Microsoft® Windows Server™ 2003 White Paper

[image: image1.png]Microsoft'

Windows Server2003

[image: image2.jpg]Windows Server System-

Windows Server System is comprehensive, integrated,
and interoperable server infrastructure that simplifies the
development, deployment, and management of flexible
business solutions.
www.microsoft.com/windowsserversystem

Microsoft Metadirectory Services Migration Guide
MMS 2.2 SP1 to MIIS 2003

Microsoft Corporation

Published: January 2004
Abstract

This document is a guide to aid you in the migration of an existing metadirectory from Microsoft Metadirectory Services 2.2 Service Pack 1 (MMS 2.2 SP1) to Microsoft Identity Integration Server (MIIS) 2003. Included are some procedures for analyzing your existing implementation—including some utilities to help in that analysis—as well as a checklist of things you’ll need to consider while migrating.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Visual Studio, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

1Introduction

1Intended Audience

2Taking Inventory

2Understanding What You Have in MMS 2.2

2A Quick Refresher on Templates

2The Templates.exe Utility

3How It Works

4The Default Configuration

4Control Metadirectory Templates

4Control Connected Directory Templates

5Connected Directory Foreign Users Templates

5Other Templates and Configuration Information

6Changing the Configuration

7The SchemaReport.exe Utility

7How It Works

8The TAMAReport.exe Utility

8How It Works

10Understanding MIIS 2003 Configuration

10Management Agent Configuration

11Schema Configuration

11Server Configuration

12Analyzing Your MMS 2.2 SP1 Configuration

12Hierarchical Metaverse vs. Flat Metaverse

12Management Agent Modes vs. Join and Projection Rules

13Inclusions and Exclusions vs. Connector Filter

14Attribute Flow

14Simple Attribute Flow vs. Direct Attribute Flow

15Advanced Attribute Flow vs. Advanced Attribute Flow Using Custom Extensions

16Disconnection Attribute Flow

17Disconnector Attribute Flow

17Secondary Attribute Flow

17TAMA vs. Provisioning Extension

18Management Agent Control Scripts vs. Run Profiles

19Migrating Your Configuration to MIIS 2003

19General Considerations

19Report Management Agents

19Management Agent Migration Steps

20Taking Advantage of New Features

20Attribute Precedence

20Reference Attributes

20Rules Extensions

20Provisioning Extension

20Migration Checklist

22Data Migration Issues

22Manually Joined Entries

22Entries Created Directly in the Metaverse

23Summary

24Related Links

25Appendix A – Template Function Equivalents

25$ALIAS_LEVEL()

25$BASE_DN()

25$CALL_PLUGIN()

25COLLECTIVE()

25$DB5_CONFIG()

26$DEBUG()

26$DISCONNECT()

26$DISCONNECT_SPECIFIC()

26$DN_COMPONENT()

27$EMBEDDED()

27$ENVIRONMENT()

28$EXIST()

28$EXPORT_TEMPLATE()

28$FROM_FILE()

29$GET_ATTR()

29$GET_CHAR()

30$GET_SUBSTRING()

31$HASH()

31$I_DSETYPE()

31$I_MEMBER()

32$I_PERSONAL_NAME()

32$I_READ_ATTRIBUTE()

32$INSTANCE()

33$JOIN_IN_PROGRESS()

33$LATIN_TO_CP()

33$LENGTH()

33$LIST_ATTR()

33$LIST_MEMBER()

34$MA()

34$MAP_CHAR()

34$MULTI_VALUED()

36$MV_OBJECT_CLASS()

36$MY_DSA()

36$MY_MTA()

36$PARENT()

36$PARSER()

36$PROPER_NAME()

36$REPLACE()

37$REVERSE_DN()

37$SEARCH()

38$SEQUENCE_NUM()

38$SET_ATTR()

38$SET_CHAR ()

38$SET_REFLECTION()

38$TEST_CHAR()

39$TIME ()

39$TO_FILE()

40$TRIM()

40$UNIQUE_ID()

40$UNQUOTE()

40$WILDCARD()

Introduction

One common question we’ve received on the Microsoft® Metadirectory Services (MMS) team is “Why does it have to be a migration? Why not have upgrades?” The answer lies in the magnitude of the changes between MMS 2.2 SP1 and Microsoft® Identity Integration Server (MIIS) 2003. Indeed, in some ways it is better to consider the two as completely separate but related products. While the concepts, the ideas, and even the jargon are common, the underlying architectures are completely different. Anything you could do with MMS 2.2 SP1, you can do with MIIS 2003—and a good deal more besides—but the exact method used will be different.

One of the biggest changes has been moving as much of the definition of synchronization logic as possible from the templates into a more usable form. You might have heard some talk of procedural versus declarative design; that is what this change is all about: taking the procedural logic embedded in the templates and replacing it with declarative XML that is both easier to manipulate and easier to render through a user interface. Much of what is involved in migrating a metadirectory is figuring out exactly what has been embedded in the old templates and reconfiguring that using the greatly simplified and vastly improved user interface in the new product.

Intended Audience

This guide is intended for people who have experience in designing and configuring MMS 2.2 metadirectories. It assumes you are already familiar with the MMS Compass administration application. It does not discuss details of how to set up and configure MIIS 2003. (See the MIIS 2003 documentation for this information.)

Taking Inventory

This section discusses how to take a “snapshot” of your current system in a way that will enable you to systematically analyze what you’ve got and how it is currently working.
Understanding What You Have in MMS 2.2
One of the challenges in implementing a metadirectory today is keeping track of everything it is doing, as well as how much “tweaking” has been done to the default installation. Some customization is inevitable.

To migrate to MIIS 2003 it is necessary to build a complete picture of the overall system and how it works together, which means having answers to the following questions: What is each management agent (MA) doing? What is the Together Administration Management Agent (TAMA) doing? Has the schema been extended?

Once you have answers to these questions, you can form a plan for configuring MIIS 2003 to accomplish the same results.

A Quick Refresher on Templates

The heart on any MMS system is its management agents. These do the real work of moving data within the metadirectory and among connected directory systems. And the heart of every MA, even the more exotic types such the Active Directory® directory service management agent (ADMA) and the TAMA, are its templates, which tell the synchronization engine what to do. Often, the net result of what happens to an object as it flows through the system depends on the complex interaction of several different templates that give the synchronization engine instructions. But while this interaction might be complex, templates themselves are quite simple. They are nothing more than text-based attributes of MA objects stored in the metadirectory.

MMS 2.2 SP1 is built upon directory technology, and it’s useful to remember that all of its components, from MAs, to TAMA resources, to the schema, to the DSA itself, are just directory objects and their associated attributes. The easiest way to see what an MA is doing is to look at those attributes that hold the template information. For a complete list of these template attributes, see the section The Default Configuration.

The Templates.exe Utility

We have created a utility that simplifies to process of viewing the template attributes of MMS 2.2 SP1 management agents. There are several advantages to using this utility, called templates.exe, as opposed to using the built in methods.

It is possible to right-click a management agent when using the MMS 2.2 Compass administrative utility and select “View All Attributes.” This will show all the attributes associated with the management agent, including the template attributes. But it will also show a lot of operational attributes and log files (which are stored as file-based attributes.) Needless to say, these other attributes can get quite huge, resulting in long response times or even time-outs, particularly for management agents handling large connected directories in production environments.

Another built-in method for retrieving the templates is to use the Properties page of the management agent. One of the tabs is called Recording Templates. From this tab you can save the management agent’s templates to the management agent’s working directory. Clicking Record this MA’s Templates activates Importt.exe, which uses a special recording template (record.exp) to export management agent attributes as individual files. The actual export template used can be seen (and edited) on the Recording template tab. The Templates.exe utility has a number of advantages over this approach, the two main ones being that it stores all of the templates relative to the directory it is run from, not in the management agents’ working directories on the MMS 2.2 server, and that it uses the management agent name for the directory name where the template files are stored. This means there is no need to figure out which directory of the format X:\zoomserver\data\ds\0000000n contains the templates for which management agent.

How It Works

The Templates.exe utility connects to a MMS 2.2 server using the Lightweight Directory Access Protocol (LDAP). The server name, the port used, and the DSA name of the server are retrieved from the file Templates.ini, which is located in the same directory as the Templates.exe file. A sample .ini file might look something like this:

[Templates]

Host=mmsserver.fabnoa.fabrikam.com

Port=389

DSA=DsaName=mms-prod,ou=Applications,dc=fabrikam,dc=com

Admin=mms-prod@mmsserver.fabnoa.fabrikam.com
Previous versions of the utility, some of which have been posted on an external user group (MMSUG at YahooGroups), included the administrator id and password in the .ini file. The version supplied with this migration guide prompts for the password, making it more secure for use in an operational environment. Similarly, the earlier versions had an option to update the MMS 2.2 management agents from the files on disk. The new version is read-only; it cannot inadvertently change your management agent configurations on the server.

Once the utility has assembled the connection information and credentials from the Templates.ini file and password prompts, it uses them to do a simple bind against the MMS server. It then reads the list of attributes that will be requested for each management agent from the Templates.cfg file. This is discussed in more detail in the next two sections. Then, starting with the name of the MMS 2.2 DSA as a search base, it issues a single level search, looking for all management agents, Active Directory management agents, and TAMA instances on the server. The exact LDAP search filter used is as follows:

(|(objectclass=zcMAService)(|(objectclass=zcTaManagementAgent)

(objectClass=zcManagementAgent)))
This returns a list of all required entries. For each management agent returned, the utility parses the distinguished name of the entry and creates a subdirectory with the same name as the relative distinguished name. For example, a management agent called ma=Netscape LDAP MA, DsaName=MMS1, ou=Applications, dc=contoso, dc=com will result in a subdirectory called Netscape LDAP MA being created.

For each management agent found a further LDAP query is made, requesting the complete list of attributes defined in the Templates.cfg file. For each attribute returned from the query, a file is written to the subdirectory containing the value of the attribute. The query treats all attributes requested and returned as binary attributes, so it is safe to use for binary attributes of management agents, such as formsets and schedules, as well as the more common text-based attributes.

The Default Configuration

The default set of attributes and their associated file names are listed in the following tables. No single management agent will ever have all of them, but this is a complete list of the templates that can occur on any management agent.

Control Metadirectory Templates

These templates control the flow of information from the connected directory to the metaverse.

	Attribute Name
	File Name
	Description

	zcDsiUpdateHeader
	imp.uht
	Defines the header format of an import file.

	zcDsiUpdateAdd
	imp.uat
	Defines the format of an add record in an import file.

	zcDsiUpdateModify
	imp.umt
	Defines the format of a modify record in an import file.

	zcDsiUpdateDelete
	imp.udt
	Defines the format of a delete record in an import file.

	zcDsiUpdateTrailer
	imp.utt
	Defines the trailer format of an import file.

	zcDsiAliasThingConstruction
	at.st
	Connector space construction template.

	zcDsiParentConstruction
	prt.st
	Parent construction template.

	zcDsiConstruction
	imp.st
	Metaverse construction template.

	zcDsiListMemberConstruction
	iList.st
	Metaverse list member construction template.

	zcDsiInclusion
	imp.inc
	Metaverse inclusion template.

	zcDsiExclusion
	imp.exc
	Metaverse exclusion template.

Control Connected Directory Templates

These templates control the flow of information from the metaverse to the connected directory.

	Attribute Name
	File Name
	Description

	zcDscHeader
	crt.uht
	Defines the header format of a create file.

	zcDscAdd
	crt.uat
	Defines the format of an add record in a create file.

	zcDscModify
	crt.umt
	Defines the format of a modify record in a create file.

	zcDscDelete
	crt.udt
	Defines the format of a delete record in a create file.

	zcDscTrailer
	crt.utt
	Defines the trailer format of a create file.

	zcDscConstruction
	crt.st
	Connected directory construction template.

	zcDscExclusion
	crt.exc
	Connected directory exclusion template.

	zcDsrConstruction
	rep.st
	Construction template for creating new connectors in connector space. This template, also known as the drag and drop template, is the one used by the TAMA to create new connectors.

	zcDsrExclusion
	rep.exc
	Connector space exclusion template.

Connected Directory Foreign Users Templates

	Attribute Name
	File Name
	Description

	zcDseUpdateHeader
	exp.uht
	Defines the header line format for an export file.

	zcDseUpdateAdd
	exp.uat
	Defines the format for an add record in an export file.

	zcDseUpdateModify
	exp.umt
	Defines the format for a modify record in an export file.

	zcDseUpdateDelete
	exp.udt
	Defines the format for a delete record in an export file.

	zcDseUpdateTrailer
	exp.utt
	Defines the trailer line format of an export file.

	zcDseConstruction
	exp.st
	Construction template.

	zcDseListMemberConstruction
	eList.st
	List member construction template.

	zcDseInclusion
	exp.inc
	Foreign user inclusion template.

	zcDseExclusion
	exp.exc
	Foreign user exclusion template.

These templates are used to construct foreign user entries in the connected directory. They are also used by the Report management agent for producing reports from the metadirectory.

Other Templates and Configuration Information

These templates cover the remaining management agent operations, and include such things as join criteria and attribute flow. Also included are a few attributes that are not technically speaking templates, but which hold useful information, such as the management agent’s working directory and what is set as the operation mode of the management agent.

	Attribute Name
	File Name
	Description

	zcDsJoinCriteria
	joincrit.st
	Join criteria.

	zcDsJoinInclusion
	join.st
	Join inclusion list.

	zcDsSimpleAttributeFlowScript
	simple.st
	Simple attribute flow.

	zcDsAttributeFlowScript
	advance.st
	Advanced attribute flow.

	zcDsDisconnectionAttributeFlow
	discnct.st
	Disconnection flow script.

	msMMS-DisconnectorFlowScript
	cdflow.st
	Attribute flow for TAMA managed disconnectors.

	msMMS-SecondaryAttributeFlowScript
	secndflow.st
	Secondary attribute flow. This is used only on the Active Directory management agent.

	zcFormsetV2
	formset.frs
	The formset associated with the management agent. This can be viewed and edited with the Forms Designer application.

	zcDsMaScript
	MAScript.scr
	The management agent’s control script. This is interpreted by ZScript.exe, not importt.exe.

	zcDsConfig
	ds.cfg
	Template definitions.

	zcDsDebugConfig
	debug.cfg
	Debugging configuration.

	zcDsRecord
	record.exp
	Template recording information.

	zcDsDirectory
	Directory.cfg
	The management agent’s working directory.

	zcDsRole
	MAMode.cfg
	The management agent’s mode.

	zcDsSpecificConfig
	specific.cfg
	Management agent specific configuration.

	zcExchangeAttrList
	MSXAttrList.att
	Attribute list requested from a Microsoft Exchange server.

	zcExchangeListAttrList
	MSXListAttrList.att
	Attribute list requested from a Microsoft Exchange server for list objects.

	zcLdapSelectedAttributes
	LdapSelAttr.att
	Attribute list requested from LDAP servers.

	zcLoginScript
	MALogin.scr
	Management agent login script

	zcNotesAttrList
	NotesAttrList.att
	Attribute list requested from Notes servers.

Changing the Configuration

The Templates.cfg file is a simple text file that contains the list of attributes that will be requested for each management agent found by the Templates.exe utility. Each line contains an attribute name followed by comma, followed by a file name. Any line that begins with a hash character (#) is treated as a comment line. The following is a short section of the Templates.cfg file:

#---

Control Metadirectory Templates

#---

#

zcDsiUpdateHeader,imp.uht

zcDsiUpdateAdd,imp.uat

zcDsiUpdateModify,imp.umt

zcDsiUpdateDelete,imp.udt

zcDsiUpdateTrailer,imp.utt

zcDsiAliasThingConstruction,at.st

zcDsiParentConstruction,prt.st

zcDsiConstruction,imp.st

zcDsiListMemberConstruction,iList.st

zcDsiInclusion,imp.inc

zcDsiExclusion,imp.exc
The file names might seem a bit cryptic, and reflect established practice since the early days of the MMS product. If you would rather have more descriptive file names for your templates, just change the text in the file after the comma. For instance, you could change the connector space construction template from:

zcDsiAliasThingConstruction,at.st

to

zcDsiAliasThingConstruction,Connector Space Construction.st

Do not change the name of the attributes before the comma; they are based on the metadirectory schema, and changing them would mean that nothing would be returned.

If you would like information about additional attributes that are not included in the file, you can simply add a line to the file that has the attribute you want, followed by a comma, followed by a file name. For example, if you would like to see where in the metaverse the management agents will put new entries, you can add the following line to the file:

zcMaUNSBase,MVLocation.txt
If you are unsure of the attribute name that you want the utility to retrieve, try this: Place the mouse cursor over the attribute text box in the MMS Compass UI, then press the Control key and click the right mouse button. The name of the attribute should display. If this does not work, you will need to edit the formset for the management agent using the Forms Designer application. See the Forms Designer documentation for more information.

If there are attributes that you do not care about (zcFormsetV2 perhaps), you can either delete the relevant line in the Templates.cfg file or comment it out by placing a hash mark (#) at the beginning of the line. Because any line that begins with a ‘#’ is treated as a comment and is not processed by the utility, you can also use this to document any changes you make to the default configuration file.

The SchemaReport.exe Utility

The SchemaReport.exe utility compares a copy of the schema currently being used by the MMS server with the default schema that ships with MMS 2.2 SP1. It will then produce a report that contains an alphabetized list of attributes and object classes as well as a list of differences. This includes attributes that have been deleted as well as added to the default schema.

How It Works

The SchemaReport.exe utility does a file comparison between two files. One file contains the default schema for MMS 2.2, the other file contains the schema currently in use by the MMS server.

To get the current schema in use by the MMS server, go to the X:\zoomserv\data\attribs directory. (Where X: is the drive on which you have MMS 2.2 installed.) There will be a number of files there with file name format of oidback.00n, where n is a numeral from 0-6. The 0-6 represents the day of the week that the file was created, 0 for Sunday through 6 for Saturday. Every time the MMS service starts, it writes a copy of the schema to one of these files in the directory. If the service is stopped and started again several times per day, the daily file is overwritten every time the service starts. Conversely, if the service is restarted infrequently, the most recent file is not necessarily the one with the current day’s extension number. You will need the most recent file to use with the utility.

There are three ways the schema can be extended. The first is to use the MMS Compass administration tool to insert the schema entries manually. The second is to modify the import file X:\zoomserv\bin\init\oid\import, and then run the X:\zoomserv\bin\init\updoid.bat batch file to update the schema. This is the most commonly used method. The third is automatic schema extension. If new attribute names are defined in the parsing templates, they will be added to the metadirectory schema when the management agent is run. The Active Directory management agent does not have parsing templates and so behaves a bit differently; the ADMA will automatically extend the metadirectory schema to add the attributes and object classes of the forest with which it is communicating.

The reason for using the oidback.00n files is that they contain the schema that is actually in use by the MMS service, regardless of how that schema came to be there.

To run the utility, put the most recent oidback.00n you have in the same directory as the SchemaReport.exe utility and the DefaultSchema.oid file and run the executable. The output will be written to a file called SchemaReport.txt in the same directory.

Because the ADMA can have a large impact on the schema as a result of adding so many attributes and object classes, a separate default schema file is provided for MMS 2.2 installations that have ADMAs. Similarly, Microsoft® Exchange 2000 server makes a significant number of schema modifications to the Active Directory schema; consequently an additional default schema file is provided for MMS installations that use the ADMA to integrate Exchange 2000–enabled forests.

The three default schema files are called DefaultSchema1.oid, DefaultSchema2.oid, and DefaultSchema3.oid. DefaultSchema1.oid contains the core schema that ships with MMS 2.2 SP1. DefaultSchema2.oid contains the core schema plus the default Microsoft® Windows® 2000 operating system Active Directory schema. This represents an additional 785 attributes and 119 object classes. DefaultSchema3.oid contains all the core and Active Directory schema elements, and adds to it the Active Directory schema modifications made in order to support Microsoft® Exchange 2000. This is an additional 797 attributes and 157 object classes. Before running the SchemaReport.exe utility, it is a good idea to copy the default schema file most appropriate to your MMS 2.2 installation to the file name DefaultSchema.oid.

The TAMAReport.exe Utility

The TAMAReport.exe tool queries the MMS metadirectory to discover two things: what TAMA resources and profiles are defined, and what nodes in the metaverse have resources or profiles associated with them.

How It Works

Similar to the Templates.exe utility, the TAMAReport.exe utility connects to a server running MMS by using LDAP and requests information. Two separate queries are made.

The first query looks for any organizational units, organizations, or domains in the metaverse that have associated TAMA resources, which means they have one or more values for the zcTaAccountResourceDNs attribute. This attribute contains the names of resources that TAMA will apply. TAMA can also use the TAMA control script to determine what resources will be applied, but this information is discovered by the Templates.exe utility. (The script will be written to the file imp.st in the TAMA agent’s directory.) On large metadirectories, this first query can take a very long time, and might even time out. This is because part of the information being requested, specifically the zcTaAccountResourceDNs attribute, is not indexed or hashed. To speed up the searching and reporting for this utility, it is advisable to turn on attribute hashing for this attribute.

To do this, use the MMS Compass application, search for the zcTaAccountResourceDNs attribute, and then look at the properties for this attribute. On the Hashing tab, select the Attribute Type option button to enable attribute type hashing for the attribute. This will mean that a search for this attribute will return any object that contains the attribute, regardless of what value is contained in the attribute. More importantly, it will return the list of entries very quickly.

Merely enabling the hashing for the attribute, however, will not build a hash index for entries in the metadirectory that already contain the attribute. To build the hash index, it is necessary to run VIACompact.exe. You can either wait for this to occur as part of your regularly scheduled maintenance before running the report, or have a special run of VIACompact.exe. Either way, it is highly recommended that you enable attribute type hashing of the zcTaAccountResourceDNs attribute and run VIACompact.exe before running the TAMAReport.exe utility.

For each node in the metaverse hierarchy found that has associated TAMA resources, the report will indicate the names of the resources.

The second query looks for any TAMA resources by requesting any objects with the object class of zcTaAccountResource. For each resource found, the utility will print out how the resource is configured. This includes which management agent the resource points to, whether the resource is flat or complex, the location in connector space under the management agent where new connectors will be created, and so on.

The utility produces a file called TAMAReport.txt which is placed in the same container as the utility.

Also similar to the Templates.exe utility is the way that TAMAReport.exe gets its connection information: it reads it from an .ini file called TAMAReport.ini. In the file, under the section heading [TAMAReport], are the same Host, Port, and Admin entries. An additional entry that can be specified is StartAt, which might contain the distinguished name of an entry in the metaverse that is used as a search base for the first query that looks for nodes in the metaverse with associated TAMA resources. This can help to speed up searches in cases where there is a very large metaverse, but TAMA is only provisioning a small portion of it. The default is for the utility to search the entire metaverse.

Understanding MIIS 2003 Configuration

This section discusses how MIIS 2003 stores its configuration information and the basic categories of configuration.

Unlike MMS 2.2, MIIS 2003 uses database technology. All configuration information is still stored on the server, but instead of being stored as objects and attributes, it is stored as rows and columns in a database table. The actual format of the configuration information is XML text.

One major advantage of MIIS 2003 over MMS 2.2 is that it has been designed with all of the abilities to save and restore configuration information built right in. It is easy to create a management agent on one system, save its configuration to a file (as XML), then take that file to another system and import it to create a new fully functional management agent. Not only management agents, but also metaverse schema information and even complete server configurations can be saved, moved, and restored in the same simple fashion.

Management Agent Configuration

If you create a management agent in MIIS 2003, then export it to a file, you will see that the XML data breaks down into section elements that roughly correspond to the various management agent configuration pages. Note that these management agent export files are read-only, and are discussed here only in order to show how MIIS 2003 configuration differs from MMS 2.2 SP1 configuration. The XML elements in a management agent export file are:

· <export-ma> - This is the top-level element.

· <ma-data> - This element contains most of the basic information about the management agent, such as its name, description, category, id (in the form of a GUID), creation time, and last modification time. It also contains the following sub-elements:

· <schema> - This is something new to MIIS 2003; it contains a representation (in Directory Services Markup Language [DSML]) of the schema of the connected directory. This makes it possible to have different schema for different connected directories. The schema is discovered automatically by the management agent, regardless of the category of the connected directory. This means not having to worry about parsing templates.

· <attribute-inclusion> - This represents an improved feature in MIIS 2003. This sub-element contains only the attributes that the management agent will process. Many connected directories have extensive schema, and often only a handful need to be managed by the metadirectory. Only attributes identified on this list will be stored in the hologram. Active Directory management agents often stored many kilobytes of extraneous information in the holograms of all connector space entries. By only storing the attributes specified in the attribute inclusion list, MIIS 2003 holograms are faster, smaller, and more efficient.

· <stay-disconnector> - This sub-element defines conditions that prevent connector space entries from synchronizing with the metaverse. It replaces the functionality of MMS 2.2 inclusion and exclusion templates.

· <join> - Defines all of the join rules.

· <project> - Defines projection rules. This sub-element simplifies and replaces the controlling metadirectory construction templates.

· <export-attribute-flow> - This sub-element defines all attribute flow that will take place from the metaverse to the connected directory. This is a bit different than in MMS 2.2, where both import and export attribute flows are defined together.

· <provisioning-cleanup>, <extension>, <controller-configuration>, <ma-ui-settings>, and <private-configuration> - These sub-elements are all new to MIIS 2003, and represent enhancements and new features.

· <ma-partition-data> - This stores information about the different partitions that the management agent will use. For connected directories that have an inherent concept of partitions, such as Active Directory or Sun ONE Directory Server, this sub-element will define the partitions available. For other connected directories, MIIS 2003 allows you to define separate partitions based upon object type. This is much simpler that in MMS 2.2, where to get the same functionality you would have to adjust auxiliary object classes on connector space entries.

· <ma-run-data> - This sub-element defines all of the run profiles for the management agent. It is very similar to the management agent control script in MMS 2.2, but where MMS 2.2 limits you to only one control script, MIIS allows you effectively to have an unlimited number of control scripts.

· <mv-data> - This element contains two sub-elements, <import-attribute-flow> and <per-ma-options>. The first defines all attribute flow that will take place between the connected directory and the metaverse, while the second is primarily concerned with attribute recall, which is discussed in more detail in the section Analyzing Your MMS 2.2 SP1 Configuration.

Schema Configuration

It is also possible to export the MIIS 2003 metaverse schema by selecting Export Metaverse Schema from the Actions menu while in the Metaverse Designer area of the MIIS 2003 Identity Manager application. This saves the metaverse schema to an XML file that conforms to the DSML standard. This is a very simple and straightforward way to move metaverse schema between MIIS 2003 instances.

Server Configuration

Another way of saving configuration information is to export a complete image of the overall MIIS 2003 server configuration. This can be accomplished with a command line utility included with the product or using a menu option in the MIIS 2003 Identity Manager application. In many ways this is a combination of the previous two forms of configuration export in that it saves metaverse schema and other configuration information to a file named mv.xml and saves each management agent’s configuration to a separate file. One major difference is that all unique identifiers are written to a file and used to identify entries on import. If you inspect the files, you will notice a great many GUIDs listed. Because of the rigorous checking done on the GUIDs when importing the files, this option is really more suited to migrating MIIS 2003 instances from one computer to another, such as moving a test configuration into a production environment, than it is to analyzing the configuration of management agents and schema.

Analyzing Your MMS 2.2 SP1 Configuration

This section discusses how to analyze your MMS 2.2 SP1 configuration in the light of how best to migrate it MIIS 2003. It details how some of the features of MMS 2.2 have been modified and improved in MIIS 2003, making it easier to set up and configure your metadirectory.

Hierarchical Metaverse vs. Flat Metaverse

One of the biggest changes between MMS 2.2 and MIIS 2003 involves hierarchy, both in connector space and the metaverse. If you examine the import construction templates of your management agents, (the default file names that the Templates.exe utility uses for them are at.st, imp.st, and prt.st) you will see that much of what is in them is about constructing a distinguished name for entries in connector space and the metaverse, or to put it another way, they are about figuring out where in the hierarchy the objects should be placed. MIIS 2003 makes virtually all of this template code redundant in a couple of ways.

Because it is so rare for people to create connector space hierarchies differently from what really exists in the connected directory, MIIS 2003 automatically creates the connector space hierarchy as a mirror image of the connected directory. Consequently, the connector space construction template is no longer required.

Another less readily apparent problem with hierarchy involves the metaverse. In addition to having to create a fixed hierarchy in the metaverse, (and it often seems that no matter what hierarchy you pick, it will be less than ideal for any number of reasons), you also have to be able to translate that metaverse hierarchy into different connector space hierarchies. If you expand your template analysis to include the various creation templates (default names crt.st, exp.st, and rep.st) you will notice that a lot of hand tuning has been done to translate metaverse hierarchy to different connector space and connected directory hierarchies. MIIS 2003 simplifies this problem by creating all metaverse entries in a flat namespace.

It is still necessary, of course, to create distinguished names when provisioning new entries. This will be discussed in more detail in the section TAMA vs. Provisioning Extension.

Because the metaverse is a flat namespace, the metaverse construction template (imp.st) can often be dispensed with as well. If you do not set any initial attribute values in your imp.st, you do not have to worry about migrating your construction templates. If you do set initial attribute values, you will need to move them to attribute flow in MIIS 2003.

Management Agent Modes vs. Join and Projection Rules

Another thing you do not have to worry about in MIIS 2003 is the mode in which to run the management agents — there are no more management agent modes. This means you will need to analyze your current management agent modes and decide how you want your MIIS 2003 management agents to behave. The key to this is understanding how MIIS 2003 can be configured to mimic MMS 2.2 management agent modes.

As part of creating a management agent in MIIS 2003 you will set up join rules and projections rules, both of which are optional. A projection rule causes inbound entries to be projected into the metaverse, so it is useful to think of a management agent with only projection rules defined as a reflector mode management agent.

Similarly if a management agent has only join rules defined, it behaves like a MMS 2.2 association mode management agent. Any inbound entries which cannot be matched to metaverse entries by the join rules will remain in connector space as disconnectors.

If both join and projection rules are defined, the management agent will behave as a MMS 2.2 reflector mode management agent with the Join Before Reflect option enabled.

Creator mode (also called Creator/Destroyer mode) disappears entirely. That functionality has been assumed by the provisioning custom extension discussed in the section TAMA vs. Provisioning Extension. Eliminating this mode, or the ability to operate in this mode, makes MIIS 2003 both simpler and safer to operate than MMS 2.2.

Inclusions and Exclusions vs. Connector Filter

With MMS 2.2, figuring out which connected directory entries should be processed in connector space and the metaverse is a two stage process. First the inclusions are checked to see if the entry should be considered for connector space; by default, no inclusions are defined, and everything is included. Next, the exclusions are checked to see if any included entries should be explicitly disallowed. Those excluded will not show up in the metadirectory at all.

In MIIS 2003 this changes significantly. All objects that match the selected object types are included and will appear in connector space. The connector filter is MIIS 2003 is roughly analogous to exclusions in MMS 2.2 in that it prevents the synchronization of objects with the metaverse, but the objects still persist in connector space.

This has a couple of key advantages over the MMS 2.2 approach. It makes it much easier for the metadirectory to keep track of objects that move into and out of scope of the filter while running in delta mode, without having to resort to periodic full imports to sort things out. Consider the case of an MMS 2.2 exclusion based on an employee status attribute. If an entry has a value of inactive for employee status, the exclusion will mean that the entry never appears in connector space or the metaverse. If, at a later date, the attribute value changes to active, a management agent operating in delta mode will receive a change that contains only the distinguished name and the modified employee status attribute. The change does not contain all of the information the management agent needs to correctly process the entry. The only way around this is for the management agent to go back out to the connected directory and request a complete copy of the entry, an expensive and potentially time-consuming operation. In MMS 2.2 this would necessitate running the management agent in full mode.

In MIIS 2003, the entry will always be included in connector space, and the connector filter will ensure that all entries with an employee status of inactive remain as disconnectors, but a complete picture of the state of the entry will be maintained in the hologram. Then, when the employee status attribute changes to active, the filter condition no longer applies, and the entry can then be processed by the management agent rules without having to go back to the connected data source.

This means two things from a migration perspective. First, you will not need to migrate inclusions. If you have inclusions defined in MMS 2.2 you should ensure that the criteria for inclusion are covered by either the object type selection for the management agent or by the container picker selection. Then set up the container filter in MIIS 2003 to match what you have defined as exceptions in MMS 2.2. If you have inclusions defined based on attribute values in MMS 2.2, you will need to invert those inclusion rules and make them part of your connector filter criteria.

For example, if you have an inclusion that looks for the existence of the mail attribute before processing the object, the you will need to add a condition to the MIIS 2003 connector filter that will keep the connector space entry as a disconnector if the mail attribute does not exist.

Attribute Flow

Because one of the key functions of the metadirectory is to synchronize objects and their attributes among different data sources, attribute flow is a crucial part of any management agent. Updating your attribute flow rules for MIIS 2003 will probably be the most time-consuming part of the migration process.

Fortunately, attribute flow in MIIS 2003 is both simpler and more powerful than in MMS 2.2. This section discusses how each type of MMS 2.2 attribute flow can be updated for MIIS 2003.

Simple Attribute Flow vs. Direct Attribute Flow

Simple attribute flow has changed the least since MMS 2.2. Indeed, it has been simplified and streamlined even further. If you have simple attribute flow rules defined in MMS 2.2, all you will have to do is define them the same way for MIIS 2003. One slight difference is that MIIS 2003 requires you to specify what type of metaverse object to which the flow rule should apply. By default in MMS 2.2, simple attribute flow rules apply to all metaverse object types, although you can specify a different object type if necessary.

This means that you might have to duplicate some of your simple attribute flow rules and have them point to different metaverse object types. Although this might seem to be more work, it actually helps to simplify your advanced attribute flow rules in most cases, as discussed in the next section.

Simple attribute flow in MMS 2.2 has a number of options for both connector space and metaverse objects, which can be found on the General Attribute Flow tab of the attribute flow configuration form. These rules govern attribute flow for attributes that are not covered by a specific attribute flow rule.

For connector space attributes, you can specify when changed attributes in the connected directory should be updated in connector space. The default is Always, but you can also specify Never, When the connector attribute does not exist, or When the connector attribute can be constructed from the connected directory. These options are relics from the very early days of metadirectory, before holograms were used to track the state of connected directory objects, and the only way to keep track of attribute values was to set attribute values directly on the connector space objects. Today, it is extremely rare to see anything other than the default selected for this option. In MIIS 2003, you can no longer set values for arbitrary attributes on connector space objects; all changes are tracked in the hologram, and values are always updated when the synchronization engine detects changes on the connected directory objects.

A similar option governs what happens to metaverse attributes. In this case the default is to Never update the metaverse attributes; updates only occur when indicated by an explicit flow rule. Other choices for this option are When the metaverse attribute does not exist, When the metaverse attribute can be constructed from the connected directory, and Always, although the last is rarely used and problematic, because it has the unpleasant side-effect of deleting all metaverse attributes that do not originate from the management agent being configured.

The option to update metaverse attributes When the metaverse attribute does not exist is used occasionally. If the desired behavior is to update specific attributes only when they do not exist in the metaverse, the only recourse is to use the advanced flow script. In either case, general or specific, this functionality can be seen as the precursor to the more sophisticated and powerful attribute precedence feature of MIIS 2003. This is discussed in more detail in the next section and in the section Attribute Precedence.

The choice to update metaverse attributes When the metaverse attribute can be constructed from the connected directory is rarely used. If it is selected on any of your management agents you can get the same functionality in MIIS 2003 by telling the management agent you want to run a full synchronization on the connector space.

This comes with one important caveat, which highlights one of the big differences between attribute flow in MMS 2.2 and MIIS 2003: an attribute will only flow if there is an explicit rule, either direct or advanced, defined for that attribute. Recall that there are no more construction templates, and so no attribute flow can be defined there.

The result is that all attribute flow in MIIS 2003 is defined in one and only one place: the Attribute Flow property page of the management agent. Also, all attribute flow is evaluated by the synchronization engine at one well defined point in the synchronization process. This makes attribute flow simpler and easier to understand while sacrificing none of its power and utility.

Advanced Attribute Flow vs. Advanced Attribute Flow Using Custom Extensions

The earliest metadirectories only had simple, specific attribute flow; it soon became apparent that more complex attribute transformations were required and so advanced attribute flow came into being. This allowed the template language to be used to calculate values for the attributes. The template language, however, was and is severely limited in its functionality; it contains no looping constructs, has a limited number of functions, and many of the functions operate in a non-intuitive fashion. MIIS 2003 replaces the template language with any language that will run in the .NET Framework’s Common Language Runtime (CLR).

Before developing any attribute flow, however, take a close look at the MMS 2.2 Advanced Attribute Flow Script. (The default file name is advance.st.) There are several very common scenarios that require the use of advanced flow scripts in MMS 2.2 that are easily accomplished in MIIS 2003 with no scripting or extensions required.

For example, it is common to see something like this in an advanced attribute flow:

if $mv.zcoc = zcPerson

then

$mv.mail = $cd.mail

$cd.title = $mv.title

$mv.telephoneNumber = $cd.telephoneNumber

endif

if $mv.zcoc = organizationalUnit

then

$mv.mail = $cd.mail

$mv.comment = $cd.comment

$cd.owner = $mv.owner

endif
What this is effectively doing is scoping the attribute flow so that particular flows occur only for the correct object types. In MIIS 2003, this scoping is done as part of defining the attribute flow, and is mandatory, so attribute flow such as that above can be safely and simply replaced by direct attribute flow.

Another fairly common thing done in advanced flow looks something like this:

$v_hrAgentDn = ma=HR, $MY_DSA()

$v_UserName = $cd.sn $cd.givenName $cd.initials

$v_UserHrDn = cn=$v_UserName - $cd.uid,$v_hrAgentDn

IF $INSTANCE($v_UserHrDn) = F

THEN

$mv.depNumber = $cd.depNumber

$mv.title = $cd.title

$mv.cn = $cd.cn

$mv.givenName = $cd.givenName

$mv.sn = $cd.sn

$mv.initials = $cd.initials

ENDIF
Here, the first three lines are creating a variable that holds the distinguished name of a connector space entry that might exist under a different management agent. The IF construction looks for that connector space entry, and if that entry is not found then it will flow the attributes from the current management agent to the metaverse. In extreme cases, you might find multiple connector space entries being checked in a series of nested IF statements.

This is related to the situation in which the flow for a specific attribute is set up for the case when the metaverse attribute does not exist. (This is the case in an advanced attribute flow such as this: if $exist($mv.someAttribute) = F then $mv.someAttribute = $cd.someAttribute endif.) In both cases, the advanced attribute flow decides which source attribute should flow to the metaverse.

These are exactly the kinds of scenarios that the attribute precedence feature of MIIS 2003 was designed to address. In the Metaverse Designer area of the Identity Manager application you can configure attribute precedence; it is possible to do a complete stack ranking of all the possible sources of an attribute, and the synchronization engine will enforce that ranking. Both of the examples earlier in this section could be replaced with direct attribute flow in MIIS 2003. In the first case, it would mean that the HR management agent would need to have the higher attribute precedence for the desired attributes. In the second case, any attribute flow defined would flow the attribute if the metaverse was empty.

Disconnection Attribute Flow

In MMS 2.2 it is possible to define attribute flow that occurs when a connector space object is disconnected from a metaverse object. This arose from a desire on the part of many customers to have the management agent “clean up” after itself. If a management agent contributed a number of attributes to the metaverse entry, the idea was that it should delete those attributes when its connector space entry was disconnected.

In MIIS 2003, this behavior is automatic, and is implemented by a feature closely related to attribute precedence called attribute recall. When a connector space object is disconnected from a metaverse object, the attributes it contributed to the metaverse object are recalled and replaced by the attribute value from the source with the next highest attribute precedence. The result is another MMS 2.2 template that does not need to be migrated, because the functionality is now a core part of the synchronization engine. It should be pointed out, however, that this is default behavior; if there is a need for the attributes to not be recalled, this can be configured as well.

Disconnector Attribute Flow

This type of attribute flow is something of an anomaly in MMS 2.2 in that it is the only kind of attribute flow that applies to disconnectors, and even then, only to disconnectors that are managed by a TAMA. Because disconnectors managed by a TAMA, regular disconnectors, and connectors can all easily co-exist under the same management agent, this attribute flow could often cause the management agent to behave in an unusual manner. For this reason, and also because the TAMA management agent type has been replaced by a provisioning extension, the decision was made to remove this type of attribute flow from MIIS 2003.

Secondary Attribute Flow

This type of attribute flow applies only to Active Directory management agents in MMS 2.2 and you will not find it exposed on any form in MMS Compass. The templates tool will, by default, save it to a file named Secndflow.st. The original intent was to have a last-chance processing of attribute flow in the Active Directory management agent, but because of its hidden nature it could often have unforeseen consequences. As with the disconnector flow, the decision was made to remove it from MIIS 2003.

TAMA vs. Provisioning Extension

This represents another major area of migration work, similar in magnitude to the migration of attribute flow. Because MIIS 2003 implements provisioning in a completely different way than MMS 2.2, careful analysis is required to completely duplicate the older provisioning functionality in the new software.

There are a number of clear advantages to provisioning in MIIS 2003. All of the provisioning logic is contained in one location – the provisioning extension. In MMS 2.2 there are attributes on objects that point to TAMA resource objects that contain attributes that point to management agent objects that contain attributes that tell the synchronization engine how to provision new objects into connector space.

There is no easy or holistic way of seeing the entire provisioning scenario in MMS 2.2. In contrast, preview mode in MIIS 2003 allows you to see the overall effect of the provisioning extension before any changes are written to any connected directory.

A TAMA always runs in “full mode”, and always iterates over every entry in the metaverse (by default), or at least over every entry in the portion of the metaverse it is configured to process. The provisioning extension in MIIS 2003 is called every time there is a change in a metaverse object, even if it is just a single attribute on a single entry, which allows it to provision much faster, and can even approach real-time provisioning performance. Perhaps more importantly, if there are no changes, no provisioning need be attempted, so there is no need to run a lengthy TAMA process that iterates over every entry in the metaverse only to discover that nothing needs to be done. As with so many other things, provisioning in MIIS 2003 is simpler, faster, and more efficient than it is in MMS 2.2.

In order to provision new entries, it is necessary to know four things: which management agent or agents need to have their connector spaces updated (i.e. in which systems do new objects need to be provisioned), what the entries will be called (usually, their distinguished names), what type of objects they will be (usually their object classes), and what attributes will need to be set initially for the provisioning to succeed.

The names of the management agents that need to be provisioned correspond directly with which TAMA resources get associated with metaverse entries. There are two locations for determining what those resources are: the report produced by the TAMAReport.exe utility and the TAMA control script which the Templates.exe utility will store the Imp.st file. For every resource that is being used, look in the TAMA report at the section on resources; for each resource the attribute zcTaAccountResourceMADN holds the distinguished name of the associated management agent.

The distinguished names of new entries being created can be derived from the zcMAUNSBase attribute of a TAMA resource, which points to a particular area of connector space. In the case of a complex resource, hierarchy elements from the metaverse are added to this. The new distinguished name for the connector space entry is then passed by TAMA to the target management agent, which uses its Create New Connectors template (default file name Rep.st) to finish the creation process. It is a little known fact that the Rep.st template can completely redefine the distinguished name, and it is worth checking the template to see if this is so.

Because in MIIS 2003 the metaverse is flat and without hierarchy, the easiest way to migrate distinguished name creation is to calculate a complete distinguished name in the provisioning extension that is based on values of attributes on the metaverse object. There are many examples in the developer’s reference documentation that detail how to do this.

The object type and initial attributes of the new entry are much more straightforward. In MMS 2.2 they are set in the Rep.st and crt.st templates, and possibly in the attribute flow. The equivalent definitions can be easily added to the provisioning extension in MIIS 2003.

Because provisioning is such a common scenario, provisioning extensions are one of the most tested features of MIIS 2003. The developer reference is full of examples that are drawn from Microsoft testers, customers, and integration partners. They are well tested and well documented. It is highly recommended that you look at and use the sample code provided to help you migrate provisioning scenarios from MMS 2.2 to MIIS 2003.

Management Agent Control Scripts vs. Run Profiles

In MMS 2.2 each management agent can have one and only one control script. It is possible to use SET and VSET commands within the control script in order to make branching decisions, thereby extending the functionality of that one control script, but that is practically all you can do.

In MIIS 2003, it is possible to create any number of run profiles which control what type of processing will be done. This is like having an unlimited number of management agent control scripts.

Migrating Your Configuration to MIIS 2003

General Considerations

The section Analyzing Your MMS 2.2 SP1 Configuration discussed ways in which the configuration of MIIS 2003 differs from MMS 2.2 and offered suggestions for migrating configuration information from the old software to the new. This section discusses how to form a plan for the overall migration of a complete MMS 2.2 installation to MIIS 2003.

One of the first decisions to make is the order in which to migrate the management agents. It is not recommended that you try to migrate all management agents before beginning testing of the new configuration. Just as your MMS 2.2 production environment evolved one management agent at a time, your MIIS 2003 environment will do the same.

If you have reflector mode management agents in MMS 2.2, they should be migrated first. If one of them is defined as the prime reflector, it should be migrated first. Next, migrate association mode management agents, and lastly migrate creator mode management agents.

If there is no corresponding management agent type in MIIS 2003 for your MMS 2.2 management agent (ccMail or Banyan VINES, for example), take a sample import file from your MMS 2.2 deployment and create a file-based management agent for it. It might be necessary to process the file to make its format conform to one of the file-based management agent types in MIIS 2003.

Also, decide if any new metaverse schema elements are required, and if so, add them now, before you begin migrating management agents.

For detailed information about how to accomplish any of the following steps, consult the MIIS 2003 documentation.

Report Management Agents

One commonly used management agent type in MMS 2.2 that no longer exists in MIIS 2003 is the Report MA. Report MAs are essentially MAs that only do a Foreign User export, and because no connectors are in a Report MAs connector space, the entire metaverse is included by default in the report output.

Because MIIS 2003 stores all of its metaverse information in a relatively small number of SQL tables, a far superior approach to producing reports is to generate the reports from those tables. This can be done either directly by specifying the appropriate “WHERE” clause in a SQL query, or by using a more sophisticated reporting package, such as Crystal Reports.

Management Agent Migration Steps

Once you have decided on the order for the migration, go through each of the following steps for each of the management agents.

· Join and Projection Rules - Depending on the mode of the MMS 2.2 management agent, configure the appropriate join and projection rules.

· Connector Filter - Configure the connector filter to match the inclusions and exclusions you have in MMS 2.2.

· Attribute Flow - Following the guidelines in the section Attribute Flow, configure the attribute flow. Keep as much attribute flow as possible in direct attribute flow.

At this point you will have a management agent that closely resembles your MMS 2.2 management agent in terms of functionality. Now is the time to look at what your MMS 2.2 management agent is doing and decide if you can take advantage of any of the new features of MIIS 2003 to simplify the new management agent design.

Taking Advantage of New Features

The two MIIS features that you are most likely to want to take advantage of are attribute precedence and reference attributes.

Attribute Precedence

Take a close look at the advanced attribute flow of your MMS 2.2 management agent and decide if attribute precedence can be used to replace some of it. See the section Advanced Attribute Flow vs. Advanced Attribute Flow Using Custom Extensions for ideas about when that might be the case.

Reference Attributes

If one of the object types you are processing is lists or groups, consider defining the attributes that represent membership in the connected directory as reference attributes. This will allow you to use direct attribute flow to both import and export membership information to the lists and groups.

Rules Extensions

Any advanced attribute flow that cannot be done directly will have to be done in an extension. Run the management agent in a test environment to make sure that everything you have done up until this point is working. Then begin defining your advanced attribute flows, one at a time. Use the MIIS 2003 Identity Manager application to create a Microsoft® Visual Studio® .NET 2003 project. Write the code for these attribute flows and test them, again one at a time, until you are sure they are working correctly.
Provisioning Extension

Once you have migrated all the management agents, you can begin to implement the provisioning extension. Use the MIIS 2003 Identity Manager application to create a Visual Studio .NET 2003 provisioning project. Add the code for provisioning to connector space gradually. That is, provision one management agent at a time.

Migration Checklist

· Run the Templates.exe utility.

· Modify the Templates.ini file to contain the correct connection information.

· Make any necessary changes to the default configuration in Templates.cfg.

· Run the SchemaReport.exe utility.

· Get the most recent Oidback.00n file.

· Decide which default schema file to use for the comparison, core schema, Active Directory, or Active Directory with Exchange 2000.

· Run the TAMAReport.exe utility.

· Modify the TAMAReport.ini file to contain the correct connection information.

· Analyze the management agent templates saved by Templates.exe.

· Don’t worry about the construction templates.

· Concentrate on attribute flow.

· Analyze the schema report produced by SchemaReport.exe.

· Decide if the MIIS 2003 metaverse schema needs to be extended.

· Analyze the TAMA report produced by TAMAReport.exe.

· Get a high-level picture of what connector space entries TAMA is provisioning.

· Decide the order in which to migrate the management agents.

· Modify the metaverse schema if necessary.

· Migrate one management agent at a time, and test between each one.

· For templates that need to be migrated, consult Appendix A, which has a list of MMS 2.2 template functions and equivalent functions available in MIIS 2003 or the .NET Framework.

· Migrate the provisioning functionality last.

Data Migration Issues

This section discusses issues around migrating metadirectory data from MMS 2.2 SP1 to MIIS 2003.

All of the foregoing discussions have assumed that you will be building a new metaverse from scratch. There are two issues that might affect whether your new MIIS 2003 metaverse is the same as the old MMS 2.2 metaverse, and both involve changes that have been manually made to the metaverse.

Manually Joined Entries

In spite of your best efforts at providing good join rules, or because of bad data, there might be metaverse entries that have one or more connectors that have been manually joined. There are two options for dealing with these entries in MIIS 2003. If the number of manually joined entries is not very high, you might want to use the Account Joiner functionality of the Identity Manager application to join them again in MIIS 2003. If there are a lot of entries, you might want to consider using MMS 2.2 to export some attribute values to the connected directories; these values can be used by MIIS 2003 to automatically join the entries.

Entries Created Directly in the Metaverse

MMS 2.2 allows you to create new entries in the metaverse. In MIIS 2003, the only way an entry can get into the metaverse is through a management agent. If you have a large number of entries that exist only in the metaverse, you might want to write a report management agent in MMS 2.2 that exports the entire contents of the metaverse to a file, then use a file-based management agent in MIIS 2003 to do your initial population of the metaverse.

Summary

By now it should be apparent why there is no upgrade process to move from MMS 2.2 to MIIS 2003. They are essentially different programs that do very similar things. It should also be clear that many of the metadirectory concepts are still the same, although they are implemented differently between the two products. By using the guidelines in this document, it is possible to create an MIIS 2003 metadirectory with functionality that is equivalent to or even greater than an MMS 2.2 metadirectory, and to do it more simply and more efficiently.

Related Links

For the latest information about Windows Server 2003, see the Windows Server 2003 Web site at http://www.microsoft.com/windowsserver2003.

Appendix A – Template Function Equivalents

The following sections discuss functions available in MMS 2.2 and functional equivalents available in MIIS 2003 or the .NET Framework. In some cases, the MMS 2.2 functions are obsolete, and this is noted also. Examples in both C# and Visual Basic .NET (VB) are given wherever possible.

A special thanks to Pallavi Gajula of the MIIS Test team for doing all the work of assembling the C# and Visual Basic code examples.

$ALIAS_LEVEL()

This function determines how far below the management a connector space object is in the directory tree based on its distinguished name (DN). It returns an integer representing the number of levels of hierarchy. In MIIS 2003, this is now a property of the DN. The following examples list how to get this information in C# and VB.

C# example:

void IMASynchronization.MapAttributesForExport
(string FlowRuleName, MVEntry mventry, CSEntry
csentry)
{
 int depth = csentry.DN.Depth;
}

VB example:

Public Sub MapAttributesForExport(ByVal FlowRuleName
As String, ByVal mventry As MVEntry, ByVal csentry
As CSEntry) Implements
IMASynchronization.MapAttributesForExport
 Dim depth As Integer
 depth = csentry.DN.Depth()
End Sub

$BASE_DN()

This function determines what distinguished name this entry’s parent would have in the metaverse part of the directory. Because there is no longer any hierarchy in the metaverse, this function is no longer required.

$CALL_PLUGIN()

This function activates a server plug-in for a particular attribute. There is no equivalent in MIIS 2003.

COLLECTIVE()

This function gets the value of an attribute for the entry or the parent of the entry. There is no direct equivalent in MIIS 2003.

$DB5_CONFIG()

This function gets the value of a keyword from the MMS server’s db5config file. There is no direct equivalent in MIIS 2003 but similar functionality can be achieved by reading the info from any file using the .NET Framework’s file handling functions.

$DEBUG()

This function turns on debugging at level 4 at a given point in the processing of a template, even when no debugging has been set for the management agent. This function also turns off debugging.

It is usually used to output more information when troubleshooting templates, so a couple of possible alternatives exist in MIIS 2003. One is to use the Microsoft.MetadirectoryServices.Logging namespace to log the desired information to file. The other is to use the step-by-step debugging available with Visual Studio .NET to step through the rules extension code. See the MIIS Developer Reference for more information about both of these topics.

$DISCONNECT()

This function disconnects metaverse entries from connector space entries, and can be used in the case where entries are kept in the metaverse, but connector space entries are treated as if the metaverse entry had been deleted. This function works by changing the zcConnectedDirectoryID attribute on metaverse entries. Note that in MIIS 2003, metaverse entries are automatically deleted if no connectors are pointing to them.

C# example:

mvEntry.ConnectedMAs.DeprovisionAll;\

mvEntry.ConnectedMAs["MANAME"].Connectors.DeprovisionAll;

Example:

void IMVSynchronization.Provision (MVEntry mventry)

{

 mventry.ConnectedMAs.DeprovisionAll();

 mventry.ConnectedMAs["MANAme"].Connectors.DeprovisionAll();

}
VB.Net example:

mvEntry.ConnectedMAs.DeprovisionAll()

mventry.ConnectedMAs(MAName).Connectors.DeprovisionAll()

Example:

Public Sub Provision(ByVal mventry As MVEntry)

Implements MVSynchronization.Provision

 Dim MAName As String

 MAName = "SomeMA"

 'mventry.ConnectedMAs.DeprovisionAll() or

 mventry.ConnectedMAs(MAName).Connectors.DeprovisionAll()

End Sub

$DISCONNECT_SPECIFIC()

This little known function will disconnect specific CS entries from the metaverse. It takes as a parameter a string that is compared to the values of the zcConnectedDirectoryID attribute. Any matching values are disconnected. See the “Deprovisioning Objects in the Connector Space” section of the MIIS Developer Reference for more information and examples of how to do this by using MIIS 2003.

$DN_COMPONENT()

This function extracts the value of a particular attribute from a distinguished name (DN). This can be done using the SubComponents method of a ReferenceValue object. The following code extracts the third component of a DN.

C# example:

ReferenceValue dnPart = CSEntry.DN.SubComponents(2,3);
VB.Net example:

Dim DNPart As
Microsoft.MetadirectoryServices.ReferenceValue

DNPart = csentry.DN.Subcomponents(2, 3)

$EMBEDDED()

This function determines whether a variable or attribute value contains a particular substring. If so, it returns “T”; otherwise it returns “F”.

C# example:

public static bool IsEmbedded(string sourceString,string searchString)

{

 int index = sourceString.indexOf(searchString);

 if(index == -1)

 return false;

 else

 return true;

}
VB.Net example:

Public Function IsEmbedded(ByVal sourceString As String, ByVal searchString As String) As Boolean

 Dim index As Integer

 index = sourceString.IndexOf(searchString)

 If (index = -1) Then

 Return False

 Else

 Return True

 End If

End Function
$ENVIRONMENT()

This function returns the value of an operating system environment variable or the operating system current directory.

C# example:

C# has the following methods available to get the current systems environment variables.

string envVar = Environment.GetEnvironmentVariable("windir");

string curDir = Environment.CurrentDirectory;

VB.Net example:

VB has the following methods available to get the current systems environment variables.

Dim envVar As String

Dim curDir As String

envVar = Environment.GetEnvironmentVariable("windir")

curDir = Environment.CurrentDirectory

$EXIST()

This function checks whether a given attribute of the current entry has a non-null value. It returns “T” or “F”.

C# example:

Microsoft.MetadirectoryServices.Attrib attrib = csentry["displayName"];

if(attrib.IsPresent) …

This can also be written as:

if(csentry["displayName"].IsPresent) …

VB.Net example:

Dim attrib As Microsoft.MetadirectoryServices.Attrib

attrib = csentry("displayName")

If (attrib.IsPresent) Then …

This can also be written as:

If (csentry("displayName").IsPresent) Then …

$EXPORT_TEMPLATE()

This function expands a sub-template within a template. Often used to format user identifiers or email addresses. There is no direct equivalent in either C# or VB.Net. Consider using regular expressions for formatting instead.

$FROM_FILE()

This function gets the contents of a file.

C# example:

A class called Utils in the MIIS 2003 scripting model returns information about the working directory of the current MA that called the script. Assuming that the file to be read is in the MA’s working directory, the following code reads the file information into a buffer. See the C# help for reading files if you do not intend to read it all into one buffer.

string path = Utils.WorkingDirectory;

string fullFilePath = path + "\" + filename;

FileStream fStream = new FileStream(fullFilePath,FileMode.Open);

byte[] buffer = new byte[2048];

fStream.Read(buffer,0,buffer.Length);

fStream.Close();

VB.Net example:

A class called Utils in the MIIS 2003 scripting model returns information about the working directory of the current MA that called the script. Assuming that the file to be read is in the MA’s working directory, the following code reads the file information into a buffer. See the VB help for reading files if you do not intend to read it all into one buffer.

Dim path As String

Dim fullFilePath As String

Dim fileName As String

Dim fStream As System.IO.FileStream

Dim bufferArray(2048) As Byte

path = Utils.WorkingDirectory

fullFilePath = path + "\" + fileName

fStream = New System.IO.FileStream(fullFilePath, System.IO.FileMode.Open)

fStream.Read(bufferArray, 0, bufferArray.Length)

fStream.Close()

$GET_ATTR()

This value gets the value of an attribute of a particular entry.

C# example:

Assuming that you have the CSEntry object, the following code could be used to access the attribute value.

string attrValue = CSEntry["attributename"].Value;
If the attribute value were to be accessed on an MV object, then the MV object could be search for by using Utils.FindMVEntries() and then accessing the attribute value as shown in the following code.

MVEntry[] mvEntryColl = Utils.FindMVEntries(searchAttrName, searchAttrValue);

MVEntry MVObject = mvEntryColl[0];

String attribValue = MVObject["attributeName"].Value;

VB.Net example:

Assuming that you have the CSEntry object, the following code could be used to access the attribute value.

Dim attribValue As String

attribValue = CSEntry(attributeName).Value
If the attribute value were to be accessed on an MV object, then the MV object could be search for by using Utils.FindMVEntries() and then accessing the attribute value as shown in the following code.

Public Sub GetValueOnMV(ByVal searchAttrName As String, ByVal searchAttrValue As String, ByVal attributeName As String)

 Dim attribValue As String

 Dim mvEntryColl() As MVEntry

 Dim MVObject As MVEntry

 mvEntryColl = Utils.FindMVEntries(searchAttrName, searchAttrValue)

 MVObject = mvEntryColl(0)

 attribValue = MVObject(attributeName).Value

End Sub

$GET_CHAR()

This function returns the character at a specific position on a variable or attribute value.

C# example:

C# has the following method to access a particular character in a string.

char c = string.char[index];

VB.Net example:

VB.Net has the following method to access a particular character in a string.

Dim attribValue As String

Dim letter As Char

attribValue = "testString"

letter = attribValue.Chars(0)

$GET_SUBSTRING()

This function extracts a substring from a string variable or attribute.

C# example:

If the start index and the length of the substring are known, then the following code can be used to extract the substring.

string searchString = "TestString";

string subString = searchString.Substring(0,4);
However, if something like extracting the OU portion of a DN is to be done, then the following code could be used.

string DN = csentry.DN.ToString();

int startIndex = DN.IndexOf("OU=",0);

string substring = DN.Substring(startIndex);

int endIndex = substring.IndexOf(",",0);

string OU = DN.Substring(startIndex,endIndex);

int finalIndex = OU.IndexOf("=",0);

string extract = OU.Substring(finalIndex+1);

VB.Net example:

If the start index and the length of the substring are known, then the following code can be used to extract the substring.

Dim searchString As String

Dim subString As String

searchString = "TestString"

subString = searchString.Substring(0, 4)

However, if something like extracting the OU portion of a DN is to be done, then the following code could be used.

If the DN "CN=John Doe,OU=Marketing,DC=UnitedStates,DC=companyA,DC=com" were to be passed to a function that has the following code, then “Marketing” would be extracted from the entire DN.

Dim DN As String

Dim substring As String

Dim OU As String

Dim extract As String

Dim startIndex As Integer

Dim endIndex As Integer

Dim finalIndex As Integer

DN = csentry.DN.ToString()

startIndex = DN.IndexOf("OU=", 0)

substring = DN.Substring(startIndex)

endIndex = substring.IndexOf(",", 0)

OU = DN.Substring(startIndex, endIndex)

finalIndex = OU.IndexOf("=", 0)

extract = OU.Substring(finalIndex + 1)

$HASH()

This function converts an input into an output, which is completely random, in such a way that is impossible to deduce the input by knowing the output. Hashing can be used to convert sensitive information such as social security numbers into a unique identifier that can be stored without threatening anyone's privacy.

C# example:

If you want to manage passwords, see the Password Management feature of MIIS2003. It is also possible to set encrypted data such as passwords during provisioning as a one-time-only option. You can also use the C# Cryptography class to convert sensitive information into a form that is not readable easily as shown in the following example.

System.Text.Encoding encoding = Encoding.ASCII;

byte[] buffer = encoding.GetBytes(subString);

System.Security.Cryptography.MD5 md5 = System.Security.Cryptography.MD5.Create();

byte[] hashbuffer = md5.ComputeHash(buffer);

for(int i =0;i<3;i++)

 hashbuffer = md5.ComputeHash(hashbuffer);

VB.Net example:

If you want to manage passwords, see the Password Management feature of MIIS2003. It is also possible to set encrypted data such as passwords during provisioning as a one-time-only option. You can also use the VB Cryptography class to convert sensitive information into a form that is not readable easily as shown in the following example.

Dim Encoding As System.Text.Encoding

Dim buffer() As Byte

Dim hashbuffer() As Byte

Dim encString As String = "StringToBeEncoded"
Dim md5 As System.Security.Cryptography.MD5

Dim i As Integer

Encoding = Encoding.ASCII

buffer = Encoding.GetBytes(encString)

md5 = System.Security.Cryptography.MD5.Create()

hashbuffer = md5.ComputeHash(buffer)

For i = 0 To 2

 hashbuffer = md5.ComputeHash(hashbuffer)

Next i

$I_DSETYPE()

This function creates a DSEType bitmap. There is no equivalent in MIIS 2003.

$I_MEMBER()

This function reads the name of a list member from an import list record and updates the corresponding lists in the metadirectory. There is no equivalent in MIIS 2003. Lists and groups are automatically updated when changes are detected in the connected directory and attribute flow rules are set up.

$I_PERSONAL_NAME()

This function parses a common name into its components according to predefined conversion rules for title, given name, surname, and generational qualifier, or according to a name template you supply.

This function has the unpleasant characteristic in that it has side effects and changes attributes that are not referenced in the function attributes. Its use has been deprecated for a long time. It is preferable to write any name parsing code to meet your specific requirements.

C# example:

In MIIS 2003, Scripted Import Attribute Flow rules can be used to convert the common name into its components. Within the script, there are several ways to convert the common name based on the business rules of the company. For example, if displayName was of the format “givenName, surName” and it had to be split into its components, you could use the following code.

string displayName = "LastName, FirstName";

char[] separators = {','};

string[] parts = displayName.Split(separators,2);

string givenName = null;

string surname = null;

string finalConversion = null;

if(parts.Length == 2)

{

 givenName = parts[1];

 surName = parts[0];

 finalConversion = givenName + " " + surName;

}
VB.Net example:

Dim displayName As String

Dim givenName As String

Dim surName As String

Dim finalConversion As String

Dim separators() As Char = {","}

Dim parts() As String

displayName = "LastName, FirstName"

parts = displayName.Split(separators, 2)

If parts.Length = 2 Then

 givenName = parts(1)

 surName = parts(0)

 finalConversion = givenName + " " + surName

End If

$I_READ_ATTRIBUTE()

This function reads a text or file-based attribute value from a formatted file. There is no equivalent in MIIS 2003. An attribute-value pair file MA does this kind of reading from a file automatically.

$INSTANCE()

This function tests for the existence of an entry in the metadirectory. There is no direct equivalent in MIIS 2003.

$JOIN_IN_PROGRESS()

This function is used in an attribute flow template to test if that flow template has been invoked as a result of a join operation with attribute flow. There is no equivalent in MIIS 2003.

$LATIN_TO_CP()

This function converts Latin1 text encoding to a specific code page or removes accents from accented characters. The .Net Framework has an encoding class that allows for the conversion of text from one code page to another.

C# example:

System.Text.Encoding latin = System.Text.Encoding.GetEncoding(1252);

System.Text.Encoding ascii = System.Text.Encoding.ASCII;

System.Text.Encoding.Convert(latin, ascii, latin.GetBytes("JohnDoe@Fabnoa.com"));

VB.Net example:

Dim latin As System.Text.Encoding

Dim ascii As System.Text.Encoding

Dim convertedBuffer() As Byte

latin = System.Text.Encoding.GetEncoding(1252)

ascii = System.Text.Encoding.ASCII

convertedBuffer = System.Text.Encoding.Convert(latin, ascii, latin.GetBytes("JohnDoe@fabnoa.com")

$LENGTH()

This function returns the length of a string or attribute value.

C# example:

In C#, the length property of a string holds the length of the string.

string testString = "sampleString";

int stringLength = testString.Length;
VB.Net example:

In VB, the length property of a string holds the length of the string.

Dim testString As String

Dim stringLength As Integer

testString = "sampleString"

stringLength = testString.Length

$LIST_ATTR()

When the current entry is a list member, this function returns an attribute from the current list entry. There is no equivalent in MIIS 2003.

$LIST_MEMBER()

This function writes out data for each list member when the current entry is a list or group. In MIIS 2003, list membership is based on multivalued attributes, not alias entries that are subordinate to a list object.

C# example:

To retrieve the value collection (multivalued attribute) on a CSObject, you can use the following code. To retrieve the value collection for an MVObject, replace csentry with mventry.

void IMASynchronization.MapAttributesForImport(string FlowRuleName, CSEntry csentry, MVEntry mventry)

{

 Microsoft.MetadirectoryServices.ValueCollection valColl = csentry["attr"].Values;

}

VB.Net example:

Public Sub MapAttributesForExport(ByVal FlowRuleName As String, ByVal mventry As MVEntry, ByVal csentry As CSEntry) Implements IMASynchronization.MapAttributesForExport

 Dim valColl As Microsoft.MetadirectoryServices.ValueCollection

 Dim item As Microsoft.MetadirectoryServices.Value

 valColl = csentry("attr").Values

 For Each item In valColl

 ' Perform desired processing on each item.

 Next item

 End Sub
$MA()

This function returns the value of a specific attribute of the currently running Management Agent or, if no parameter is passed, the distinguished name of the Management Agent. To access MA info, the following code snippets can be used.

C# example:

Microsoft.MetadirectoryServices.ManagementAgentCollection MAColl = Microsoft.MetadirectoryServices.Utils.MAs;

Microsoft.MetadirectoryServices.ManagementAgent MA = MAColl["MAName"];

string MAName = MA.Name;

VB.Net example:

Dim MAColl As Microsoft.MetadirectoryServices.ManagementAgentCollection

Dim MA As Microsoft.MetadirectoryServices.ManagementAgent

Dim MAName As String

MAColl = Microsoft.MetadirectoryServices.Utils.MAs

MA = MAColl("SourceMA")

MAName = MA.Name

$MAP_CHAR()

This function replaces characters in a variable or attribute with other substitute characters defined by the s_substitition line in the template definition file. It is usually used for replacing characters in user identifiers or email addresses. The .NET function Replace() gives the same result.

C# example:

string mail = csentry["mailAttr"].Value;

mventry["mailAttr"].Value = mail.Replace(' ','.');

VB.Net example:

Dim mail As String

mail = csentry("mail").Value

mventry("mail").StringValue = mail.Replace(" ", ".")

$MULTI_VALUED()

This function analyzes multivalued attributes.

C# example:

The following code shows several ways to extract information from a multivalued attribute value collection.

void IMASynchronization.MapAttributesForImport(string FlowRuleName, CSEntry csentry, MVEntry mventry)

{

switch(FlowRuleName.ToLower())

{

case "mail":

 if(csentry["mail"].IsPresent)

 {

 string finalValue = null;

 ValueCollection valColl = csentry["mail"].Values;

 if(valColl != null)

 {

 foreach(Value val in valColl)

 if(val.ToString().IndexOf("oc=") != -1)

 {

 finalValue = val.ToString();

 break;

 }

 if(finalValue != null)

mventry["mail"].Value = finalValue;

}

}

break;

default:

throw new EntryPointNotImplementedException();

}

}
VB.Net example:

Public Sub MapAttributesForImport(ByVal FlowRuleName As String, ByVal csentry As CSEntry, ByVal mventry As MVEntry) Implements IMASynchronization.MapAttributesForImport

 Select Case FlowRuleName.ToLower()

 Case "mail"

 If csentry("mail").IsPresent Then

 Dim finalValue As String

 Dim valColl As ValueCollection

 Dim val As Value

 valColl = csentry("mail").Values

 If valColl.Count > 0 Then

 For Each val In valColl

 If val.ToString().IndexOf("oc=") <> -1 Then

 finalValue = val.ToString()

 Exit For

 End If

 Next val

 If finalValue <> Nothing Then

 mventry("mail").Value = finalValue

 End If

 End If

 End If

 Case Else

 Throw New EntryPointNotImplementedException

 End Select

End Sub

$MV_OBJECT_CLASS()

This function determines whether a metaverse entry is a member of a particular object class. In MIIS 2003, the object type is a property of the entry.

C# example:

if(mventry.ObjectType == "testClass")...
VB.Net example:

If mventry.ObjectType.ToLower() = "person" Then …

$MY_DSA()

This function returns the distinguished name of the directory system agent (DSA) of the metadirectory server. There is no equivalent in MIIS 2003.

$MY_MTA()

This function returns the distinguished name of the local MTA (Message Transfer Agent) for this DSA, if one exists. There is no equivalent in MIIS 2003.

$PARENT()

This function returns the full distinguished name of the entry’s “parent” (the entry immediately above it in the directory tree), or the value of an attribute in the parent’s distinguished name. Because the metaverse is flat in MIIS 2003, this function does not apply to metaverse entries. It is possible to retrieve the parent DN value of a CS object using the following code.

C# example:

ReferenceValue refVal = csentry.DN.Parent();

VB.Net example:

Dim refVal As ReferenceValue

refVal = csentry.DN.Parent()

$PARSER()

This function parses a composite variable into smaller parts according to a subsidiary template. There is no direct equivalent in MIIS 2003. Consider using regular expressions with named capture groups to parse composite variables and attributes. See the .NET Framework help on regular expression for more information.

$PROPER_NAME()

This function formats the contents of a variable or an attribute as a name. There is no equivalent in MIIS 2003.

$REPLACE()

This function replaces one substring with another in a variable or attribute. See the $MAP_CHAR() function for an example of how to do this in MIIS 2003.

$REVERSE_DN()

This function reverses the order of attributes in a distinguished name.

ReferenceValue DN = csentry.DN;

int DNDepth = DN.Depth;
int startingComp=0;

int endingComp = 1;
int index = 0;

string[] subCompArray = new string[DNDepth];

while(endingComp <= DNDepth && index < DNDepth){

subCompArray[index] = DN.Subcomponents(startingComp,endingComp).ToString();

startingComp++;

endingComp++;

index++;

}

Array.Reverse(subCompArray);

string reverseDN = null;

foreach(string element in subCompArray)

{

if(reverseDN == null)

reverseDN = element;

else

reverseDN = reverseDN + "," + element;

}

VB.Net example:

Dim DN As ReferenceValue

Dim DNDepth As Integer

Dim startingComp As Integer

Dim endingComp As Integer

Dim index As Integer

Dim subCompArray() As String

DN = csentry.DN

DNDepth = DN.Depth

startingComp = 0

endingComp = 1

index = 0

ReDim subCompArray(DNDepth)

While endingComp <= DNDepth And index < DNDepth
subCompArray(index) = DN.Subcomponents(startingComp, endingComp).ToString()

startingComp = startingComp + 1

endingComp = endingComp + 1

index = index + 1

End While

Array.Reverse(subCompArray)

Dim reverseDN As String

Dim element As String

For Each element In subCompArray

 If reverseDN = Nothing Then

reverseDN = element

 Else

reverseDN = reverseDN + "," + element

 End If

Next

$SEARCH()

This function searches the metadirectory for entries with a specified attribute value.

In the MIIS 2003 object model, there are several different methods to search the Metaverse based on some attribute. You can use any of the following methods provided in the Microsoft.MetadirectoryServices.Utils class. For more details, see the MIIS Developer’s Reference.

FindMVEntries (String, Boolean)

FindMVEntries (String, Byte[])

FindMVEntries (String, Int64)

FindMVEntries (String, String)

FindMVEntries (String, Value)

$SEQUENCE_NUM()

This function prints a sequential integer number each time it is called. The current value is stored on the DSA entry. There is no equivalent in MIIS 2003.

$SET_ATTR()

This function modifies the value of an attribute in a directory entry. There is no equivalent in MIIS 2003, as this can only be done through normal flow rules.

$SET_CHAR ()

This function replaces a character at a specified position in a variable or attribute with another character. See the $MAP_CHAR() function for more information.

$SET_REFLECTION()

This function makes the MMS 2.2 synchronization engine consider the entry being synchronized as if it was being synchronized by a reflector mode management agent. There is no equivalent in MIIS 2003.

$TEST_CHAR()

This function checks for the presence of one or more individual characters anywhere within a variable or attribute value.

The .NET Framework provides the IndexOf(char c) method that returns -1 if the character searched for is not found. If found, it returns the index of the character in the string. This method can be extended using the following code to obtain an equivalent of TEST_CHAR().

C# example:

string searchString = "SearchString";

if(searchString.IndexOf('S') != -1)

 return true;

else

 return false;

If you want to check for one or more characters, the following code could be used:

string searchString = "SearchString";

char[] searchChars = {'a','e','i','o,'u'};

bool found = true;

foreach(char c in searchChars)

 if(searchString.IndexOf(c) == -1)
 found = false;

VB.Net example:

Dim searchString As String

searchString = "sampleString"

If searchString.IndexOf("S") <> -1 Then

 Return True

Else

 Return False

End If

If you want to check for one or more characters, the following code could be used:

Dim searchString As String

Dim searchChars() As Char = {"a", "e", "i", "o", "u"}

Dim found As Boolean = True

Dim c As Char

searchString = "sampleString"

For Each c In searchChars

 If searchString.IndexOf(c) = -1 Then

 found = False

 End If

Next

$TIME ()

This function returns the current system time or date. The .NET Framework provides the System.DateTime namespace that gives equivalent functionality.

$TO_FILE()

This function writes an attribute variable from a buffer to a specified file and returns the fully-qualified name of that file.

C# example:

There is a class called Utils in the MIIS 2003 scripting model that gives the information about the working directory of the current MA that called the script. Assuming that the file to be written to is in this directory, the following code writes the file information from a buffer to a file. See the C# help for writing to files if you do not intend to write everything from a buffer.

string path = Utils.WorkingDirectory;

string fullFilePath = path + "\" + filename;

System.IO.FileStream fStream = new System.IO.FileStream(fullFilePath,FileMode.Create);

System.IO.StreamWriter sr = new System.IO.StreamWriter(fStream);

sr.Write("SampleStringToBeWritten");

sr.Close();

fStream.Close();
VB.Net example:

Dim path As String

Dim fullFilePath As String

Dim fileName As String

Dim fStream As System.IO.FileStream

Dim sr As System.IO.StreamWriter

Dim testString As String = "SampleStringToBeWritten"

path = Utils.WorkingDirectory

fullFilePath = path + "\" + fileName

fStream = New System.IO.FileStream(fullFilePath, System.IO.FileMode.Create)

sr = New System.IO.StreamWriter(fStream)

sr.Write(testString)

sr.Close()

fStream.Close()

$TRIM()

This function extracts substrings from the left or right of a string. Use the .Net Substring() method to extract the required portions of the string value in MIIS 2003.

$UNIQUE_ID()

This function returns a unique number each time it is used within a single process. Use the System.Guid object to create and use unique identifiers in MIIS 2003.

$UNQUOTE()

This function removes single or double quotation marks from a variable or attribute. Use System.Text.RegularExpressions.Regex objects in MIIS 2003. See the .Net Framework documentation on regular expressions for more detail.

$WILDCARD()

This function makes a “wildcard” comparison and returns true or false depending on whether the wildcard pattern is matched or not. Use System.Text.RegularExpressions.Regex objects in MIIS 2003. See the .Net Framework documentation on regular expressions for more detail.

