Return m_type

 End Get

 Set(ByVal Value As String)

 If Value = "Racing" Or Value = "Cruising" Or _

 Value = "Banana" Then

 m_type = Value

 Else

 Throw New ArgumentException("Type must be " & _

 "either Racing, Cruising, or Banana")

 End If

 End Set

 End Property

End Class

18. In the Solution Explorer, right-click UserDefinedTypes and select Deploy. This step deploys your user-defined type to SQL Server.
· Task 2: Testing a User-Defined Type

1. If it’s not already running, start SQL Server Management Studio, and connect if requested.
2. Create a new SQL Server query as in the previous example.

3. In the Code Editor, type the following line of code:

USE SQLCLRIntegration
4. Press F5.

5. In Registered Servers, select localhost.
6. In Object Explorer, expand localhost | Databases | SQLCLRIntegration | Programmability | Types | User-Defined Types | dbo.Seat.
As you can see, the user-defined type is now part of the database.

7. In the query editor window, type the following lines of code:

CREATE TABLE BikeSeats

(

 SeatID INT NOT NULL,

 SeatInfo [Seat] NOT NULL

)

This shows you how to create a table using your user-defined type which was written in managed code. Notice that the CREATE TABLE statement above uses the Seat UDT for the data type of the SeatInfo column.

8. Select the above lines of code.

9. Press F5.

10. In the query editor window, type the following lines of code:

DECLARE @s [Seat]

SET @s = CONVERT([Seat], '')

SET @s.Size = '10'

SET @s.Type = 'Racing'

INSERT BikeSeats
VALUES(1, @s)

This creates an instance of the Seat data type and sets its Size and Type properties. Then it uses an INSERT statement to add a new record to the BikeSeats table.shows you how to create a table using your user-defined type which was written in managed code.
11. Select the above lines of code.

12. Press F5.

13. In the Code Editor, type the following lines of code:

SELECT SeatInfo.Size, SeatInfo.Type FROM BikeSeats

This SELECT query will retrieve the record that was just inserted into the BikeSeats table.
14. Select the above lines of code.

15. Press F5. You should see the racing bike seat of size 10 in the output window.
· Task 3: Testing the User-Defined Aggregate Template

An aggregate function performs a calculation on a set of values and returns a single value. T-SQL already comes with several built-in aggregate functions such as COUNT, AVG and SUM. With CLR integration, you will now be able to create your own aggregates using managed code. For this exercise, you will create a user-defined aggregate that performs string concatenation.
1. Switch to Visual Studio 2005.
2. In the Solution Explorer, right-click UserDefinedTypes and select Add | New Item.
3. In the Add New Item dialog box, click Aggregate.
4. Click Add.
5. In the Code Editor, at the top of the code window, type the following code:

Imports System.Text

The aggregate you are creating will be using the StringBuilder class of the System.Text namespace. Importing System.Text will reduce typing.

6. In the Aggregate1 class, before Public Sub Init(), type the following code:

 Private sb As StringBuilder

 Private firstConcat As Boolean = True

The StringBuilder object sb will be used to perform fast string concatenations. The Boolean flag firstConcat indicates whether a concatenation is the first concatenation.

7. In the Init procedure, before End Sub, type the following code:

 sb = New StringBuilder
 firstConcat = True
This will initialize the StringBuilder object when the aggregate is invoked.

8. In the Accumulate procedure, before End Sub, type the following code:

 If firstConcat Then

 sb.Append(value)

 firstConcat = False

 Else

 sb.Append(", ")

 sb.Append(value)

 End If

These lines of code perform the actual string concatenation. Accumulate is called for each row in the result set from which values will be aggregated.

9. In the Merge procedure, before End Sub, type the following code:

 Accumulate(value.ToString)

The Merge method is used by the query processor to merge another instance of this aggregate class with another instance as part of partial computations.

10. In the Terminate procedure, delete the following lines of code:

 ’ Put your code here

 Return New SqlString("")
11. In the Terminate() routine, before End Sub, type the following code:

 Return sb.ToString()

This line of code converts the StringBuilder object to a regular String object and returns that String back to the calling code. Terminate is invoked when the entire result set has been processed.

12. In the Aggregate1 class, before End Class, type the following code:

 Public Overloads Function ToString() As String

 Return sb.ToString()

 End Function

Again, this code converts the StringBuilder object to a regular String object and returns that String back to the calling code.

The completed Aggregate1 class should now look like the following:

Imports System.Text

Imports System

Imports System.Data.Sql

Imports System.Data.SqlTypes

<Serializable()> _

<SqlUserDefinedAggregate(Format.SerializedDataWithMetadata, MaxByteSize:=512)> _

Public Class Aggregate1

 Private sb As StringBuilder

 Private firstConcat As Boolean

 Public Sub Init()

 sb = New StringBuilder

 firstConcat = True

 End Sub

 Public Sub Accumulate(ByVal value As SqlString)

 If firstConcat Then

 sb.Append(value)

 firstConcat = False

 Else

 sb.Append(", ")

 sb.Append(value)

 End If

 End Sub

 Public Sub Merge(ByVal value As Aggregate1)

 Accumulate(value.ToString)

 End Sub

 Public Function Terminate() As SqlString

 Return sb.ToString()

 End Function

 Public Overloads Function ToString() As String

 Return sb.ToString()

 End Function

End Class

13. In the Solution Explorer, right-click UserDefinedTypes and select Rebuild.
· Task 4: Deploying a User-Defined Function

1. Switch to SQL Server Management Studio.
Before proceeding, you will drop the user-defined type and UserDefinedTypes assembly.

2. Type the following line of code:

DROP TABLE BikeSeats
3. Select the above line of code, and press F5.

4. Type the following line of code:

DROP TYPE Seat
5. Select the above line of code and press F5.

6. Switch to Visual Studio 2005.

7. In the Solution Explorer, right-click UserDefinedTypes, and select Deploy.

· Task 5: Testing the User-Defined Aggregate

1. In Microsoft SQL Server Management Studio, in the existing query, type the following lines of code:

CREATE TABLE BookAuthors

(

BookID int NOT NULL,

AuthorName nvarchar(200) NOT NULL

)

2. Select the above lines of code.
3. Press F5.
4. Type the following lines of code:

INSERT BookAuthors VALUES(1, 'Johnson')

INSERT BookAuthors VALUES(2, 'Taylor')

INSERT BookAuthors VALUES(3, 'Steven')

INSERT BookAuthors VALUES(2, 'Mayler')

INSERT BookAuthors VALUES(3, 'Roberts')

INSERT BookAuthors VALUES(3, 'Michaels')

5. Select the above lines of code.
6. Press F5.

This will insert some sample data into the newly created BookAuthors table. Next, you will test the user-defined aggregate in a SELECT query.

7. Type the following lines of code:

SELECT BookID, dbo.Aggregate1(AuthorName) As Authors

FROM BookAuthors

GROUP BY BookID

8. Select the above lines of code.
9. Press F5.

The results should be:

1 Johnson

2 Taylor, Mayler

3 Roberts, Michaels, Steven
10. Select the File | Exit menu command. If prompted to save changes, click No.
11. In Visual Studio 2005, select the File | Close Solution menu command.

This exercise demonstrated extending the type system by creating a user-defined type and how to create a user-defined aggregate using managed code.

Exercise 7:
Comparing and Contrasting T-SQL and Managed Code
In this exercise, you will directly compare and contrast T-SQL and managed code. You will see how managed code can in some situations result in less code, better performance, and more power. As an example, you will write the same routine twice, the first time in traditional T-SQL and the second in managed code.

· Task 1: Creating the User-Defined function Using T-SQL

1. Start SQL Server Management Studio, if it's not already running.
2. In Registered Servers, double-click localhost.

3. Using the New Query button on the toolbar, create a new SQL Server query. Connect, if requested.
4. In the Code Editor, type the following line of code:

USE SQLCLRIntegration
5. Press F5.

6. Type the following lines of code:

CREATE FUNCTION Factorial1 (@Number FLOAT)

RETURNS FLOAT

AS

BEGIN

 DECLARE @returnValue FLOAT

 IF @Number <= 1

 SELECT @returnValue = 1

 ELSE

 SELECT @returnValue = @Number * dbo.Factorial1(@Number - 1)

 RETURN @returnValue

END

GO
This user-defined type is written in traditional T-SQL to implement a recursive factorial algorithm. A factorial is the product of all the positive integers multiplied together, starting with a given number and working down to 2 in whole number increments. For example, the factorial of 3 is 6 (3 * 2). The factorial of 4 is 24 (4 * 3 * 2).

Recursive algorithms have many uses, such as iterating through collections of collections, sorting, or applying mathematical formulas such as greatest common divisors, Fibonacci series, Hilbert curves and Sierpinksi curves. Factorial was chosen because it is one of the simpler recursive algorithms.

7. Select the above lines of code.

8. Press F5.

Running this DDL statement creates the Factorial1 user-defined function.

9. Type the following line of code:

SELECT dbo.Factorial1(4)
10. Select the above line of code.

11. Press F5.

The return value should be 24.

· Task 2: Creating the User-Defined Function Using Managed Code

1. Switch to Visual Studio 2005.

2. Select the File | New | Project menu command.

3. Create new Visual Basic project, using the SQL Server Project template.
4. In the Name field, enter “TSQLvsCLR”.

5. In the Location field, enter “C:\SQL Labs\User Projects”

6. Click OK.

7. In the Add Database Reference dialog box, select the existing reference to the SQLCLRIntegration database.
8. Click OK.

9. In the Solution Explorer, right-click TSQLvsCLR and select Add | New Item.

10. In the Add New Item dialog box, click User-Defined Function.

11. Click Add.

12. In the code editor, delete the entire Function1 sample function that's supplied as part of the template. Make sure you delete the SqlFunction attribute, as well.

13. In the code editor, just before End Class, type the following lines of code:

<SqlFunction()> _

Public Shared Function Factorial2(ByVal Number As Integer) As Double

 If Number <= 1 Then

 Return 1

 Else

 Return Number * Factorial2(Number - 1)

 End If

End Function

One of the advantages of managed code over T-SQL is that managed code can often perform the same tasks with fewer lines of code, as you can see in this case. In addition, as this is compiled code, it may execute faster.

14. In the Solution Explorer, right-click TSQLvsCLR and select Deploy.
· Task 3: Pushing T-SQL to its Limits

1. Switch to SQL Server Management Studio.

2. Type the following line of code:

SELECT dbo.Factorial2(4)
3. Select the above line of code.

4. Press F5.

The return value should be 24.

5. Type the following line of code:

SELECT dbo.Factorial1(33)
6. Select the above line of code and press F5.
You will get the following error:

Msg 217, Level 16, State 1, Line 10

Maximum stored procedure, function, trigger, or view nesting level exceeded

(limit 32).

This error is expected. User-defined functions and stored procedures written in T-SQL have a limitation of 32 levels of nesting. Because of this limitation, it is often not practical to write recursive routines in T-SQL.

7. Type the following line of code:

SELECT dbo.Factorial2(33)
8. Select the above lines of code, and press F5.

Notice that this time, there is no error. This is because user-defined functions and stored procedures written in managed code have no limit to the levels of nesting (aside from memory constraints).

9. Select the File | Exit menu command. If prompted to save your changes, click No.
10. In Visual Studio 2005, select the File | Save All (save your project to the C:\SQL Labs\User Projects folder) and the File | Close Project menu commands.

In this exercise, you were able to compare and contrast how the same routine can be written in T-SQL and managed code. By implementing a recursive factorial algorithm, you learned that using managed code can allow you to write more powerful routines with fewer lines of code that delivers better performance.
Exercise 8:
Exploring New Features in ADO.NET

In this exercise, you will explore some of the new functionality in ADO.NET. First, you will see how multiple active result sets (MARS) allow you to issue multiple commands simultaneously through the same SQL connection. Then you will see how ADO.NET now supports true asynchronous operations.

· Task 1: Examining the Starting MARS Project

1. Load Visual Studio 2005, if it's not already running.

2. In Visual Studio 2005, select the File | Open | Project/Solution menu command.

3. Navigate to C:\SQL Labs\Lab Projects\SQL CLR Lab\Mars.

4. Open the Mars.sln solution in Visual Studio 2005.
5. In the Solution Explorer, double-click Class1.cs.

6. Examine the following code:

SqlCommand cmdCustomers = new SqlCommand(

 "SELECT * FROM Sales.Customer", cnn);

SqlDataReader drCustomers = cmdCustomers.ExecuteReader();

This code will retrieve all the customers from the AdventureWorks database. Next, the application will retrieve order information for all "preferred" customers. The application will be able to determine if a customer is preferred by running a simple algorithm on the customer's account number. When a preferred customer is found, the total order amount for that customer is retrieved.

What makes this interesting is that the order information will be retrieved using the same connection, and while drCustomers is in use. Prior to MARS, you would have needed to open a second connection to the database.

7. Examine the following code:

SqlCommand cmdOrders = new SqlCommand(

 "SELECT SUM(TotalDue) FROM Sales.SalesOrderHeader " +

 "WHERE customerid = @customerid", cn);

cmdOrders.Parameters.Add("@customerid", SqlDbType.Int);

This final section of code sets up the SqlCommand that will be used to retrieve order information for each preferred customer.

· Task 2: Retrieving Order Information for Preferred Customers

1. Enter the following code after the TODO: Retrieve order totals for preferred customers comment:

while (drCustomers.Read())

{

 // Pick some arbitrary group of customers. In this case,

 // if their account number is divisible by 47, they’re in!

 int accountNumber = (int)drCustomers["AccountNumber"];

 if ((accountNumber % 47) == 0)

 {

 cmdOrders.Parameters["@customerid"].Value =
 drCustomers["customerid"].ToString();

 Console.WriteLine(accountNumber + " " +
 cmdOrders.ExecuteScalar().ToString());

 }

}
This code loops through each customer in the drCustomers SqlDataReader. The account number for the customer is then retrieved from drCustomers. An "if" statement is used to perform a simple algorithm which determines if the current row represents a preferred customer. If so, the customer ID is specified as a parameter for a query which retrieves total order information. This command will be executed on the same connection that is used by drCustomers, and it will be executed before drCustomers is closed. This would not be possible without MARS. Once the information is retrieved, it is output to the console.

· Task 3: Testing the MARS Functionality

1. Press F5.

Note that the order totals are output for the customers.

2. Press Enter.
3. Select the File | Close Solution menu command.

Next you will see how ADO.NET supports asynchronous operations.

· Task 4: Examining the Async Project

1. Select the File | Open | Project/Solution menu command.

2. Navigate to C:\SQL Labs\Lab Projects\SQL CLR Lab\Async.

3. Load the Async.sln solution in Visual Studio 2005. Don't save changes to the previous solution, when prompted.
4. In the Solution Explorer, double-click Class1.cs.

5. Examine the following code:

SqlConnection cnn = new SqlConnection(

 "Data Source=localhost;" +

 "Initial Catalog=AdventureWorks;" +

 "Integrated Security = SSPI;" +

 "Asynchronous Processing=true");
cnn.Open();

SqlCommand cmd = new SqlCommand(

 "IF EXISTS (SELECT * FROM dbo.sysobjects " +

 "WHERE id = object_id(N'[dbo].[AsyncLab]') " +

 "AND OBJECTPROPERTY(id, N'IsUserTable') = 1) " +

 "DROP TABLE [dbo].[AsyncLab];" +

 "SELECT * INTO AsyncLab FROM Sales.SalesOrderDetail;" +

 "SELECT COUNT(*) FROM AsyncLab", cnn);
The SqlCommand is populated with a statement that will take a noticeable amount of time to execute. This command will be executed asynchronously so that the application can perform other operations while the statement completes.

· Task 5: Adding Asynchronous Processing

1. Add the following code after the TODO: Process asynchronously comment:

IAsyncResult iar = cmd.BeginExecuteReader();

while (!iar.IsCompleted)

{

 Thread.Sleep(100);

 Console.Write(".");

}

SqlDataReader dr = cmd.EndExecuteReader(iar);

dr.Read();

Console.WriteLine("\nProcessing complete, " +

 dr[0].ToString() +

 " rows copied");

You can see that ADO.NET now supports the asynchronous design pattern used throughout the base class library. When BeginExecuteReader is called, the query is executed in the background. You can be notified of completion a couple of ways. You can pass a delegate for a callback method specified in the call to BeginExecuteReader. This method will be invoked when the query completes. You can also poll the IsCompleted property of the IAsyncResult. The latter approach is used here. Once the query completes, the SqlDataReader can be populated by calling EndExecuteReader, passing the IAsyncResult as an argument.

· Task 6: Testing the Asynchronous Functionality

1. Select the Debug | Start menu command (or press F5).

Note that periods are output while the SQL statement executes, and the total number of rows copied is displayed when the query completes.

2. Press Enter.

3. Close the solution without saving changes.

Lab Summary

This lab showed you how Microsoft SQL Server 2005 and Visual Studio 2005 combine to provide a new level of power and flexibility when developing database and data-centric applications. You learned that the .NET Common Language Runtime is now hosted in Microsoft SQL Server 2005 so that you can stored procedures, user-defined functions, user-defined types, triggers and aggregates using managed code with languages such as Visual Basic .NET and Visual C#. Although managed code does not replace T-SQL, the ability to use managed code is an important new tool in the database developer's toolbox.

Last Saved: 9/13/2004 1:33:00 PM
Last Printed: 0/0/0000 0:00:00 AM

