Certified for Windows Vista Test Cases
Version 1.3.001
March 6, 2007
The information presented in these test cases reflects Microsoft Corporation’s views as of the date of publication. These views can and probably will change in response to changing market conditions. Microsoft makes no warranties or guarantees, implicit or explicit, in or by virtue of this document. Unless otherwise permitted by law, no part of this document may be copied without Microsoft’s prior written permission.

Table of Contents

1Certified for Windows Vista Test Cases

2Table of Contents

4Revision History

4Machine Setup and Configuration

7Security and Compatibility

7TEST CASE 1. Verify all of the application’s executables contain an embedded manifest that define its execution level (Req:1.1)

8TEST CASE 2. Verify Least-Privilege Users cannot modify other users documents or files (Req:1.1)

9TEST CASE 3. Verify Least-Privilege user is not able to save files to Windows System directory (Req:1:1)

9TEST CASE 4. Verify application installer does not have a 16-Bit installer, does not use or rely on 16-Bit code or components and does not attempt to install any non 64-Bit drivers on x64 versions of Windows regardless if application is a Win32 application or is native to 64-bit (Req:1.2)

10TEST CASE 5. Verify application installed executables and files are signed (Req:1.3)

10TEST CASE 6. Verify all kernel-mode drivers installed by the application are signed (Req:1.4)

11TEST CASE 7. Verify application properly checks for Operating System version (Req:1.6)

12TEST CASE 8. Verify application launches and executes properly using Fast User Switching (Req.1.8)

13TEST CASE 9. Verify application launches and executes properly using Remote Desktop (Req.1.8)

13TEST CASE 10. Verify drivers and services start in Safe-Mode. (Req:1.10)

15Install/Uninstall

15TEST CASE 11. Verify application installer uses Windows Installer. (Req:2.1)

15TEST CASE 12. Verify application’s MSI installer does not receive any errors from the Internal Consistency Evaluators. (Req:2.1)

16TEST CASE 13. Verify application’s installer contains an embedded manifest (Req:2.2)

16TEST CASE 14. Verify application launches with installed user token (Req:2.2)

17TEST CASE 15. Verify application installs to the correct folders by default (Req:2.3)

18TEST CASE 16. Verify ClickOnce application is signed with a valid Authenticode Certificate (Req:2.4)

19TEST CASE 17. Verify ClickOnce application only stores data in installed user’s folders and does not write to WRP registry keys during install. (Req:2.5)

20TEST CASE 18. Verify Windows Installer package contains Manufacturer, ProductCode, ProductLanguage, ProductName, ProductVersion (major and minor), and UpgradeCode property tags and that they are not null (Req:2.7)

21TEST CASE 19. Verify application creates uninstall registry key and values (Req:2.7)

22TEST CASE 20. Verify application does not try to write to or replace any WRP registry keys or files (Req:2.9)

23TEST CASE 21. Verify the application does not use nested install custom actions (Req:2.10)

24TEST CASE 22. Verify the application does not add custom columns to the Windows Installer’s standard tables and that any custom tables or properties are not prefixed with ‘msi’ (Req:2.10)

25TEST CASE 23. Verify the application rolls back the install and restores machine back to previous state (Req:2.10)

26TEST CASE 24. Verify the application does not force a reboot during install (Req:2.12)

26TEST CASE 25. Verify the application properly handles files in use during install (Req:2.12)

27TEST CASE 26. Verify the application can be installed quietly from the command line (Req:2.13)

27TEST CASE 27. Verify the application’s Windows Installer ComponentID table does not contain null values (Req:2.14)

28TEST CASE 28. Verify the application’s Windows Installer Package does not contain more than one COM Server for each Component (Req:2.14)

28TEST CASE 29. Verify the application’s Windows Installer Package does not contain more than one shortcut for each component (Req:2.14)

29Reliability

29TEST CASE 30. Verify the application is Restart Manager Aware (Req:3.1)

30TEST CASE 31. Verify application does not break into a debugger with the specified AppVerifier checks (Req:3.2)

31TEST CASE 32. Verify that the application only handles exceptions that are known and expected (Req:3.2)

32List of Tools

Revision History
	Date
	Changes from Application Specification Version 1.0

	October 23, 2006
	Added Machine setup “OS Language"

	October 23, 2006
	Revised Test Case 30 "Shutdown quietly without user interaction while idle"

	October 23, 2006
	Revised Test Case 30 "Microsoft-Windows-RestartManager"

	October 26, 2006
	Added Tools "Debugger"

	November 1, 2006
	Removed ICE 39 from Test Case 12

	December 1, 2006
	Revised Machine Configuration Section

	December 1, 2006
	Revised List of Tools Section

	December 1, 2006
	Revised Test Case 15 “Install to correct folders”

	December 6, 2006
	Revised Test Case 17 and replaced RegDiff syntax

	December 7, 2006
	Dropped Resource Hacker and replaced with CFF Explorer

	December 7, 2006
	Revised Test Case 13, 14

	December 7, 2006
	Revised Test Case 29, 31

	December 14, 2006
	Revised Test Case 18, clarification on VersionMin and VersionMax

	January 19, 2007
	Revised Test Case 19, removed ClickOnce VersionMajor and VersionMinor from step 6.f

	January 19, 2007
	Revised Test Case 32, removed UI from title and included Non-UI thread information

	March 6, 2007
	Removed the following ICEs from Test Case 12: 3, 8, 16, 72, 79, 80

	March 6, 2007
	Clarified allowed use of ‘MsiSFCBypass’ in Test Case 22

	March 6, 2007
	Clarified applicability of Test Case 31.

Machine Setup and Configuration

NOTE: All tests must be performed and pass to qualify for logo; however, if the application is a Win32 application you only need to perform and pass test cases 2, 3, 4, 6, 8, 9, 14, 15, 17, 19, 20, 23 and 30 on x64 in addition to performing All test cases on x86 clean versions of Windows Vista Ultimate. If the application is an x64 Native application All test cases must be performed and pass to qualify for logo on x64 clean versions of Windows Vista Ultimate. Do not install misc applications such as an Anti-Virus, Firewall…etc as they may affect the outcome these tests.
NOTE: All test cases must be performed on clean versions of Windows Vista Ultimate using the application’s specified language which is defined in test case 18 under ProductLanguage. If application is language neutral (ProductLanguage = 0); all test cases must be performed on clean versions of English Windows Vista Ultimate without any additional language packs installed.
STEPS:
S.1 Install Windows Vista Ultimate with all Windows components and options installed.
a. Log into machine as the local Administrator
S.2 Install a printer (can be a local, network printer or both).

S.3 Install Windows Vista SDK from http://www.microsoft.com/downloads/details.aspx?FamilyId=C2B1E300-F358-4523-B479-F53D234CDCCF&displaylang=en with all components installed (custom install) on a machine that is not being used to perform the Logo tests.
a. Copy/Move capicom.dll, orca.msi and signtool.exe from <SDK_Install_Dir>\ Windows\v6.0\Bin\ directory to a stored location. These tools will be used as part of the Vista Logo toolset.

b. Copy/Move Schema.msi from <SDK_Install_Dir>\ Windows\v6.0\Bin\msitools\Schemas\MSI\ directory to a stored location. This will be used as part of the Vista Logo standard MSI test case.
S.4 Create “%SystemDrive%\Tools” directory.

S.5 Copy Schema.msi, orca.msi, signtool.exe and Capicom.dll to the “Tools” directory from the stored location in step S.3 above.

S.6 Install Orca from “Tools\orca.msi” with all components installed (custom install).
S.7 Install Vista Logo Tools from http://download.microsoft.com/download/d/2/5/d2522ce4-a441-459d-8302-be8f3321823c/LogoToolsv1.0.msi, default through install.
S.8 Go to <Vista_Logo_Tools_Installed_Dir>\RegDiff
a. Open filter in notepad
b. Select all and delete
c. Copy and paste the following information “As is” with spaces:

[KeyExclude]

[KeyContents]

[ValueExclude]

[ValueContents]
d. Save as filter.txt

S.9 Install the latest released version of AppVerifier from http://www.microsoft.com/downloads/details.aspx?FamilyID=bd02c19c-1250-433c-8c1b-2619bd93b3a2&DisplayLang=en Note: For native x64 applications install x64 versions of AppVerifier.
S.10 Install Debugging Tools for Windows from http://www.microsoft.com/whdc/devtools/debugging/default.mspx. Note: For native x64 applications install x64 version of Debugging Tools for Windows.
S.11 Install CFF Explorer (can be downloaded from http://www.download.com/) to the Tools directory.
a. Extract and install the appropriate version (x64 or x86).

S.12 Run CreateLogousers.cmd; this will create the necessary accounts required for testing the logo requirements and will be provided by Microsoft.

a. Least-Privilege User – logouser1

b. Least-Privilege User – logouser2

c. Least Privilege User – vistalogolongusernam (Long User Name)
d. Administrator – logoadmin

e. Power User – logopuser
f. Backup Operator – logobouser
S.13 Use an imaging tool to take a snapshot of the machine.
S.14 Use RegDump.exe to take a snapshot of the registry (detail instructions for use are provided with tool through /?).

a. Open elevated (“Run as administrator”) command window.

b. Change directories to the “<Vista Logo Tools Installed Dir>\Regdump” directory.
c. Type “Regdump.exe /o regpreinstall.txt”, this will dump the entire system registry.
S.15 Attach application install executable to AppVerifier including msiexec.exe. Note: Does not apply to the install of ClickOnce applications. If the application is native x64 use x64 version of AppVerifier unless installer is Win32(x86) then use x86 version of AppVerifier.
a. Open AppVerifier.

b. Uncheck the Basics checks.
c. Check FilePaths, KernelModeDriverInstall and HighVersionLie from the Compatibility checks.
d. Check and Highlight HighVersionLie.
i. Click Properties menu from the View menu.
ii. Double Click Major version and enter 6.
iii. Double Click Minor Version and enter 0.
iv. Double Click Build number and enter the build number of Windows Vista you are using to perform the logo tests.
d. Check LuaPriv check box
S.16 Logon to machine as logouser1.

a. Install application selecting all components.
Note: All test cases are to be performed as this logged on user unless otherwise stated in the test case.

S.17 Once install is complete, Use RegDump.exe to take a snapshot of the registry (detail instructions for use are provided with tool through /?).

a. Open elevated (“Run as administrator”) command window.

b. Change directories to the “<Vista Logo Tools Installed Dir>\Regdump” directory.
c. Type “Regdump.exe /o regpostinstall.txt”, this will dump the entire system registry.
S.18 Once install is complete, view AppVerifier Install Logs. Note: Does not apply to the install of ClickOnce applications.
a. Search logs for FilePaths.
i. Make note of all the application install paths.
b. Search logs for KernelModeDriverInstall.
i. Make note of any installed kernel mode drivers.
c. Search logs for HighVersionLie.
i. Make note of any errors in HighVersionLie as a result of the installer.
d. Search logs for LuaPriv (Simpilest way to search is to search for “Severity=”Error””)
i. Check Error to ensure the application did not attempt to write to or replace any WRP Registry Key or Windows System File
ii. Make note of any WRP Registry Key or Windows System File that the application attempted to write to or replace.
S.19 Identify ISV-submitted normal operations to determine application is running. (Certain test cases require that the tester perform a set of "Normal Operations" in order to ensure that the application is still running." The set of operations must have been submitted by the ISV prior to the beginning of testing. Locate and understand the operations before running the test cases.)
Security and Compatibility

TEST CASE 1. Verify all of the application’s executables contain an embedded manifest that define its execution level (Req:1.1)

STEPS:

1. Browse the application install paths for all executables which contain only the .exe extension.

2. For each of the application’s executables above:

a. Open CFF Explorer1.

b. Browse to and open the executable.
c. In the tree menu on the left look for and highlight Resource Viewer.
d. Look for and expand Configuration Files tree.

e. Click on the resource 1 (This will be the most common, but may vary based on language).

f. Embedded manifest execution level will have this format:

<security>

<requestedPrivileges>

<requestedExecutionLevel level="asInvoker" uiAccess="false"/>

</requestedPrivileges>

</security>

VERIFICATION:

1. All executables with .exe extension contained an embedded manifest which defines the level of execution in order to pass this test case.

2. Each manifest must have requestedExecutionLevel tag that is defined with the appropriate level of execution that is required for that executable. Levels of execution are: level=”asInvoker”, level=”requireAdministrator” and level=”highestAvailable”.

3. The requestedExecutionLevel tag in each manifest must have the attribute “uiAccess” set to “false”.

NOTES:

1. The application’s main executable “requestedExecutionLevel” tag must have level=”asInvoker” in order to pass this test case. That means that the application’s main executable itself must be able to be run as Least-Privilege.

2. If any of the application’s executables use an external manifest, the execution level resource for each executable with a .exe extension which uses an external manifest must be set to:
<security>

 <requestedPrivileges>

<requestedExecutionLevel level="asInvoker" uiAccess="false"/>

 </requestedPrivileges>

</security>
Verify the external manifest by:

a. Browse the application’s installed directories for <executable_name>.exe.manifest.

b. Open the manifest in notepad

c. The execution level resource must be set as above in order to pass this test case.

3. Any application that is required to run as an administrator or requires an elevated privilege to run properly must receive a waiver from Microsoft in order to pass this test case. In this case the “requiredExecutionLevel” tag must be set to “requireAdministrator” or “highestAvailable”.

4. Applications that require input from the UI of any other window; regardless of the relationship to the application may set the “uiAccess” attribute to “true” and will need to apply for the waiver from Microsoft in order to pass this test case.

TEST CASE 2. Verify Least-Privilege Users cannot modify other users documents or files (Req:1.1)

(ONLY APPLIES TO APPLICATIONS THAT CAN SAVE FILES. LOG N/A IF THE TEST CASE DOESN’T APPLY)

STEPS:

1. Logon on to the machine as logouser1.

2. Launch the application.

3. If the application allows the user to create, save or open files; create a new file and save the file to logouser1’s document location and go to next step.

4. Close application.
5. Right Click on “%SYSTEMDRIVE%\Users” directory

a. Choose Properties from the context menu

b. Click Security Tab

c. Verify ACLS on Users group are checked as:

i. Read & Execute

ii. List folder contents

iii. Read

6. Right Click on “%SYSTEMDRIVE%\Users\logouser1” directory

a. Choose Properties from the context menu

b. Click Security Tab

c. Verify the only logouser1, System and the local Administrators group have permissions for that directory.
7. Log off the machine as logouser1.

8. Log on to the machine as logouser2.

9. Launch the application.

10. Attempt to open the file created in step 3 above

a. The file cannot be opened and the logged on user must be prompted indicating so.

VERIFICATION:

1. The application does not allow any Least-Privileged user to edit, change, modify, delete or rename any other user’s created files in order to pass this test case.

2. The application does not attempt to elevate a Least-Privilege User giving that user permission to modify another user’s documents or files.

NOTES:

1. The application must not edit the ACLS of the “%SYSTEMDRIVE%\User” and the User’s directories in order to pass this test case.
TEST CASE 3. Verify Least-Privilege user is not able to save files to Windows System directory (Req:1:1)

(ONLY APPLIES TO APPLICATIONS THAT CAN SAVE FILES. LOG N/A IF THE TEST CASE DOESN’T APPLY)

STEPS:

1. Logon on to the machine as logouser1.

2. Right Click on “%SYSTEMDRIVE%\Windows” directory

a. Choose Properties from the context menu

b. Click Security Tab

c. Verify ACLS on Users group are checked as:

i. Read & Execute

ii. List folder contents

iii. Read

3. Launch the application.

4. If the application allows the user to create, save, open…etc files, create a new file and attempt to save the file to the Windows System directory (%Windir%).

5. Recheck ACLS on the above directory.

VERIFICATION:

1. The application must not allow the Least-Privileged user to save any files to Windows System directory in order to pass this test case.
2. The application must not edit the ACLS of the “%SYSTEMDRIVE%\Windows” directory in order to pass this test case

NOTES:
1. The application must prompt user with a message indicating that the user does not have permission to save files to this location in order to pass this test case.

TEST CASE 4. Verify application installer does not have a 16-Bit installer, does not use or rely on 16-Bit code or components and does not attempt to install any non 64-Bit drivers on x64 versions of Windows regardless if application is a Win32 application or is native to 64-bit (Req:1.2)
STEPS:

1. Install application on x64 version of Windows Vista Ultimate.

2. Launch the application.
3. Perform a normal operation to determine whether the application is running (Normal operation steps are required to be submitted along with the application for testing).

VERIFICATION:

1. The application installed without generating an Error.

2. The application installed without generating a driver warning message.

3. The application launched and is able to perform the operation above without crashing.

NOTES:

1. Application must be supported on x64 bit version of Windows whether the application is native to 64-Bit or a Win32 application in order to pass this test case.

2. Applications that install using 16-Bit code will not be able to complete install on 64-Bit versions of Windows and will be indicated by an Error Message.

3. Applications that install dependent drivers on 64-Bit versions of Windows Vista, must be 64-bit in order to pass this test case.

4. WOW64 will allow Win32 applications to run on 64-Bit versions of Windows and must be able to run properly without data loss in order to pass this test case.

TEST CASE 5. Verify application installed executables and files are signed (Req:1.3)

STEPS:

1. Browse application install paths for all executables which contain .exe, .dll, .ocx, .sys, .cpl, .drv and .scr extensions.

2. Open elevated (“Run as administrator”) command window.

3. For each of the application’s executables above:

a. Use the SignTool11 to verify signature of each executable.

b. In the command window change to the “Tools” directory; type “signtool verify /pa /v “<App_Install_Directory>\<Executable>”
c. Make note of any Errors reported in the command window as a result of the signature.
VERIFICATION:

1. Each application executable with an extension of exe, .dll, .ocx, .sys, .cpl, .drv and .scr must contain a valid signature in order to pass this test case.

2. Each application executable must not return any errors as a result of the signature in order to pass this test case.
NOTES:

1. If the application uses a separate CAT file for installed executables, use signtool.exe to point to the CAT file for signature verification by typing “signtool verify /c <Name_of_Catalog_File> <File_Name>”
TEST CASE 6. Verify all kernel-mode drivers installed by the application are signed (Req:1.4)
(ONLY APPLIES TO APPLICATIONS INSTALL KERNEL DRIVERS. LOG N/A IF THE TEST CASE DOESN’T APPLY)
STEPS:

1. Open elevated (“Run as administrator”) command window.

2. For each Kernel Mode Driver installed by the application:

a. Use the SignTool11 to verify signature each driver in the following manner:

b. If the driver CAT is not installed to “%WINDIR%\System32\Catroot” type “signtool verify /c <Name_of_Catalog_File> <Driver_Name>”
c. If the driver CAT is installed to “%WINDIR%\System32\Catroot” type “signtool verify /a <Driver_Name>”
d. Make note of any Errors reported in the command window as a result of the signature
VERIFICATION:

1. All kernel-mode drivers installed by the application must contain a valid Microsoft signature and should not cause Windows to alert the user about installing an unsigned driver through a pop-up message.

2. In a WHQL signature the command window output under the Signing Certificate Chain must have: “Microsoft Windows Hardware Compatibility Publisher” in the in the “Issued to:” line and “Microsoft Windows Hardware Compatibility PCA” in the “Issued by:” line. That means that the kernel-mode driver has passed the WHQL Certification and has obtained a valid Microsoft signature from the WHQL program. The Certification Path will also have these names under the signature Root Authority.

3. In a DRS signature the command window output under Signing Certificate Chain must have: “Microsoft Windows Driver Reliability Publisher” in the “Issued to:” line and “Microsoft Windows Driver Reliability PCA” in the “Issued by:” line. That means that the kernel-mode driver has passed the Driver Reliability Certification and has obtained a valid Microsoft signature from the Driver Reliability program. The Certification Path will also have these names under the signature Root Authority.

NOTES:

1. Any kernel-mode drivers installed by the application must have a Microsoft signature obtained through the WHQL or DRS program in order to pass this test case.

TEST CASE 7. Verify application properly checks for Operating System version (Req:1.6)

STEPS:

1. Browse application install paths for all executables which contain only the .exe extension.

2. For each of the application’s executables above:

a. Attach executable to AppVerifier and view Property Window.
b. Check HighVersionLie from Compatibility checks.
i. Highlight HighVersionLie.
ii. Double Click Major version and enter 6.
iii. Double Click Minor Version and enter 0.

iv. Double Click Build number and enter the build number of Windows Vista you are using to perform the logo tests
v. Double Click Service pack major number and enter 0
vi. Double Click Service pack minor number and enter 0
c. Launch executable while attached to AppVerifier.

d. Perform a normal operation to determine whether the application is running (Normal operation steps are required to be submitted along with the application for testing)

e. Exit the application, view AppVerifier Logs for the executable

i. Search each log for HighVersionLie

f. Change the Service pack major number to 10 and Service pack minor version number to 1411 in AppVerifier and repeat steps c – e.
VERIFICATION:

1. The AppVerifier logs show the GetVersion or GetVersionEx API was used when checking the version of Windows. This means that the installer and each application executable with the .exe extension when launched correctly checked the version of Windows.

NOTES:

1. The application installer and all executables installed by the application must use the GetVersion or GetVersionEx API when checking for the version of Windows in order to pass this test case.

2. If the application is supposed to fail due to the version of Windows Vista, it must do so gracefully by a pop-up message informing the user and writing a message to the Windows NT Event Log. As a result the application cannot be certified for Windows Vista.
3. If the application is supposed to fail due to the Version of Windows being greater than Window Vista, it must do so gracefully by a pop-up message informing the user and writing a message to the Windows NT Event Log.
4. The AppVerifier logs may show HighVersionLie; but contains no data, which indicates the application did not attempt to check the OS version and will also pass this test case.

TEST CASE 8. Verify application launches and executes properly using Fast User Switching (Req.1.8)

STEPS:

1. Log on to logo test machine as Logouser1.
a. Enable audio if not already enabled.
2. Switch users by using Ctrl+Alt+Del and choosing Switch User.
3. Log on to logo test machine as Logouser2.
4. Launch your application as Logouser2.
5. Perform a normal operation to determine whether the application is running (Normal operation steps are required to be submitted along with the application for testing).
6. Switch back to Logouser1 using the same method.
7. Launch application as Logouser1.
8. Perform a normal operation to determine whether the application is running (Normal operation steps are required to be submitted along with the application for testing).
VERIFICATION:

1. The application can be successfully launched by User2 while User1 is logged on to the machine in another session.

2. The application can be successfully launched concurrently by both users.

3. The application launched and is able to perform the operation without crashing by both users.

NOTES:

1. The application must support Fast User Switching in order to pass this test case.

2. The application must be able to launch and perform the operation above using the Fast User Switching method in order to pass this test case.

3. If application does not support concurrent user sessions, it must pop-up a message indicating this to the User and write a message to the Windows NT Event Log in order to pass this test case.

4. If the application uses sounds, it must not be heard in another user’s session while logged on through the Fast User Switching method in order to pass this test case.
TEST CASE 9. Verify application launches and executes properly using Remote Desktop (Req.1.8)

STEPS:

1. Log on to log test machine one as logouser1.
2. Launch your application.
3. Perform a normal operation to determine whether the application is running (Normal operation steps are required to be submitted along with the application for testing).
4. Leave application open as Logouser1.
5. Using a second machine that is Windows Vista Ultimate, use Remote Desktop to terminal serve into machine one
a. Log on to machine one through Remote Desktop as logouser1.
6. Exit application and re-launch application.
7. Perform the operation above.
VERIFICATION:

1. The application remained in the same state without crashing when using Remote Desktop to terminal serve into the machine.

2. The application is able to be successfully re-launched and perform the operation above by logouser1 through Remote Desktop.
NOTES:

1. The application must not crash or lose its state when being accessed through a Remote Desktop connection in order to pass this test case.

2. If application does not support Remote Desktop, it must pop-up a message indicating this to the User and writes a message to the Windows NT Event Log in order to pass this test case.

TEST CASE 10. Verify drivers and services start in Safe-Mode. (Req:1.10)

(ONLY APPLIES TO APPLICATIONS THAT WRITE TO THE SAFEBOOT REGISTRY KEYS. LOG N/A IF THE TEST CASE DOESN’T APPLY)

STEPS:

1. Open elevated (“Run as administrator”) command window
a. Change directories to the directory that contains RegDump3
b. Type “regdump.exe /o safereg1.txt /r HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal” to dump that registry key
c. Type “regdump.exe /o safereg2txt /r HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SafeBoot\Network” to dump that registry key
2. Install application.
3. Open elevated (“Run as administrator”) command window
a. Change directories to the directory that contains RegDump
b. Type “regdump.exe /o safeout1.txt /r HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SafeBoot\Minimal” to dump that registry key
c. Type “regdump.exe /o safeout2.txt /r HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SafeBoot\Network” to dump that registry key
4. Compare safereg1.txt with safeout1.txt
a. Copy both safereg1.txt with safeout1.txt from the directory that contains RegDump to the directory that contains RegDiff.
b. Open elevated (“Run as administrator”) command window.

c. Change directories to the directory that contains RegDiff.

d. Type “regdiff.exe /f1 safereg1.txt /f2 safeout1.txt /s filter.txt /o safecomp1.txt”.
e. Open safecomp1.txt and note any changes between the two files.
5. Compare safereg2.txt and safeout2.txt
a. Copy both safereg2.txt with safeout2.txt from the directory that contains RegDump to the directory that contains RegDiff.
b. Open elevated (“Run as administrator”) command window.

c. Change directories to the directory that contains RegDiff.

d. Type “regdiff.exe /f1 safereg2.txt /f2 safeout2.txt /s filter.txt /o safecomp2.txt”.
e. Open safecomp2.txt and note any changes between the two files.
6. If either registry key was changed by the application reboot machine into Safe-Mode by hitting F8 after the machine BIOS loads but prior to Windows Vista loading the kernel.
7. Check that the drivers and services which the application installed that wrote to the above keys are started using windows taskman.exe.
a. Open Windows Task Manager (taskman.exe)
b. Click on the Processes Tab
8. Perform a normal operation of the application to determine whether the application is running (Normal operation steps are required to be submitted along with the application for testing)
VERIFICATION:

1. All drivers and services that were written to the safeboot registry keys by the application are started when the machine is running in safe-mode and can be verified in Windows Task Manager.

2. If the application wrote any drivers or services to either safeboot registry key, those drivers and services must run without error and the application must be able to perform the normal operation above when the machine is running in Safe-Mode in order to pass this test case.
NOTES:

1. The safe boot registry keys are:
a. HKLM/System/CurrentControlSet/Control/SafeBoot/Minimal HKLM/System/CurrentControlSet/Control/SafeBoot/Network
2. If the application writes to either safeboot registry keys, documentation must be provided to Microsoft detailing the reasoning why the application must run in Safe-Mode and will need to apply for the waiver from Microsoft in order to pass this test case.
Install/Uninstall

TEST CASE 11. Verify application installer uses Windows Installer. (Req:2.1)

STEPS:

1. Open taskman.exe.
a. Sort by Image Name.
2. Browse application install location.
3. Launch application installer.
4. Use Task Manager to verify that msiexec.exe has been executed.
VERIFICATION:

1. Install package contains an .msi extension.

2. If install package does not contain an .msi extension, Windows Task Manager shows that msiexec.exe has been executed.

NOTES:
1. The install package must use Windows Installer in order to pass this test case.
2. Bootstrappers and Chainers may be used to start install but must call and use Windows Installer in order to pass this test case.
3. Applications that use a ClickOnce installer that has a .manifest or .application extension will also pass this test case.
TEST CASE 12. Verify application’s MSI installer does not receive any errors from the Internal Consistency Evaluators. (Req:2.1)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)
STEPS:

1. Open Orca
2. Open the application’s MSI installer package in Orca
a. From the tools menu click on Validate
b. Select Full MSI Validation Suite from the Evaluation File drop down menu
c. Uncheck show “INFO” Messages check box
d. Click Go
e. View ICE logs
f. Make note of all errors.
VERIFICATION:

1. The application’s MSI package must not receive any errors in the Internal Consistency Evaluators (ICE) 1-2, 4-7, 9-15, 17-24, 27-31, 33-36, 38, 40-57, 59, 61-63, 65, 67-71, 74-78, 81-84, 86-87, 89-94, 96-99 when validated in order to pass this test case.

NOTES:
1. Any errors that are received as a result of the ICE validation must be fixed. You can use ORCA to copy, paste and save results into a text editor such as notepad.exe for easy retrieval.
TEST CASE 13. Verify application’s installer contains an embedded manifest (Req:2.2)
(ONLY APPLIES TO APPLICATIONS THAT ARE USING A NON-SELF-CONTAINING BOOTSTRAPPER OR CHAINER TO INSTALL THE APPLICATION. LOG N/A IF THE TEST CASE DOESN’T APPLY)
STEPS:
1. Open CFF Explorer1.

2. In CFF Explorer browse application’s install executable.

a. Open the install executable.

b. In the tree menu on the left look for and highlight Resource Viewer.

c. Look for and expand Configuration Files tree.

d. Click on the resource 1 (This will be the most common, but may vary based on language).

e. Embedded manifest execution level will have this format:

<security>

<requestedPrivileges>

<requestedExecutionLevel level="asInvoker" uiAccess="false"/>

</requestedPrivileges>

</security>

VERIFICATION:

1. The application’s install executable requestedExecutionLevel tag is defined with the appropriate level of execution that is required for that executable. Levels of execution are: level=”asInvoker”, level=”requireAdministrator” and level=”highestAvailable”.

2. The requestedExecutionLevel tag in each manifest must have the attribute “uiAccess” set to “false”.

NOTES:

1. The application’s install executable must contain an embedded manifest which defines the level of execution in order to pass this test case.

2. Bootstrappers that do not explicitly require elevation must have requestedExecutionLevel tag set to “asInvoker”.

3. The number for the above resource may vary based on language specific applications. In some cases where there is no language specific resources in the manifest the resource may be (0).
TEST CASE 14. Verify application launches with installed user token (Req:2.2)
(ONLY APPLIES TO APPLICATIONS THAT LAUNCH AFTER THE INSTALLATION HAS COMPLETED. LOG N/A IF THE TEST CASE DOESN’T APPLY)
STEPS:
1. Open CFF Explorer1.

2. If application installer is a Windows Installer file (.msi extension) go to step 3 in this test case; otherwise, in CFF Explorer, browse application’s install executable.

a. Open the install executable.

b. In the tree menu on the left look for and highlight Resource Viewer.

c. Look for and expand Configuration Files tree.

d. Click on the resource 1 (This will be the most common, but may vary based on language).

e. Make note of the execution level which will be defined in the requestedExecutionLevel tag

3. In CFF Explorer, browse application’s executable that launches after install.

a. Open the executable.

b. In the tree menu on the left look for and highlight Resource Viewer.

c. Look for and expand Configuration Files tree.

d. Click on the resource 1 (This will be the most common, but may vary based on language).

e. Make note of the execution level used to launch the application which will be defined in the requestedExecutionLevel tag.

VERIFICATION:

1. The application’s install executable and the application’s launched executable must contain the same level of execution shown in their requestedExecutionLevel tags in order to pass this test case. This means that both the install executable and the application’s launched executable can be executed by the same user.

NOTES:

1. By default Windows Installer files (.msi extensions) are executed “asInvoker”. The application’s executable launched by Windows Installer after install must have the requestedExecutionLevel tag set to “asInvoker” in order to pass this test case.

2. The number for the above resource may vary based on language specific applications. In some cases where there is no language specific resources in the manifest the resource may be (0).

3. External manifests (.manifest or .application extensions) and XML manifest can be viewed using a text editor.

TEST CASE 15. Verify application installs to the correct folders by default (Req:2.3)
STEPS:

1. Open AppVerifier2.
2. Attach application install executable to AppVerifier including msiexe.exe

a. Check FilePaths from the Compatibility checks
3. Use an imaging tool to take a snapshot of the machine
4. Install application using custom values selecting to install all components.

5. Once install is complete, use an imaging tool to take a snapshot of the machine.

6. Compare images

7. View AppVerifier Install Logs

a. Search install logs for LayerName=”FilePaths”
b. Make note of each install “Error” path the application installs or writes to.
VERIFICATION:

1. The application only installed to a subdirectory of Program Files or the user’s AppData directories.

NOTES:

1. Steps 1, 2 and 7 do not apply to the install of ClickOnce applications.
2. The application must only install to a subdirectory of Program Files or the user’s AppData directories by default in order to pass this test case.

3. Per machine installs must install to Program Files by default in order to pass this test case.

4. Per machine installs have no correct user AppData directory because elevation may be needed; user data must be written at first run and not during install in order to pass this test case.

5. Default install directories are:

a. Native x86 and x64 applications

i. Program Files - %ProgramFiles%

ii. User’s AppData - %APPDATA%
iii. ProgramData – %ALLUSERSPROFILE%
b. Win32 applications on x64

i. Program Files - %ProgramFiles(x86)%

ii. AppData - %APPDATA%
iii. ProgramData – %ALLUSERSPROFILE%

6. If the application installs drivers and/or Windows redistributive components they may be installed to existing Windows directories.
TEST CASE 16. Verify ClickOnce application is signed with a valid Authenticode Certificate (Req:2.4)
(ONLY APPLIES TO APPLICATIONS THAT USE CLICKONCE FOR DEPLOYMENT. LOG N/A IF THE TEST CASE DOESN’T APPLY)

STEPS:
1. Double click the ClickOnce installer.
2. Click the Publisher link on the Security Warning prompt, this will open the Certificate.
3. View and validate that the certificate is valid.
VERIFICATION:
1. ClickOnce applications must prompt the user with the Security Warning pop-up message box and must contain a link to the signed certificate in order to pass this test case.
2. The file must be signed with a valid Authenticode Certificate in order to pass this test case.
NOTES:
1. ClickOnce installers are manifest files and are associated with a .manifest or .application extension.

2. For some ClickOnce installers you may be able to view the signature by:

a. Right click the ClickOnce installer file.

b. Select Properties.

c. Click signature tab.

d. View and validate signature.

TEST CASE 17. Verify ClickOnce application only stores data in installed user’s folders and does not write to WRP registry keys during install. (Req:2.5)
(ONLY APPLIES TO APPLICATIONS THAT USE CLICKONCE FOR DEPLOYMENT. LOG N/A IF THE TEST CASE DOESN’T APPLY)

STEPS:
1. Log on to machine as logouser1.
2. Open elevated (“Run as administrator”) command window
a. Change directories to the directory that contains RegDump3
b. Type “regdump.exe /o regstart.txt “ to dump registry pre-install
3. Install application.
4. Open elevated (“Run as administrator”) command window
a. Change directories to the directory that contains RegDump
b. Type “regdump.exe /o regfin.txt” to dump registry post install
5. Launch your application.
6. Close your application.
7. Copy regstart.txt and regfin.txt from the directory that contains RegDump to the directory that contains RegDiff.
8. Open elevated (“Run as administrator”) command window
a. Change directories to the directory that contains RegDiff4
b. Type “regdiff.exe /f1 regstart.txt /f2 regfin.txt /s filter.txt /o regdiffer.txt”
c. Open regdiffer.txt and note any changes between the two files.
9. Switch users by using Ctrl+Alt+Del and choosing Switch User.
10. Log on to machine as logouser2.
11. Logouser2 is unable to access application.
VERIFICATION:
1. The ClickOnce application did not write to WRP registry keys during install.

2. ClickOnce applications must only store data in the installed user’s folder and was only accessible by that user in order to pass this test case.
NOTES:
1. ClickOnce applications are generally LOB applications that are installed per user and are to serve a specific purpose for the individual user.

2. User folders are:

a. %USERPROFILE%

b. %HOMEPATH%

3. ClickOnce applications that write to any registry key must provide documentation to Microsoft detailing the reasoning why the application wrote to the registry as well as which keys were written to in order to pass this test case. If the application must write the registry during install, best practice is not to use ClickOnce for deployment.
TEST CASE 18. Verify Windows Installer package contains Manufacturer, ProductCode, ProductLanguage, ProductName, ProductVersion (major and minor), and UpgradeCode property tags and that they are not null (Req:2.7)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)
STEPS:

1. Open Orca
2. Open the application’s MSI installer package in Orca
a. In the Table Tree on the left browse to Property table
b. In the right hand pane look at the following tables
i. Manufacturer
ii. ProductCode
iii. ProductLanguage
iv. ProductName
v. ProductVersion (Major and Minor)
vi. UpgradeCode
c. In the Table Tree on the left browse Upgrade table
i. UpgradeCode
ii. ProductVersion (VersionMin and VersionMax)
VERIFICATION:

1. The Windows Installer package contained Manufacturer, ProductCode, ProductLanguage, ProductName, ProductVersion (major and minor) and UpgradeCode property tags in the Property table and they were not NULL in order to pass this test case. This means the application will correctly identify itself in Windows Vista Software Explorer (Add/Remove Programs).
2. The Windows Installer package contained UpgradeCode, ProductVersion (VersionMin and VersionMax) property tags in the Upgrade table with the UpgradeCode, ProductVersion (VersionMin must not be null see NOTES below) tags not being Null in order to pass this test case and the UpgradeCode in the Upgrade table must be identical to the UpgradeCode in the Property table. This means the application properly prepared for upgrade to address the previous package and properly prevents an older package from installing over a new package.

3. The ProductCode and UpgradeCode tables must be in a properly formatted GUID (see NOTES below) in order to pass this test case.

NOTES:

1. The above property tag values are defined as:

a. Manufacturer - is the name of the Manufacturer for the product.

b. ProductCode - is a unique identifier for the particular product release, represented as a string GUID, for example "{12345678-1234-1234-1234-123456789012}". Letters used in this GUID must be uppercase. This ID must vary for different versions and languages. The 32-bit version and the native 64-bit version of an application's package must be assigned different product codes.

c. ProductLanguage - specifies the language the installer should use for any strings in the user interface that are not authored into the database. This property must be a numeric language identifier (LANGID). If a transform changes the language of the user interface in the database, then it should also change the value of this property to reflect the new language.
d. ProductName - contains the name of the application being installed, for example, FooApp 2006. This is only used for display purposes. Advertised as a product property and cannot be any greater than 63 characters in length.

e. ProductVersion - is the version of the product in string format. The format of the string is: major.minor.build

i. The first field is the major version and has a maximum value of 255. The second field is the minor version and has a maximum value of 255. The third field is called the build number or the update version and has a maximum value of 65,535.
ii. VersionMin in the Upgrade table is the lower boundary of the range of product versions detected by FindRelatedProducts. VersionMin must not be Null, preventing product from being downgraded. See MSDN for more information.
iii. VersionMax in the upgrade table is the upper boundary of the range of product versions detected by the FindRelatedProducts action. VersionMax must be Null, preventing product from being downgraded. See MSDN for more information.
f. UpgradeCode - is a GUID representing a related set of products. The UpgradeCode is used in the Upgrade Table to search for related versions of the application that are already installed. An application upgrade such as a service release or a new application version that updates the product into an entirely new application must also change the product code. (For example FooApp v1.0 after the update has been applied, the FooApp v1.0 now becomes a completely newer application: FooApp v2.0). The 32-bit and 64-bit versions of an application's package must be assigned different product codes.
2. If the application is installed via a bootstrapper or chainer, these property tags must be set in all the Windows Installer packages that are called from the bootstrapper or chainer in order to pass this test case.

3. If the application’s Windows Installer uses MSI chaining only one of the chained MSI packages must contain an Upgrade table in order to pass this test case.

TEST CASE 19. Verify application creates uninstall registry key and values (Req:2.7)

STEPS:
1. Open Orca
2. Open the application’s MSI installer package in Orca
a. In the Table Tree on the left browse Property table
b. In the right hand pane look at ProductCode
c. Make note of the ProductCode
3. Once install is complete open registry by typing regedit from the command line.

4. Browse the following registry key:
a. HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall\
b. Look for the {ProductCode} from above
c. Open that registry key
5. Make note of all the following entries in that key:
a. DisplayName

b. InstallLocation

c. Publisher
d. UninstallString

e. VersionMajor

f. VersionMinor
6. For ClickOnce applications

a. Install ClickOnce application

b. Launch ClickOnce application

c. Exit ClickOnce application

d. Open registry by typing regedit from the command line

e. Browse the following registry key:

i. HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Uninstall\

ii. Look for application (in most cases it will not appear by application name, but as a code.

iii. Open that registry key

f. Make note of all the following entries in that key:

i. DisplayName

ii. Publisher

iii. UninstallString

VERIFICATION:
1. The application must contain the above uninstall registry key and all the entries above in that key contained valid information matching the information submitted by the ISV and are not null in order to pass this test case.
NOTES:

1. The uninstall registry key location for win32 applications installed on x64 versions of Windows Vista is: HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall

2. The uninstall registry key location for native 64-bit applications installed on x64 versions of Windows Vista is: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall\

3. The uninstall registry key for ClickOnce applications is:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Uninstall\

TEST CASE 20. Verify application does not try to write to or replace any WRP registry keys or files (Req:2.9)

STEPS:

1. Open AppVerifier2.
2. Attach application install executable to AppVerifier including msiexe.exe.
a. Enable the LuaPriv check
3. Install application
4. Once install is complete, view AppVerifier Install Logs.
a. Search logs for LuaPriv
5. For each LuaPriv Error:
a. Check Error to ensure the application did not attempt to write to or replace any WRP Registry Key or Windows System File.
b. Make note of any WRP Registry Key or Windows System File that the application attempted to write to or replace.

6. Make note of any WRP dialogs that appeared during install.

7. Open AppVerifier2
8. Attach application’s main executable to AppVerifier including

a. Check the LuaPriv check

9. Launch the application

10. View application’s main executable AppVerifier log

a. Search log for LuaPriv (Simpilest way to search is to search for “Severity=”Error””)
11. For each LuaPriv Error:

a. Check Error to ensure the application did not attempt to write to or replace any WRP Registry Key or Windows System File at first run.

b. Make note of any WRP Registry Key or Windows System File that the application attempted to write to or replace.
12. Make note of any WRP dialogs that appeared during application runtime.
VERIFICATION:

1. The application must not attempt to write to WRP Registry Keys or replace any system files during install in order to pass this test case.

2. The application must not attempt to write to WRP Registry Keys or replace any system files during execution of common operations in order to pass this test case.
3. The application must not cause any WRP dialog messages or WRP event log messages during install or runtime in order to pass this test case.

NOTES:

1. Steps 1 - 6 do not apply to ClickOnce applications.
2. Just-in-time installations triggered must not try to replace WRP protected files.
3. Windows Vista does not allow certain critical system files to be replaced. Your application must not try to replace any of the protected files, if application tries to replace a system file, WRP(Windows Resource Protection) will try to restore the system file with a “good copy.”
4. If the application attempts to write to, overwrite or replace a WRP registry key, entry or Windows System File, the user must not be prompted by the WRP dialog which informs the user which WRP registry keys, entries or Windows System File the application is attempting to write to, overwrite or replace and will also be written to the Windows Event Logs.
TEST CASE 21. Verify the application does not use nested install custom actions (Req:2.10)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)
STEPS:
1. Open Orca
2. Open the application’s MSI installer package in Orca
a. In the Table Tree on the left browse the CustomAction table
b. Make note of any nested custom installs that are of type 7, 23 and 39
VERIFICATION:
1. The application’s Windows Installer CustomAction table must not use nested install custom actions that were of type 7, 23 and 39 in order to pass this test case.

NOTES:
1. Nested custom install action of type 7, 23 and 39 are defined as:

a. Type 7 - This custom action installs another installer package that is nested inside of the first package.

b. Type 23 - This custom action installs another installer package that resides in the application's source tree.

c. Type 39 - This custom action installs an application that is advertised or already installed. This type of custom action type may be used to reinstall or remove a product that has been installed as a concurrent installation by the current product's installation package. The Type 39 custom action cannot be used to reinstall or remove any product previously installed by any other means. For example, if the secondary product is installed using a Type 39, Type 23, or Type 7 custom action during the installation of the primary product, a Type 39 custom action may be used to remove the secondary product when the primary product is uninstalled.

2. Concurrent installations which are also called nested Installations, is a deprecated feature of the Windows Installer. Concurrent installations are not recommended for the installation of applications intended for release to the public. Concurrent installations are not available with Windows Installer version 1.0.
TEST CASE 22. Verify the application does not add custom columns to the Windows Installer’s standard tables and that any custom tables or properties are not prefixed with ‘msi’ (Req:2.10)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)

STEPS:
1. Open Orca
2. Open the SDK’s schema.msi
a. Browse “Tools” directory.
b. Open Schema.msi and view tables to get a list of the MSI standard tables.
3. Open the application’s Windows Installer package in a second instance of Orca
a. For each table in the application’s Windows Installer package:
i. Compare that table with the MSI standard table above.
ii. Make note of any MSI standard table listed in the application’s Windows Installer package which contains a custom column.
b. Make note of any custom tables or property tags that are prefixed with ‘msi’ (case insensitive).
c. Make note of any custom tables or property tags that call Gacutil through a custom action.
VERIFICATION:
1. The application’s Windows Installer must not add any custom columns to the MSI standard tables in order to pass this test case.
2. Any created custom tables or properties for those tables must not be prefixed with ‘msi’ in order to pass this test case.
3. If the application is installed via a bootstrapper or chainer, any Windows Installer package that is called from the bootstrapper or chainer must not add any custom columns to the MSI standard tables. Any created custom table or properties for those tables must not be prefixed with ‘msi’ in order to pass this test case.
4. The application’s Windows installer must not call Gacutil through a custom action.
NOTES:

1. A “Custom Column” is any non default column that is not part of the MSI standard package tables as defined by the SDK.
2. A “Custom Table” is any MSI table that is not part of the standard MSI package as defined by the SDK.
3. The ‘msi’ prefix is reserved for future use in Windows Installer’s tables and properties.
4. Use of the standard table ‘MsiSFCBypass’ is permitted.
TEST CASE 23. Verify the application rolls back the install and restores machine back to previous state (Req:2.10)
(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)

STEPS:

1. Make a copy of the application’s MSI installer package.
a. Right click the application’s MSI installer package and select copy for the context menu.
2. Open Orca.
3. Open the application’s MSI installer package in Orca.
a. In the Table Tree on the left browse the Feature table.
i. Make note of first feature that has a value in the Directory Column.
b. Select Tools -> Merge Module from the menu bar.
c. Browse to the “Tools\RollBack” directory and open “FailInstallFromCommitCustomAction.msm” 11
d. Change Language to “0”
e. Select “ProgramFilesFolder” from the Root Directory pull down menu.
f. Select the feature above is step 3a from the Primary Feature pull down menu.
g. Click OK (Note: Accept any merge failures)
h. Select File -> Save from the menu bar.
4. Close/Exit Orca.
5. Use an imaging tool to take a snapshot of the machine
6. Install application.
7. Once the application’s installer hits the injected failure during installer sequence execution.
a. The application must rollback the install.
8. Use an imaging tool to take a snapshot of the machine.
9. Compare images.
VERIFICATION:

1. The application must roll back the install at failure and restored the machine back to its previous state.
NOTES:
1. To ensure the application’s MSI installer package remains intact, make a copy of the application’s original MSI installer package prior to executing this test case.
2. If the Feature table does not contain a value in the Directory Column for any feature, select any feature as the Primary Feature in step 3f above.
3. Once test case has been completed, deleted application’s MSI installer package and rename the application’s copied MSI installer back to the original name (remove “Copy of” from the beginning of the MSI package name).
4. If the application uses custom actions to change the system state during install use the FailInstallFromDeferredCustomAction.msm to rollback the MSI installation through a deferred custom action.
TEST CASE 24. Verify the application does not force a reboot during install (Req:2.12)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)

STEPS:
1. Open Orca
2. Open the application’s MSI installer package in Orca
a. Search for “ForceReboot”
3. Make note of each “ForceReboot” action
VERIFICATION:
1. The application’s Windows Installer did not use the ForceReboot action.
NOTES:
1. If the application’s Windows Installer uses the ForceReboot action; documentation must be provided to Microsoft detailing the reasoning for the need to use this action in order to pass this test case.
2. In order to qualify for an exception: if the application needs to force a reboot after install the user must be given the option to reboot now or later, in which case the ForceReboot action can be used.
TEST CASE 25. Verify the application properly handles files in use during install (Req:2.12)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)

STEPS:
1. Open Orca
a. In the Table Tree on the left browse the Dialog table
b. Look for “MsiRMFilesInUse” Dialog
VERIFICATION:
1. The application’s Windows Installer package must contain the MsiRMFilesInUse Dialog and the Title column must contain a title that includes the application name in order to pass this test case. This means the application properly handles files in use by other applications and properly attempts to shut and restart them as needed during installation.
NOTES:
1. The purpose of this test case is to make sure we avoid reboots through the use of the Restart Manager Windows Vista feature.
2. The MsiRMFilesInUse property dialog box is only displayed when the package is installed on Windows Vista, and is otherwise ignored and packages that do not have the MsiRMFilesInUse dialog box will continue to function using FilesInUse. A customization transform can be used to add an MsiRMFilesInUse dialog box to existing packages.
TEST CASE 26. Verify the application can be installed quietly from the command line (Req:2.13)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)

STEPS:
1. Open an elevated (“Run as administrator”) command window
2. Go to the directory that contains the application’s Windows Installer
a. Type “Msiexec /I <Application installer package>.msi /qn FASTOEM=1”
3. Once install is complete open Software Explorer
a. Browse for the application
VERIFICATION:
1. The application must be able to install quietly from the command line using /qn FASTOEM=1 (no UI is displayed during installation and no interaction is needed to complete the install) in order to pass this test case.
2. Application appears in Software Explorer indicates the application was properly installed.
NOTES:
1. If the application uses any other custom command line switches; documentation must be provided to Microsoft detailing the custom command line switches must and their use in order to pass this test case.

2. Applications which have documented alternatives to FASTOEM=1 will pass this test case.

TEST CASE 27. Verify the application’s Windows Installer ComponentID table does not contain null values (Req:2.14)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)

STEPS:
1. Open Orca
2. Open the application’s MSI installer package in Orca
a. In the Table Tree on the left browse the Component Table
b. Make note of any component that has a null value for the ComponentId column.
VERIFICATION:
1. The application’s Windows Installer must contain a value in the ComponentId column for all the components listed in the Component table in order to pass this test case.

NOTES:
1. If the application’s Windows Installer has any Component listed in the Component table with a null ComponentID; documentation must be provided to Microsoft detailing the reason for the null value in order to pass this test case. Though the Component table’s ComponentId field is nullable, a component with a blank ComponentId is not uninstallable or manageable through the Windows Installer APIs.
TEST CASE 28. Verify the application’s Windows Installer Package does not contain more than one COM Server for each Component (Req:2.14)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)

STEPS:
1. Open Orca
2. Open the application’s MSI installer package in Orca
a. In the Table Tree on the left browse the Component Table
b. Make note of any component that has more than one COM Server listed in the KeyPath column.
VERIFICATION:
1. The application’s Windows Installer must not contain more than one COM Server (if any) per component listed in the Component table in order to pass this test case.
TEST CASE 29. Verify the application’s Windows Installer Package does not contain more than one shortcut for each component (Req:2.14)

(IF APPLICATION DOES NOT USE WINDOWS INSTALLER FAIL THIS TEST CASE. LOG N/A IF APPLICATION IS CLICKONCE.)

STEPS:
1. Open Orca
2. Open the application’s MSI installer package in Orca
a. In the Table Tree on the left browse the Component Table
b. Make note of any component that has more than one file listed to be used as a Start Menu or Desktop shortcut.
c. In the Table Tree on the left browse the Shortcut Table
d. Make note of any component that has more than one file listed to be used as a Start Menu or Desktop shortcut.
VERIFICATION:
1. The application’s Windows Installer must not contain more than one file that is to be use with a Start Menu or Desktop shortcut for each component listed in the Component or Shortcut tables in order to pass this test case.
NOTES:

1. The application’s Windows Installer may contain more than one shortcut for each component listed in the Component or Shortcut tables; however, for each component that has multiple shortcuts, all shortcuts for that component must reference the same file in order to pass this test case. (Example: Application XYZ installs component foo and creates a shortcut on both the Start Menu and Desktop for that component. Both shortcuts must point to the same executable/component it is launching (foo.exe).)
Reliability

TEST CASE 30. Verify the application is Restart Manager Aware (Req:3.1)

STEPS:
1. Launch the application.
2. Open Windows Task Manager
a. Click on Processes tab
b. From the View menu select columns
c. Check PID (Process Identifier) check box and click OK to add the PID column to Windows Task Manager
d. Click Image Name to list processes by name
e. Find the application image name and make note or the PID
3. Open command window.
4. Change directories to the directory that contains the Restart Manager Tool.
5. From the command window inject a shutdown message to the application through the RMShutdown API in the following manner:
a. If the application is designed to shutdown and restart; type “rmtool.exe –p dwPID –S –R” (dwPID is the application's Process ID and can be obtained via task manager) this will force the application to shutdown and restart.
b. Make a note if the application does not shutdown and restart
c. If the application is not designed to restart after shutdown; type “rmtool.exe –p dwPID –S” this will force the application to shutdown only
d. If your application is a service and is designed to restart after shutdown; type “rmtool.exe –f $dir\<service> –S –R” ($dir is the path to the service executable or dll) this will force the application to shutdown and restart.
e. If your application is a service and is not designed to restart after shutdown; type “rmtool.exe –f $dir\<service> –S” ($dir is the path to the service executable or dll) this will force the application to shutdown only.
f. Open Event Viewer by typing eventvwr from the command line or from the Administrator Tools.
i. Expand Windows Logs

ii. Click on Application

iii. There will be a RestartManger (Information) message for each Shutdown and Restart action performed by Restart Manager on each executable.
a. The shutdown message will contain the executable name and ProcessID in the log.

b. The restart message will contain the executable name and ProcessID in the log, with the ProcessID being different then the shutdown log. This log will have a later time stamp
VERIFICATION:
1. Using the Restart Manager Tool the application was able to be shutdown via the RMShutdown API quietly without user interaction while idle and restarted if the application was designed to restart after shutdown.
2. If the application is a service; using the Restart Manager Tool the service was able to be shutdown via the RMShutdown API quietly without user interaction whole idle and restarted if the service was designed to restart after shutdown.
3. There must be both an Information message with “Source” listed as RestartManger for each shutdown and restart action performed by Restart Manager in the Windows Application Logs on each executable above in order to pass this test case.
NOTES:
1. The application must be idle and must not be running or performing any operations while performing this test case.

2. All applications must listen and respond to shutdown messages using the Restart Manager API quietly without user interaction while idle in order to pass this test case.

3. The application or service must not cause an Access Violation and shutdown/restart safely in order to pass this test case.

4. Restart Manager shutdown messages are:

a. WM_QUERYENDSESSION with LPARAM = ENDSESSION_CLOSEAPP(0x1): GUI applications must respond (TRUE) immediately to prepare for a restart.
b. WM_ENDSESSION with LPARAM = ENDSESSION_CLOSEAPP(0x1): The application must shutdown within 5 seconds (20 seconds for services).
c. CTRL_SHUTDOWN_EVENT: Console applications must shutdown immediately.
5. If the application or service is not designed to restart after shutdown, then there will only be an Information message with “Source” listed as RestartManger for each shutdown action performed by Restart Manager in the Windows Application Logs on each executable above.
TEST CASE 31. Verify application does not break into a debugger with the specified AppVerifier checks (Req:3.2)

STEPS:
1. Log on to machine as an Administrator.

2. Attach a user-mode debugger10 to the machine.

a. Open an elevated command window by:
i. Right click cmd.exe (%Windir%\System32).

ii. Select “Run as Administrator” from the context menu.

b. Change directories to where Debugging Tools for Windows is installed.

c. Type “windbg –I” (Note: For more detailed information use Windbg and AppVerifier help).
3. Browse application install paths for all executables which contain an .exe extension.

4. For each of the application’s executables above:

a. Attach executable to AppVerifier and check the following AppVerifier Checks:
i. Exceptions, Handles, Heaps, Locks, Memory and TLS from the Basics checks.
ii. DangerousAPIs and DirtyStacks from the Miscellaneous checks.

b. Launch application executable.
c. Perform a normal operation to determine whether the application is running (Normal operation steps are required to be submitted along with the application for testing).
d. Close the application executable.
VERIFICATION:
1. All application’s executables with a .exe extension must run and must not break into the debugger while executable is attached to AppVerifier with the above AppVerifier checks in order to pass this test.
NOTES:
1. Save all the AppVerifier logs which generated errors. This will enable the ISV to easily gather the needed data to fix those errors that broke into the debugger.

2. When applicable copy and save the stack trace from the debugger (windbg). This will give the ISV more information as to where the break resides.

3. All errors that broke into the debugger for each of the application’s executables reported as a result of the AppVerifier checks above must be fixed and rerun through those AppVerifier checks until each of the application’s executables no longer break into the debugger from those AppVerifier checks in order to pass this test case.
4. This test case is not applicable to fully managed applications.

TEST CASE 32. Verify that the application only handles exceptions that are known and expected (Req:3.2)

STEPS:
1. Browse application install paths for all executables which contain only the .exe extension.

2. For each of the application’s executables above:

a. Launch the application’s executable.

b. Open command window.
c. Change directories to the directory that contains ThreadHijacker.
d. From the command window inject an AV crash using ThreadHijacker in the following manner:

i. Type “threadhijacker.exe /ui /crash:av /process:<process_name>”
e. Open Event Viewer by typing eventvwr from the command line or from the Administrator Tools.

i. Expand Windows Logs

ii. Click on Application

iii. There must be an Application Error (Error) and Window Error Reporting (Information) message for the executable.

VERIFICATION:
1. All of the application’s executables above; when injected Access Violation (AV) resulted in the application crashing and must display the WER (Windows Error Reporting) dialog message in order to pass this test case. This means that the application AV failure properly allowed Windows Error Reporting to report this crash.
2. There must be both an Error message with “Source” listed as Application Error and an Information message with “Source” listed as Windows Error Reporting for each executable above in order to pass this test case.

NOTES:
1. In some cases it may be necessary to add a remote thread to application’s existing process that is being tested.

2. ThreadHijacker can be used to inject an AV crash into UI and Non-UI threads. Non-UI threads would use the /tid: switch in place of /ui, see ThreadHijacker help (threadhijacker /?) for Non-UI threads.

List of Tools
Note: When testing a Win32 application on x64 versions of Windows Vista use the x86 version of the tools. When testing a native x64 application on x64 versions of Windows Vista use the AMD64 version of the tools if available.
1. CFF Explorer – Is a freeware tool that can be used to explore and edit resources used for any application executable. This tool can be downloaded from http://www.download.com/CFF-Explorer/3000-2383_4-10564296.html?tag=lst-0-1 or another safe download site.
2. AppVerifier – Is a Microsoft tool that is a runtime verification tool for unmanaged code that assists in finding subtle programming errors that can be difficult to identify with normal application testing. The setting of AppVerifier checks requires administrative privileges.
3. RegDump – Is a command line tool that is useful in dumping the contents of registry to a file which can used for analyzing the values/data, taking snapshots of the contents (which can be diffed using regdiff.exe) and monitor (to check for corruption). This tool in conjunction with regdiff can be used by developers/testers to make sure that their component is not changing registry in any undesirable way. This tool is supplied by Microsoft and is packaged with the Vista Logo Tools.
4. RegDiff – Is a command line tool that generates the log of differences found in each file. It compares differences section wise as generated by RegDump tool. This tool is supplied by Microsoft and is packaged with the Vista Logo Tools.
5. Windows Vista SDK – Is the Windows Software Development Kit that contains the information, samples and tools you need to develop Windows-based applications and libraries using both Win32® and .NET Framework 3.0 technologies targeting Windows Vista and can be used to develop both 32- and 64-bit applications. The Windows SDK includes documentation, samples, and tools designed to help you develop Windows applications and libraries using both Win32® and .NET Framework 3.0 technologies targeting Windows Vista.
6. Orca - Is part of the Windows Vista SDK and is a database table editor for creating and editing Windows Installer packages and merge modules. Orca requires administrative privileges to run.
7. Restart Manager Tool – Is a command tool that is used to inject a shutdown message to the application or service through the RMShutdown API. This tool is supplied by Microsoft and is packaged with the Vista Logo Tools.
8. ThreadHijacker – Is a command line tool that injects crashes into another process by: pausing a thread, injecting binary data into that process' address space, setting the thread's instruction pointer to that binary data, and resuming the thread. This tool is supplied by Microsoft and is packaged with the Vista Logo Tools.
9. SignTool – Is part of the Windows Vista SDK and is a command-line tool that digitally signs files, verifies signatures in files, or time stamps files.
10. Debugger – Is used to detect and remove errors from a program. Use WinDbg as a debugger which is installed as part of the Debugging Tools for Windows. Use AppVerifier and WinDbg help to setup and configure WinDbg for User-Mode debugging.
11. FailInstallFromCommitCustomAction.msm – Is a MSI transform that will rollback the MSI installation through a commit custom action. If the application uses custom actions to change the system state during install use the FailInstallFromDeferredCustomAction.msm to rollback the MSI installation through a deferred custom action. These transforms are supplied by Microsoft and is packaged with the Vista Logo Tools.
- 1 -

© Microsoft Corporation 2006. All rights reserved.

