Understanding the SQL Server 2000 Workload Governor

The version of the Microsoft® SQL Server™ 2000 database engine included in SQL Server 2000 Desktop Engine (MSDE 2000) and SQL Server 2000 Personal Edition contains a workload governor designed to limit performance if the database engine receives more work than is typical of a small number of users.

NOTE: The following description of the workload governor is specific to SQL Server 2000 Desktop Engine (MSDE 2000) and SQL Server 2000 Personal Edition. Future versions of SQL Server will use other mechanisms to differentiate editions.

The Microsoft SQL Server 2000 workload governor is designed to limit the performance of an instance of the database engine any time more than eight operations are active at the same time. An instance of the SQL Server 2000 database engine is one copy of the database software that operates as an operating system service.

The operations counted by the workload governor include:

· Processing a request to open an inbound connection and login.

· Processing a batch of one or more Transact-SQL statements received over an inbound connection.

· Processing a distributed transaction operation, such as a prepare-to-commit or rollback operation.

· Processing a request to log off and close an inbound connection.

· Periodic system-generated operations such as shrinking a database if the database has the AUTO_SHRINK option turned on, completing the deletion of rows from the base level of indexes, or populating the SQL Server performance counters in the System Monitor.

· Instances of SQL Server 2000 Personal Edition will also periodically generate system operations to process any full-text indexes referenced by the databases managed by the instance. SQL Server 2000 Desktop Engine (MSDE 2000) does not support full-text indexes.

Like all versions of SQL Server 2000, SQL Server 2000 Personal Edition and MSDE 2000 allow 32,767 connections to an instance of the database engine. There is no limit for the number of connections that can be executing operations at the same time. The only effect of the workload governor is that it starts slowing down the database engine when more than eight operations are actively running at the same time.

Once it has been activated, the workload governor limits performance by stalling a user connection for a few milliseconds each time the connection requests a logical read or write on any of the pages in the data files of a database. (The governor does not affect log files.) The database engine waits before every data page reference as long as there are more than eight active concurrent operations. When the number of active operations is eight or lower, the database engine does not wait before scheduling any reads or writes. When the workload governor is active, it equally affects all connections; it is not limited to slowing down only the connections that activated the governor. The length of the wait implemented by the governor is constant (it does not vary depending on how many operations are active beyond the limit of eight).

The workload governor operates at the level of an instance of the database engine, not at the level of a database. Each instance can have up to 32,767 databases. The workload governor is activated when there are more than eight active concurrent operations in the instance, even if each operation is working in a different database.

Upgrading to SQL Server 2000 Standard Edition

You should consider upgrading to SQL Server 2000 Standard Edition when performance is constrained by the workload governor. The only factor that activates the workload governor is having more than eight active operations at the same time. Once the governor has been activated, one factor determines how much the database engine will slow down: the cumulative number of logical reads and writes of data pages by all the active connections.

There are two ways to find out how often the workload governor is activated:

· Review the application event log for SQL Server informational message 3629. This message indicates how many concurrent operations were active at the time the message was written. When the governor is active, it will periodically put a 3629 message in the event log.

· Use the DBCC CONCURRENCYVIOLATION statement to monitor how often the workload governor is activated. This will also give you an idea of how many active operations are being processed by the instance at the times the governor is active.

Consider upgrading to SQL Server 2000 Standard Edition under these two conditions:

· DBCC CONCURRENCYVIOLATION or informational message 3629 shows that the workload governor is frequently active.

· The SQL Server 2000 performance counters show a lot of logical database reads and writes.

Before upgrading to SQL Server 2000 Standard Edition for performance reasons, however, you should first use the standard SQL Server 2000 performance monitoring facilities to ensure that the amounts of reads and writes are not due to application or database design factors. Look for situations such as the following:

· A missing or poorly designed index on a table that means many queries referencing that table generate table scans instead of index retrievals.

· Poorly coded queries that retrieve unnecessarily large result sets or force unnecessary joins, scans over many index pages, or table scans.

· A poor database design that forces unnecessary joins.

For more information on monitoring the performance of SQL Server 2000, see “Monitoring Server Performance and Activity” in SQL Server 2000 Books Online.

Physical Versus Logical Reads and Writes

The database engine uses a two-stage process for reading and writing data that minimizes the number of times it must physically access disk files, because accessing a disk file consumes a relatively large amount of computing resources.

SQL Server databases have both data and log files. Data files are divided into 8-kilobyte (KB) pages. Data and index pages store the rows of data from tables and indexes respectively; there are also 8-KB pages that hold maps showing how the data and index pages are allocated. Each data, index, and allocation page is stored in one of the data files that make up the database. Each instance of the database engine maintains a large area of memory, called a buffer cache, in which it stores the pages it has read from the data files.

When a Transact-SQL statement references a piece of data in a data file, the database engine first performs a logical read, to see if the page containing the data is already in the buffer cache. If the page is not in the cache, then the database engine performs a physical read, to retrieve the page from disk into the cache. No physical read is required if the page is already in the cache.

A similar two-stage process is performed for writes. A logical write is performed to update the page contents in the cache, and then the modified page is physically written to disk.

When the workload governor is active, it operates by performing a slight delay before each logical read or write of a data, index, or allocation page. This means that there is a direct correlation between the number of waits and the number of logical reads and writes, and there is no correlation between the number of waits and the number of physical reads and writes. The workload governor is not affected by configurations that decrease physical reads and writes, such as having a large cache.

Understanding When the Workload Governor Is Activated

Understanding when the workload governor is activated requires a high-level understanding of SQL Server 2000 connections and operations.

An instance of the SQL Server 2000 database engine runs as a process separate from applications. An application works with the instance by opening a connection to the instance, sending a series of commands over the connection, and then closing the connection. The most common type of command the application sends is Transact-SQL batches. (A batch is one or more Transact-SQL statements that are run as one executable unit.)

This series of commands can be illustrated using the SQL Server 2000 osql utility. When you launch osql, it uses the ODBC API to make a connection to an instance of the database engine. As you type in Transact-SQL statements, osql builds them into a string variable that it can pass to an ODBC API function that sends batches over the connection. osql uses a GO command to define batches. Whenever the utility reads a GO command, it sends all of the Transact-SQL statements that have been collected since the last GO command as a batch to the database engine.

This is an example of specifying batches in the input to the osql utility:

/* Start of the first batch, which only has one statement. */

USE Northwind

/* End of the first batch; send the USE statement to the database engine. */

GO

/* Start of the second batch, which has three statements. */

DECLARE @ExampleVariable INT

SELECT @ExampleVariable = COUNT(*)

 FROM Employees

PRINT @ExampleVariable

/* End of the second batch; send DECLARE, SELECT, PRINT to the engine. */

GO

When you are done working with the database and type an EXIT command, osql uses the ODBC API to close the connection to the database engine. osql then shuts down.

In an instance of the database engine, the operation to open a connection includes validating the login ID and password and then allocating the internal data structures the instance uses to manage the connection. The operation to close a connection involves rolling back any incomplete transactions and de-allocating the data structures associated with the connection.

The operation to process a batch of Transact-SQL statements starts when the batch is received over the connection and continues until the last results have been sent back. Some of the objects stored in SQL Server databases, such as views, Transact-SQL stored procedures, triggers, and user-defined functions, are themselves batches of SQL statements. These objects have no effect on the workload governor. The execution of these types of objects is counted as part of the operation to process the batch sent in by the application. The governor only detects the fact that the instance is processing the batch that came in from the application; it does not detect how many of these objects the application batch executes.

Connections between the database engine and an application most often remain in an inactive state, waiting for the application to build and send a new command. In systems where there are thousands of concurrent connections in an instance of the database engine, only a small percentage of the connections transmit commands at the same time. Most of the users are doing things that do not interact with the database, such as scrolling through a Web page, typing in new data, or answering a phone call from their manager. Only a few of the users have just performed an action, such as clicking an ENTER button, that sent a command to the instance.

Several SQL Server components make connections to an instance of the database engine. The workload governor does not distinguish between connections from applications and those from SQL Server components; operations on connections from SQL Server components are counted against the governor limits. These include connections from SQL Server Agent, Replication agents, and Data Transformation Services (DTS) packages.

The workload governor only counts operations on connections that are coming into an instance of the database engine; it does not count operations on connections going out to other instances. Certain kinds of Transact-SQL statements cause the instance on which they are executed to open a connection to a remote instance of the database engine. If the local instance of the database engine has a workload governor, the only operation counted by the local workload governor is the operation to process the batch containing the Transact-SQL statement. If the remote instance of the database engine has a workload governor, the remote governor will count all operations it receives over the connection. These types of Transact-SQL statements are:

· Distributed queries, which cause the local instance to connect to the remote instance, send the remote instance one or more Transact-SQL batches, and then close the connection to the remote instance. The governor on the local instance counts only the operation of processing the batch containing the distributed query. The governor on the remote instance counts all the operations sent over the connection.

· Remote stored procedure calls, which operate the same as distributed queries.

· Extended stored procedures, which can open a connection to a remote instance of SQL Server. In this case, the extended stored procedure is treated like a distributed query. The governor on the local instance counts only the operation of executing the batch that ran the extended stored procedure. The governor on the remote instance counts all the operations it receives over the connection.

· OLE automation objects, which can be referenced from Transact-SQL statements if the object is registered with the instance of the database engine using the Office Automation system stored procedures, such as sp_OACreate. The workload governor treats connections from these OLE objects the same way it treats connections from extended stored procedures.

Extended stored procedures and OLE objects can also open a connection to the same instance of the database engine on which they are executing. The instance treats this connection as a new inbound connection. It counts as operations all commands sent over the connection, in addition to counting the processing of the batch that executed the extended stored procedure or OLE object. For example, if you execute an extended stored procedure that makes a connection back to that same instance, the governor counts processing the batch you sent as one operation, and it treats as a second operation any command that the extended stored procedure executes on the connection it opened.

In addition to logins, batches, and logoffs, connections involved in distributed transactions can also receive commands synchronizing the distributed transaction across multiple resources. Many of these commands are not executed directly by applications; they are generated internally by instances of SQL Server or the transaction manager (TM) that is controlling the distributed transaction. For example, an application could connect to an instance of SQL Server 2000 Standard Edition and execute an UPDATE statement that references a linked table on an instance of MSDE 2000. This means that the connection opened by the instance of Standard Edition against the instance of MSDE 2000 is in a distributed transaction. If the computer running the application then loses its network connection, the TM instructs both instances to roll back their parts of the distributed transaction. The workload governor counts the connection in the instance of MSDE 2000 as active for as long as it takes the instance to roll back the distributed transaction.

Conclusion

The workload governor in the database engine for SQL Server 2000 Desktop Engine (MSDE 2000) and SQL Server 2000 Personal Edition works by counting active operations. When there are more than eight active operations at the same time in the same instance of the database engine, the governor implements a slight wait before each logical read or write to a data file. For the amount of work typical in databases used by single users or small workgroups, the cumulative effect of the waits is not noticeable. In systems that are reading and writing large amounts of data, the cumulative affect of all the waits slows the performance of the database engine.

The workload governor counts as operations these requests received on any inbound connection from an application or SQL Server component:

· Processing a login request.

· Processing a batch of Transact-SQL statements.

· Processing a distributed transaction command.

· Processing a logoff request.

The workload governor also counts some system-generated operations as if they are operations on active connections.

You can view the application event log for SQL Server 3629 messages or use the DBCC CONCURRENCYVIOLATION statement to assess how often the workload governor is activated. If the governor is frequently activated in a well-designed and well-tuned system, and the system is generating a lot of logical reads and writes, you should consider upgrading to SQL Server 2000 Standard Edition.

