
 “Designed for Microsoft Windows XP x64” Application Test Framework
53

Windows Logo Program

Guidelines for products that work well with the Microsoft® Windows® XP operating systems

“Designed for Microsoft Windows XP x64” Application Test Framework

A testing methodology to ensure that applications meet
 the “Designed for Microsoft Windows XP x64” Application Logo Specification requirements
 when running on Windows XP Professional x64 Edition
[image: image1.png]

Version 2.0.0
March, 2005

[image: image2.jpg]g

Designed for

Windows®XP,
Windows®XP
x64 Edition

[image: image3.png]Designed for

Microsoft®
Windows®XP
x64 Edition

Portions of this document specify software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of final documentation or software. Microsoft assumes no responsibility for any damages that might occur directly or indirectly from these inaccuracies.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties or merchantability, fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented. This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, Active Directory, MSDN, Windows, the Windows Logo, Win32, Win64, x64 and Windows NT are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

© 2001 - 2005 Microsoft Corporation. All rights reserved.

Contents

4Welcome

4Conventions Used in This Document

6Test Case Checklist

7Test Framework Overview

7“Designed for Windows XP x64” Logo Requirements for Applications

7Creating Documents with Windows Applications Exploratory Test Procedure

9Prerequisites for Using This Test Framework

9Testing Process Overview

13Windows XP x64 Testing Environment

13Hardware Configuration

15Installing Windows XP x64 with the Unattended Answer File

16Required Changes to the Windows XP x64 Configuration

21Optional Environment Changes That Will Not Affect Test Results

22T1.1
Perform primary functionality and maintain stability

32T1.2
Kernel-mode drivers installed by the must pass verification testing

34T1.3
Device or filter drivers included with the application must pass Windows HCT testing

35T1.4
Perform Windows version checking correctly

38T1.5
Support Fast User Switching

40T1.6
Support new visual styles

41T1.7
Support switching between tasks

43T2.1
Do not attempt to replace files protected by Windows File Protection

44T2.2
Support upgrades to next Service Pack of Windows

47T2.4
Do not require a reboot inappropriately

49T2.5
Install to Program Files (or Program Files (x86)) by default

51T2.6
Install any shared files that are not side-by-side to the correct locations

52T2.7
Support Add or Remove Programs properly

55T2.8
Support “All Users” installations

57T2.9
Support Autorun for CDs and DVDs

59T3.1
Default to the correct location for storing user-created data

62T3.2
Classify and store application data correctly

64T3.3
Deal gracefully with access-denied scenarios

66T3.4
Support running as a Limited User

68Appendix A
Example Test Plan Using Framework Test Cases

73Appendix B
Support Files

76Appendix C
Future Version Testing

77Appendix D
Testing Kernel-Mode Drivers

88Appendix E
Example Primary Function List, TCO, and CVTs

97Appendix F
Test Case Summary

103Glossary

Welcome

Welcome to “Designed for Microsoft Windows XP x64 ” Application Test Framework, which is provided for technical managers and testers who are preparing software application products for qualification under the Windows Logo Program for software.

This Test Framework describes tests that verify an application’s compliance with requirements defined in “Designed for Microsoft Windows XP x64 ” Application Specification.

This Test Framework includes guidelines for setting up and testing your application. It can help you plan a good test and avoid unnecessary efforts. It also clarifies what to look for in testing, so you do not waste time with issues that are not fail conditions. You do not need to follow the tests exactly. The tests provide a guideline to use when testing your application. Regardless of how you test your application, you must be confident that your application satisfies the requirements in the “Designed for Microsoft Windows XP x64” Application Specification.
Conventions Used in This Document

This section describes standard terms used in this document. For more information, see also the “Glossary” at the end of this document.

Windows Logo Program terms

Terms related to the Windows Logo Program are used as follows:

	“Designed for Windows XP x64”
	The logo for provided through the Windows Logo Program for both applications and hardware. In this document, the phrase refers to the “Designed for Windows XP x64” logo for application software, unless stated otherwise.

	Fail
	Refers to whether an application does not meet a specific test condition for a Logo requirement.

	Pass
	Refers to whether an application successfully meets a specific test condition for a Logo requirement.

	“the Logo”
	In this document, refers to the “Designed for Windows XP x64” logo for application software.

	Specification
	“Designed for Microsoft Windows XP x64” Application Specification

	Submission
	The information submitted to Microsoft as part of the application process for the Windows Logo Program.

	Windows Logo key

[image: image4.png]

	The key provided on many keyboards that can be pressed to display the Start menu in Windows. Typically, the key has the Windows Logo as a symbol on the key top.

Requirement References

Tests for specific requirements are presented using this format:

	T#
	Identifier for a group of tests related to a general Logo Program requirement, where # represents a requirement defined in “Designed for Windows XP x64” Application Specification.

	TC#.#.#
	Identifier for a test case.

Technical Resources

References and Tools

The following resources can be obtained from the Internet:

	Application Verifier v. 2.3
	http://www.microsoft.com/winlogo/

	“Certified for Windows” Program, specifications and test framework documents
	http://msdn.microsoft.com/certification/download.asp

	Driver Verifier
	http://www.microsoft.com/hwdev/driver/verifier.htm

	Hardware Compatibility List
	http://www.microsoft.com/hcl/default.asp

	Test Framework Support Archive
	http://www.microsoft.com/winlogo/software/

	VeriTest Rational Installation Analyzer tool (the Analyzer)
	http://www.veritest.com/mslogos/windows2000/

	Windiff is part of the Windows XP Service Pack 2 Support Tools
	http://www.microsoft.com/downloads/details.aspx?FamilyID=49ae8576-9bb9-4126-9761-ba8011fabf38&displaylang=en

	Windows XP x64 Application Compatibility Toolkit and
Windows Applications Exploratory Test Procedure
	http://msdn.microsoft.com/compatibility/

	Windows Logo Program, including:

· “Designed for Microsoft Windows XP x64” Application Specification”

· “Designed for Microsoft Windows XP x64” Application Test Framework

	http://www.microsoft.com/winlogo/software/

Technical Support

The following technical support and related information can be obtained from the Internet:

	Microsoft Developer Network (MSDN®), including newsgroups and library of technical information
	 http://msdn.microsoft.com/

	Microsoft Knowledge Base
	http://search.support.microsoft.com/kb/

	Microsoft Product Support Services
	http://support.microsoft.com/directory/

Test Case Checklist

The follow list summaries the test cases presented in this document.

	Test Cases
	Pass
	Fail

	T1.1 Perform primary functionality and maintain stability
	

	

	T1.1.1 Perform primary functions and maintain stability during functionality testing
	
	

	Test for the application hanging, crashing, losing data, or incorrect system behavior:
	
	

	
T1.1.2 When used with a mouse with more than three buttons
	
	

	
T1.1.3 Use only each user’s assigned temporary folder for temporary files
	
	

	
T1.1.4 When presented with long paths, file names and printer names
	
	

	
T1.1.5 When installed and run on a dual-processor system
	
	

	
T1.1.6 When devices are not installed
	
	

	T1.1.7 Switches back to system color mode on exit, if application requires 256-colors
	
	

	T1.2 Kernel mode drivers must pass verification testing
	
	

	T1.3 Device and filter drivers must pass Windows HCT testing
	
	

	T1.4 Perform Windows version checking correctly
	
	

	T1.5 Support Fast User Switching
	
	

	T1.5.1 Does Application properly support Fast User Switching?
	
	

	T1.5.2 Does application properly support Remote Desktop?
	
	

	T1.5.3 If the application installs a replacement GINA, does the GINA properly support Remote Desktop?
	
	

	T1.6 Support new visual styles
	
	

	T1.7 Support switching between tasks
	
	

	T2.1 Do not replace files protected by Windows File Protection
	
	

	T2.T3 Do not overwrite non-proprietary files with older versions
	
	

	T2.4 Do not require a reboot inappropriately
	
	

	T2.5 Install to Program Files by default
	
	

	T2.6 Install any shared files to the correct locations
	
	

	T2.7 Support Add or Remove Programs properly
	
	

	T2.8 Support “All Users” installations
	
	

	T2.9 Support Autorun for CDs and DVDs
	
	

	T3.1 Default to the correct location for storing user-created data
	
	

	T3.2 Classify and store application data correctly
	
	

	T3.3 Deal gracefully with access-denied scenarios
	
	

	T3.4 Support running as a Limited User
	
	

Test Framework Overview

Topics in this section include:

“Designed for Windows XP x64” Logo Requirements for Applications
Creating Documents with Windows Applications Exploratory Test Procedure
Prerequisites for Using This Test Framework
Testing Process Overview
“Designed for Windows XP x64” Logo Requirements for Applications

Each application must meet specific requirements to receive the Designed for Windows XP x64 Application Logo. These requirements assure Windows XP x64 users those applications bearing the “Designed for Windows XP x64” Logo work well on the Windows XP x64 operating system. Applications are tested for:

Specific requirements – The specific requirements that all applications must comply with to receive the “Designed for Windows XP x64” Logo are described in “Designed for Microsoft Windows XP x64” Application Specification (the Specification). This Test Framework provides guidelines and examples of how to verify application compliance with the specific requirements listed in the Specification, and it also describes the hardware environment used for all specific requirements and functionality/stability tests.
Primary functionality and stability – Because applications differ in purpose and implementation, a general method is used to determine tests for functionality and stability for each application. The method is described in the Windows Applications Exploratory Test Procedure.
For information about how to obtain the “Designed for Microsoft Windows XP x64” Application Specification and the Windows Applications Exploratory Test Procedure, see “Technical Resources” in “Welcome” in this document.

This Test Framework also describes the hardware environment used for all specific requirements and functionality/stability tests described in this doc.

An application must meet all the logo specifications, and all functionality and stability tests, on both Windows XP x64 Home Edition and Windows XP x64 Professional, to receive the “Designed for Windows XP x64” Logo.

Creating Documents with Windows Applications Exploratory Test Procedure

The Windows Applications Exploratory Test Procedure is used by testers who have no formal test plans available for the applications they are testing. If you work for the vendor who created the application, you probably have a formal test plan that is suitable for testing many of the requirements for the “Designed for Windows XP x64” Logo. However, most comprehensive test plans are too lengthy and complex for testers to use when they verify that your application meets the Specification requirements.
NOTE: Some application submissions also require proof of device and filter driver testing by the Windows Hardware Quality Lab (WHQL). For more information, see “T1.3 Any device or filter drivers included with the application must pass Windows HCT testing” in this Framework.

Primary Functions

Windows Applications Exploratory Test Procedure divides all functionality in any application into two groups: primary and contributing. A primary function is a feature that is so important to a normal user, that the user will be unable to effectively use the application if that function fails. To decide which functions in the application you are testing are primary functions, you must also define one or more normal users. The methodology described in the Windows Applications Exploratory Test Procedure helps you define normal users of your application and determine which functions are primary.
Most applications have between five and fifty primary functions. If your final list has too many functions, you are probably providing too much detail. For example, if your application can import .abc, .def, .ghi, .jkl, .mno, and .pqr file types, you do not have six primary functions. You have one primary function, “import files,” with six possible tests. You may also have too many different normal users. Try to combine normal user categories as much as possible and list only primary functions common to all users as the functions you will use in testing for the “Designed for Windows XP x64” Logo.

Your tests will target all of the primary functions in your application when you test the functionality and stability requirement in the Specification. You may also chose to add additional tests for some contributing functions, or test contributing functions in conjunction with testing primary functions.

NOTE: The term “functions” in the context of this Framework means features users can invoke in an application, such as copy and paste text, change paragraph formatting, draw diagrams, and choose a weapon in a game. It does not refer to programming language functions.

Test Case Outline

The Test Case Outline (TCO) describes the tests you use to verify that all primary functionality works as the normal user expects it to. Unlike formal test plans, the TCO is short, between one and four pages. The tests descriptions are very brief and usually do not specify details such as the test data and file names used. Using that format allows a TCO to describe all the tests you need to perform on even complex applications. The Windows Applications Exploratory Test Procedure gives examples and discusses the TCO in more detail.
Consistency Verification Tests

For several test cases in this Framework, you need tests that always return exactly the same results. Normal TCO tests do not have that property. Testers running TCO tests may change the test parameters and conditions slightly every time they perform a test pass. In fact, they should do that to help maximize the likelihood of finding test failures. However, for some tests, you will expect to see the results change only because the test environment has changed and not because you changed the test parameters or data.

You do not want to use tests that might give you a false negative result. For example, you do not want a test to fail because you used a particular file type, size or version for a functionality test. You want a test which, if it fails, shows clearly that your application did not handle the change well.

Prerequisites for Using This Test Framework

This Test Framework is written with the assumption that you have the skills to create an effective test plan, execute the tests, and evaluate the results. These skills include:

Software testing experience and familiarity with creating test plans.

Experience testing Windows desktop applications.

Experience installing and configuring computer hardware.

Familiarity with Windows operating systems.

Ability to install and configure Windows XP x64 options.

Experience using kernel-mode debuggers to monitor test applications (only required if the application installs kernel mode code, but may be useful in some other tests).

Each test case describes the purpose or rationale for the test in the context of the Specification. This description assumes that you are familiar with the Windows operating system and typical Windows applications. Using that knowledge and experience, combined with the test descriptions, you should be able to make Pass/Fail decisions on all tests accurately. If you have specific questions about whether results for a specific test represent Pass or Fail for your application, send them to winlogo@microsoft.com.

Testing Process Overview

This Test Framework describes step-by-step test cases for each requirement in the Specification. The test cases are listed in Specification requirements order. It is inefficient to test an application in that order because many of the tests would be repeated several times and some tests need special setup earlier in the test pass. You should become familiar with the test cases, and then organize them into a test plan that best suits your application. Appendix A, “Example Test Plan Using Framework Test Cases,” describes a test plan that will work for many applications.

Some test cases have several parts that may be run at different times in your test plan. Some test cases ask the question, “Did this specific thing happen at any time while you ran your application?” Those test cases are “executed” for the entire time you run your application, and you can only verify that your application passed or failed each test when you have finished all your testing. The section “Summary List of Test Cases with Sequence or Setup Dependencies” later in this Framework lists all test cases that have sequence interdependencies or cannot be verified until all other tests are done.

Each test case in the “Test Cases” section is labeled with the number of the Specification requirement it tests. Each test case has a descriptive title in the form of question. For example:

TC2.1 Does the installation finish without any Windows File Protection messages appearing?

Such questions can be answered “Yes,” or “No,” or occasionally “Not applicable to the application being tested.”

Some requirements need more than one test case. Level numbers identify the additional test cases. For example:

TC1.1.6.1 Does the application crash when trying to print when no printer is installed?

Each test case contains check boxes marked “Pass” and “Fail.” The test case title questions are phrased so that a “Yes” answer signifies that your application has passed the corresponding test. When you can answer “Yes” to the test question, check the “Pass” check box.

A “No” answer means that your application has failed the test and you should check the “Fail” check box.
NOTE: A “Fail” for any one of the test cases for any one of the Specification requirements disqualifies your application for the “Designed for Windows XP x64” Logo.

For some tests, there are additional answers such as, “The test application does not install the functionality tested.” An application for which one of these answers applies is not disqualified from receiving the “Designed for Windows XP x64” Logo.
Test Cases

The test case numbers in this document correspond to the requirement numbers in the “Designed for Microsoft Windows XP x64” Application Specification. It is inefficient to test an application in that order because many of the tests would be repeated several times and some tests need special setup earlier in the test pass. You should become familiar with the test cases, and then organize them into a test plan that best suits your application. Appendix A, “Example Test Plan Using Framework Test Cases,” describes a test plan that will work for many applications.

NOTE: Several test cases use Microsoft Windiff which is part of the Support tools for XP. Be sure to install the Support tools and create a baseline snapshot before installing your application.
“My Documents” in This Test Framework

Windows XP x64 creates several folders for each new user one of which is the default folder for the user’s documents, pictures and music. It is sometimes called the user’s “personal” folder. On down-level versions of Windows, that folder is often called “My Documents” for U.S. English installations. However, the name of the folder may be different for localized Windows or if the user is part of an enterprise environment where that folder is redirected. To get the correct full path to the user’s personal folder, applications must call the Microsoft Win32® API function SHGetFolderPath using the CSIDL_PERSONAL parameter. For information, see “Data and Settings Management Requirements” in the Specification.

In Windows XP x64, the Windows common dialog boxes and Windows Explorer display the user’s name as part of the CSIDL_PERSONAL folder name. So, if you browse to the “D:\Logo Test Docs & Settings\User1” folder in Windows Explorer, you will see a folder named “User1’s Documents”. However, when you open a command window, navigate to the “D:\Logo Test Docs & Settings\User1” folder, and use the “dir” command, you will see a folder named “My Documents” instead. You are looking at the same folder in both cases, User1’s CSIDL_PERSONAL folder.

NOTE All the test cases in this Framework use the phrase “My Documents” in quotation marks to refer to the CSIDL_PERSONAL folder for the user logged on and running the test.

If your application uses the Windows common dialog boxes, and you use them to browse to any user’s CSIDL_PERSONAL folder, you will see the user’s name as part of the folder name. If your application creates its own common dialog boxes, you may see the name “My Documents” without any reference to the user who owns that folder.

Test Cases with Sequence or Setup Dependencies

Although you can create test plans using many of the test cases in any order you choose, some test cases must be run together, or in a particular sequence, or have some setup tasks performed early in the test pass so you are ready to run them at the appropriate time. Some test cases have several parts that will be run at different times in the test plan.

Some test cases ask the question, “Did this specific thing happen at any time while you ran the application?” Those test cases are “executed” for the entire time you run your application, and you can only verify that your application passed or failed each test when you have finished the test pass.

This section lists the tests cases that have those dependencies.

Tests That Can Only Be Verified After All Other Tests Have Been Run

· TC1.1.1 Does the application perform its primary functions and maintain stability during functionality testing?
Primary function failures and stability failures may occur at any time during testing.
· TC1.1.3.2 Does the application store its temporary files only in the user’s temporary folder during functionality testing?
Applications may use temporary folder locations at any time during testing.
· TC1.3.2 Do no warnings appear about unsigned drivers during testing?
Drivers may be loaded at any time during testing.
· T1.6 Support new visual styles
Problems with themed controls may occur at any time during testing.
· T2.1 Do not attempt to replace files protected by Windows File Protection
Users may initiate just-in-time feature installations that can try to replace WFP protected files during functionality testing.
· TC2.3.1 Does the application not overwrite non-proprietary files with older versions?
Users may initiate just-in-time feature installations that can over-write additional files not affected during initial installation during functionality testing.

· TC2.4.2 Can all Test Framework testing be completed without application requiring a reboot?
Reboot requests may occur at any time during testing.

· T2.7 Support Add or Remove Programs properly
Several test cases in T2.7 look for user preferences and setting data. That data will be present only when you have run full functionality tests or CVTs as the user.

· TC3.2.1 Does the application store less than 128K of application data in the registry for User1?
TC3.2.2 Does the application store configuration data for User1 only in acceptable folders?
You need to complete all functionality tests for User1 before running these test cases.

Tests That Must Be Run in a Special Order

· TC1.1.1 Does the application perform its primary functions and maintain stability during functionality testing?
If you can start T1.6 tests before you start T1.1 tests, and verify compliance with T1.6 tests after all T1.1 tests are done, you can test for both requirements simultaneously.
· TC1.1.4 Does the application not crash or lose data when presented with long path, file and printer names?
TC1.1.4.1 must be run before TC1.1.4.4.
TC1.1.4.2 must be run before TC1.1.4.5.
TC1.1.4.3 must be run before TC1.1.4.6.
· TC1.1.6 Does the application not crash when devices it uses are not installed?
TC1.1.6.1 should be run before TC1.1.4.7.
TC1.1.6.2 should be run before performing any other tests that require additional hardware devices.
You may prefer to use a separate test pass that starts with no application specific devices, including printers, installed for the series of T1.1.6 tests.
· T1.2 Any kernel-mode drivers that the application installs must pass verification testing on Windows XP x64
The entire series of T1.2 test cases must be run in order, and all tests should be run together on the same test pass.
· T1.4 Perform Windows version checking correctly
TC1.4.1 (“Install on Future Version”) must be run before TC1.4.2, perform functionality tests while running on a “future version.”
· T1.6 Support new visual styles
If you can start this test case before you start T1.1 tests, and verify compliance with requirement 1.6 after all T1.1 tests are done, you can test for both requirements simultaneously.
· T2.7 Support Add or Remove Programs properly
The test cases for this requirement have several preconditions that are mutually exclusive. You may need several separate test passes to test them.
· TC3.3.4 Does the application’s installer either allow User1 to install application or degrade gracefully if the installation fails?
Most test plans install the application as Owner. Installing as User1 may require a separate test pass.
Windows XP x64 Testing Environment

Many of the Specification requirements are easier to test on machines that contain a specific hardware configuration and an installation of Windows XP x64 that does not use the default names for resources. The test environment used for executing test cases in this Test Framework is designed to expose failures to meet those requirements and also provide flexibility for testing applications of all types.

This section includes the following topics:

Hardware Configuration
Installing Windows XP x64 with the Unattended Answer File
Required Changes to the Windows XP x64 Configuration
Optional Environment Changes That Will Not Affect Test Results
Hardware Configuration

To ensure that all tests are conducted under identical circumstances, all machines used to test applications for the “Designed for Windows XP x64” Logo must have the following hardware configuration. All hardware must meet minimum Windows XP x64 requirements:

Logo Test Operating System

· Windows XP x64 Professional

Safe Build Operating System

· Windows 98, Windows Millennium Edition (Windows Me), Windows NT® 4.0, or Windows 2000

· A safe build on drive F allows you to install Windows XP x64 efficiently using Windows 32-bit Setup, and view files and resources from outside the Windows XP x64 base test environment

Processor/RAM/Disk
Dual processor system for testing with Windows XP x64 Professional

· AMD Opteron Model 140 (1.4 GHz) or • Intel Xeon processor 2.80 GHz (800 MHz FSB and Intel EM64T)

512 MB RAM or more

Disk Space of at least 4 GB

Ports

· PS/2 or USB ports for keyboard and mouse

· At least one RS‑232 serial port for kernel-mode debugger connection, if your application installs kernel-mode drivers (for details, see “T1.1 Perform primary functionality and maintain stability”)

Additional serial ports may be required for application devices such as a modem.

· At least one parallel (printer) port

· One or more of these ports may be required for devices your application uses

USB port, in addition to the ports used for keyboard and mouse

IEEE 1394 port

CardBus port

Floppy drive

· The test environment machines must have one 3½" HD floppy drive configured as drive A.

· The machines should be set to boot from drive A first, then drive C (and then the CD-ROM, if that option is available in the BIOS).

Hard drives

· At least one IDE (ATA) or SCSI drive, 16 GB or larger

· At least four logical drives must be available, using the drive letters, drive sizes and file formats in this table. The logical drives may be distributed across two or more physical drives. Additional logical drives are optional and will not be used by the tests in the Test Framework.

IDE or SCSI Hard Drive(s)

	Drive
	File system
	Size

	C:
	FAT or NTFS
	100 MB

	D:
	NTFS
	Approximately 1 GB

	E: 1
	NTFS
	12 GB+

	F: 2
	NTFS or FAT32
	2 GB+

	1 System drive

2 Safe build; for details, see “Installing Windows XP x64 with the Unattended Answer File” later in this section.

· Drive E is the system drive where all Windows XP x64 system files are installed.

· Drive F is a build with a “safe” version of Windows 98, Windows Me, Windows NT 4.0 Service Pack 6, or Windows 2000.

If you use Windows 98 or Windows Me as a safe build, you will not be able to access drive E or drive F from the safe build after you convert them to NTFS.

If you use Windows NT 4.0 as a safe build, you must install Service Pack 6 before you can run Windows XP x64 Setup.

CD/DVD drives
· Tests in “T2.9 Support Autorun for CDs and DVDs” use one or more CD/DVD drives, for applications that users install from CD/DVD.
· Test cases in the Framework do not use specific drive letters for the CD/DVD drives. You can either accept the default Windows XP x64 drive letter assignments or change them.
Optional drives

· All remaining drive letters not assigned by Windows XP x64 to CD/DVD drives may be used for additional hard disk drives, removable media drives, or other drive assignments as desired.
Drives summary
	Drive
	Drive type

	A:
	FAT – Floppy

	C:
	FAT or NTFS – IDE or SCSI

	D:
	NTFS – IDE or SCSI

	E: 1
	NTFS – IDE or SCSI

	F: 2
	FAT or NTFS – IDE or SCSI

	Not specified
	CD/DVD

	1 System drive

2 Safe build; for details, see “Installing Windows XP x64 with the Unattended Answer File” later in this section.

Devices

· Sound. Any sound card listed on the Hardware Compatibility List (HCL), unless your application requires a particular card or subset of cards.

· Graphics. Any graphics adapter listed on the HCL, unless your application requires a particular adapter or set of adapters.

· Network. Any network adapter listed on the HCL, unless your application requires a particular card or set of cards.

· Keyboard

Microsoft Natural Keyboard, or equivalent, with a Windows Logo Key.

Either PS/2 or USB.
NOTE: Do not install a special keyboard driver, even if one is supplied by the keyboard manufacturer to take advantage of special hardware features, unless that driver is specifically required by your application.
· Mouse. A mouse that has more than three buttons. The center wheel on the Microsoft IntelliMouse® pointing device, or compatible device, qualifies as a button.
NOTE: Do not install a special mouse driver, even if one is supplied by the mouse manufacturer to take advantage of special hardware features, unless that driver is specifically required by your application.
· Printers. The test plan you create for your application determines whether you install any printers as part of the base test environment. For details, see the tests in “T1.1 Perform primary functionality and maintain stability.”

Choose one or more printers from the HCL based on printer features your application exploits, such as color, printing on both sides of the same page, large format and special printer style, such as a pen plotter.
You will need a printer with a long name connected as the default printer for TC1.1.4.7. Depending on your test plan, you may choose to delay installing that printer until you complete TC1.6.1. For details, see the descriptions for both test cases and the “Summary List of Test Cases with Sequence or Setup Dependencies” section.
Installing Windows XP x64 with the Unattended Answer File

This section describes how to install the base test environment by running Windows Setup from a “safe build” of Windows on drive F. Using the safe build, you can run the 32-bit version of Setup, winnt32.exe which installs Windows XP x64 much faster than from cdrom. You can use any 32-bit / 64-bit version of Windows as the safe build. However, Windows 2003 is recommended. If you use Windows 98 or Windows Me as the safe build, you will not be able to access files on drive E or drive F from the safe build after Windows XP x64 converts them to NTFS.
Use the unattended answer file unattend.txt, available in the Test Framework Support Archive at http://www.microsoft.com/downloads/details.aspx?FamilyID=2842ed69-68c2-468b-b324-9a5f6e054070&displaylang=en&Hash=99NFGL8, to install Windows XP x64 and create the base test environment.

CAUTION: You must use unattended answer file to create the Windows XP x64 base test environment. The answer file changes the default environment to facilitate testing, and several test cases described in this Framework will fail or give incorrect results if those changes are not made correctly.

From the safe build on drive F, format drives D and E as NTFS (use FAT32 if your safe build is Windows 98 or Windows Me). Use the following command to install Windows XP x64 using the unattended answer file. The command assumes that you are running under the safe build of Windows on drive F, that you have copied the answer file from the tool archive to a folder named “XPLogo” on drive C and that the Windows XP x64 compact disc is in drive G:

F:\> g:\amd64\winnt32 /tempdrive:E /unattend:c:\xplogo\unattend.txt

The “/tempdrive” switch makes drive E the Windows XP x64 system drive, and the “/unattend” switch tells the Windows Setup program, winnt32.exe, where to find the answer file.

NOTE: You must enter your Windows XP x64 product key into the answer file before you use it to install Windows XP x64.

For details about the Logo-specific information in the unattended answer file and a description of the changes that can be made in the file that will not affect test case results, see Appendix B, “Support Files.”

Required Changes to the Windows XP x64 Configuration

This section describes changes to the default Windows XP x64 environment that you must make after you have completed the unattended Windows XP x64 installation, but before you start testing applications.

NOTE: To facilitate Windows File Protection (WFP) requirements tests, the Windows XP x64 installation binaries must not be available during testing. If you install Windows XP x64 from a compact disc, remove it before you run any tests. If you install from a network share, make that share unavailable to the test machine when you run tests.

To minimize interaction with Microsoft Active Directory™ directory service objects and domain policies that apply to all users, the unattended answer file joins the test computer to the LogoTest workgroup, and ignores any Windows domains. All users for Test Framework tests are local machine users; see details later in this section.

To ensure that all tests are conducted under identical circumstances, the test machine must have the Windows XP x64 configuration described in this section.

1.
Install Windows XP x64
Use the unattended answer file described in the previous section. The unattended answer file performs the functions listed in the following table.

	Function
	Description

	Set values to enable WFP tests
	To facilitate testing for WFP errors, the unattended answer file sets the System File Cache (SFC) size to zero bytes. If your application replaces a system file when the SFC appears to be empty, WFP will prompt you for the original Windows installation media to obtain a “good” copy of the replaced file.

	Create local users
	The unattended answer file creates all three local users that the Framework test cases need:

· Owner – A computer administrator. On Windows XP x64 Home Edition, this is the default Owner. On Windows XP x64 Professional, Owner is an additional administrator; there is also a default administrator named Administrator. Owner does not have a password on either Windows XP x64 Home Edition or Windows XP x64 Professional.

· User1 – A Limited User with a password. You can change the password in the unattended answer file; see Appendix B, “Support Files.”

· User2 – A Limited User with a password. You can change the password in the unattended answer file; see Appendix B, “Support Files.”

	Create folders on drive D
	The unattended answer file renames and moves the folder normally named “Documents and Settings” and that is normally located in the root the system drive. The new folder is located on drive D and named “Logo Test Docs & Settings.” Windows XP x64 will create all the users’ “My Documents” files under the new folder on Drive D. You will also use tools in the Support Archive to create several special folders in two of the users’ “My Documents” folders; see the bullet “Create Special Folders” later in this section.

	Install Windows on drive E
	The Windows XP x64 operating system is installed on this drive by the unattended answer file in the folder with default name WINDOWS.

When the unattended installation is complete, you must perform several additional steps manually to finish creating the base test environment.

2.
Initial log on

	Windows XP x64
	Description

	
	When the installation of Windows XP x64 finishes, it stops at the logon dialog box.

· Log on as Administrator.

· Administrator’s default password is “LogoTest.1” and it is created in the unattended answer file. You can change the password in the answer file; see Appendix B, “Support Files.”

· As the Administrator logs on, the commands placed in the registry by the unattended answer file create Owner, User1 and User2.

3.
Convert drive D and drive E to NTFS, as required

Use Properties in Windows Explorer to verify that both drive D and drive E are formatted using the NTFS file system. Use convert.exe from a command prompt to convert the drives and reboot, if necessary, and then continue with the next step.

4.
Complete the Windows XP x64 installation

Install additional Windows features that are not installed as part of the default installation:

· Insert the Windows XP x64 compact disc or reconnect to the Windows XP x64 installation share point if necessary.

· Start the Add or Remove Programs applet in Control Panel and click Add/Remove Windows Components.

· Select all check boxes. Make sure none of the check boxes is shaded, indicating that only some parts of that of the component will be installed. You need to have a full and complete installation of Windows XP x64 available.

You may not be able to check the “Remote Desktop Web Connection” check box.

· Complete the installation.

· Visit Windows Update and install all pertinent updates (service packs and critical updates) for Windows XP x64.

5.
Drive C

Create a folder named “XPLogo” on drive C to store support files that you will need as you execute the tests in this Framework. Although you can store the Framework support files elsewhere, keeping them in “C:\XPLogo” is convenient if you create images of the test environment because you will automatically restore the files when you restore the image. You can download all support files listed in this section from http://www.microsoft.com/winlogo/software/. Appendix B, “Support Files” lists and describes the support files.

6.
Limited Users’ log on

· Log off as Owner (or Administrator) and log on as User1. The unattended answer file in the tools archive creates the password “LogoTest.1” for User1. You can change that password in the answer file before you use it to install Windows XP x64; see Appendix B, “Support Files.”

· Log off as User1 and log on as User2. The unattended answer file in the tools archive creates the password “LogoTest.1” for User2 (the same password used for User1). You can change that password in the answer file before you use it to install Windows XP x64; see Appendix B, “Support Files.”

NOTE: You must log on as each of the Limited Users before you create the special folders in the next section, or several test cases will fail and those failures will prevent your application receiving the “Designed for Windows XP x64” Logo.

· Log off as User2 and log on as Owner.

7.
Create Special Folders

· After you have logged on as Owner, open a command window and run the following command to create five special paths in the “My Documents” folders for both local Limited Users. If you changed the default location for the support files on the local machine by editing the unattended answer file, make the corresponding changes in this command; see Appendix B, “Support Files.” (note that this is all to be entered on one line)
E:\> c:\xplogo\create_folders_from_file.exe c:\xplogo\xp_csidl_folders.txt

· Open Windows Explorer, browse to “D:\Logo Test Docs & Settings\User1\My Documents\” and look for five folders with names that begin with “User1 LFNPath1”, “User1 LFNPath2”, etc. If the folders do not exist, either you ran create_folders_from_file.exe incorrectly or you did not log on successfully as owner before you ran the utility.

The “LFN” folder names use random combinations of most ANSI characters to help expose problems with applications. For example, the characters “Þ™jºÌ’~ZáM” are an expected part of “LFNPath2.” To see the full names of the folders in all the paths, open XP_CSIDL_Folders.txt in Notepad.

For more information, see the test series in “TC1.1.4 Does the application not crash or lose data when presented with long path, file and printer names?”

· Open Windows Explorer, browse to “D:\Logo Test Docs & Settings\User2\My Documents\” and look for five folders with names that begin with “User2 LFNPath1”, “User2 LFNPath2”, etc. If the folders do not exist, either you ran create_folders_from_file.exe incorrectly or you did not log on successfully as owner before you ran the utility.

The “LFN” folder names use random combinations of most ANSI characters to help expose problems with applications. For example, the characters “Þ™jºÌ’~ZáM” are an expected part of “LFNPath2.” To see the full names of the folders in all the paths, open XP_CSIDL_Folders.txt in Notepad.

For more information, see the test series in “TC1.1.4 Does the application not crash or lose data when presented with long path, file and printer names?”

8.
Create a default printer with a long printer name

· For most test plans, you will create a default printer using any one of the names in the file “XP long printer names.txt” in the Support Archive. For details, see Appendix B, “Support Files,” and “TC1.1.4 Does the application not crash or lose data when presented with long path, file and printer names?” The printer can be a locally connected printer or a printer on the network.

· For some test plans, you may prefer to have no default printers installed in the base test environment. Instead, you will install a default printer with a long name after you run device related general functionality test cases. For details, see “TC1.1.6.1 Does the application maintain stability when printing if no printer is installed?”

Install Windows Application Verifier

Download Windows Application Verifier from ???.

10.
Connect a kernel-mode debugger

If your application installs kernel-mode drivers, you must have a kernel-mode debugger connected to the test computer when you run the T1.2 test series to get the results of the verification tests. The kernel debugger requires a debug (null modem) cable connecting serial ports of the test computer and a second computer running an appropriate debugger in kernel mode. Several suitable debuggers are available including character mode and GUI debuggers on the Windows XP x64 SDK and Driver Development Kit (DDK) compact discs, and on the Windows XP x64 Symbols and Support compact disc. Descriptions of particular debuggers and instructions on how to use them are beyond the scope of this Test Framework.

You must add debugger switches to the boot string in boot.ini in the base test environment to initiate kernel-mode debugging. A typical Windows XP x64 boot string looks like this:

multi(0)disk(0)rdisk(1)partition(2)\Windows="Microsoft Windows XP x64"

Add these switches to start Windows XP x64 in kernel debug mode. In this example, debug information is sent to the remote debugger at 19,200 baud on a cable connected to COM port #1 (this must all be on one line in the file):

multi(0)disk(0)rdisk(1)partition(2)\Windows="Microsoft Windows XP x64" /debugport=com1 /baudrate=19200

You must reboot for the changes to take effect.

The x64 Debugging Tools are available at this link:

http://www.microsoft.com/whdc/devtools/debugging/install64bit.mspx

The 64-bit versions of Debugging Tools for Windows allow you to debug both 32-bit and 64-bit user-mode applications running on 64-bit processors. Use this package to debug both the application and the WOW64 emulator.
Note: This package will install only on an x64 platform. The x64 Debugging Tools for Windows package is required only if you are debugging an application on an x64 processor. In any other scenario, you should use the 32-bit package. For example, if performing kernel debugger debugging of an x64 target machine from an x86 host machine, you should install the 32-bit package.
Create a baseline of the Registry using the regedit, export the Hives

HKEY_CLASSES_ROOT, HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE
to a text files.

Create a baseline of the file system by running the following commands:

dir c:*.* /s /a /q
> BaseLine.log

dir d:*.* /s /a /q
>> Baseline.log

dir e:*.* /s /a /q
> BaseLine.log

dir f:*.* /s /a /q
>> Baseline.log
This will create a baseline of the original Filesystem, this is also known as creating a snapshot of the system. It is helpful to create these in separate folders, with the folder name indicating at what point in the testing the snapshot was taken. For example a pre-installation snapshot and a post-installation snapshot. Windiff will be used to track the changes that have occurred by comparing the snapshot files created before and after the changes.
Optional Environment Changes That Will Not Affect Test Results

Unless otherwise specified by the unattended answer file, or in the preceding section, or by specific test cases later in this Framework, you can make any user configurable changes in the Windows environment that will help you test your application. For example, settings such as the location of the taskbar or the number of shortcuts on the desktop are not used by the Test Framework and you can change them in any way you want.

T1.1 Perform primary functionality and maintain stability

This section includes these test cases:

TC1.1.
Does the application perform its primary functions and maintain stability during functionality testing?
TC1.1.2
Does the application remain stable when a mouse with more than three buttons was used?
TC1.1.3
Does the application use the user’s temporary folder for temporary files?
TC1.1.4
Does the application not crash or lose data when presented with long path, file and printer names?
TC1.1.5
Does the application perform primary functionality and maintain stability on a dual-processor computer?
TC1.1.6
Does the application not crash when devices it uses are not installed?
TC1.1.7
Does the application switch the system’s display mode back to the previous color mode, if application automatically changes to 256-color mode when it runs?
STOP: Before executing these test cases or any other test cases in this framework, you need to outline a testing plan. Review the Testing Process Overview for guidance on avoiding unnecessary steps and how to approach testing. If you plan to submit your application for the logo, you must include a Test Case Outline and Consistency Verification Tests with your application to ensure it is tested quickly and correctly. These documents will also be useful in your testing.
You have already created a Test Case Outline (TCO) based on your existing formal test plan for your application, or while you explored your application using Windows Exploratory Testing. For TC1.1.1, you will use the TCO to test your application’s primary functionality. While you run TCO tests and all other tests in this Framework, your application must not hang, crash or lose data, and it must not cause Windows XP x64 or any other applications to hang, crash or lose data.

The Specification enumerates six specific requirements that are part of the general “perform primary functions and maintain stability” requirement. Run the tests in the TCO first, and then run the specific tests in this section for each of those six requirements.

NOTE: You may create a test plan that runs TC1.1.1 as part of one test pass, and runs other test cases in the Framework on subsequent test passes. Unless a test case failure is specifically related to other test cases you are running, any failure of your application’s primary functionality or any instability you see during any of your testing is a failure of TC1.1.1, and disqualifies your application for the “Designed for Windows XP x64” Logo. Even if you finished all your TCO tests, you do not actually “complete” running TC1.1.1 until all Framework testing is completed.

TC1.1.1
Does the application perform its primary functions and maintain stability during functionality testing?

Your application must be completely installed before you run this test.

Verify that you created a list of primary functions, a TCO that outlines the tests for each primary function, and a Consistency Verification Tests (CVT).

Log on as User1, unless your application is permitted to run as an Administrator by requirement 3.4, “Support running as a Limited User.” Use the TCO (not the CVT) to test all the primary functions in your application.

Check “Pass” if your application performs all its primary functions without hanging, crashing or losing data

REMINDER: Any primary function failures or instabilities you see during any tests you run later in your test plan are also failures of this test case. The Windows Application Verifier tests for PageHeap, Locks, and Handles will be useful during this test case.
(
Pass
The application performed all its primary functions and did not crash, stop responding, or lose data.

(
Fail
The application failed to perform one or more primary functions, or it crashed, stopped responding, or lost data.

TC1.1.2
Does the application remain stable when a mouse with more than three buttons was used?
Load or create a sample document, change or add data or text. Do not save the changes. For all buttons on the mouse:

· Click on the document, toolbars, menus and controls.

· Double-click on the document, toolbars, menus and controls.

· Try to drag and drop items of interest, or select and move text.

· Avoid actions specifically intended to discard the current document (lose data).

Check “Pass” if your application does not crash, stop responding, or lose data

(
Pass
The application did not crash, stop responding, or lose data.

(
Fail
The application crashed, stopped responding, or lost data as a result of executing the test for at least one mouse button.

TC1.1.3
Does the application use the user’s temporary folder for temporary files?

Some applications need a temporary location for files during installation. The applications may assume that a temporary folder will always be located in the root of the system drive, or perhaps on drive C. The application may also assume that the folder is named “Temp” or “Tmp,” and if the application does not find such a folder, it may create one. Using a folder other than the user’s temporary folder, or asking the user’s permission to create one, is a failure to meet requirement 1.1

The test cases in this series include the following:

TC1.1.3.1
Does the application store its temporary files only in the user’s temporary folder during installation?
TC1.1.3.2
Does the application store its temporary files only in the user’s temporary folder during functionality testing?
TC1.1.3.1
Does the application store its temporary files only in the user’s temporary folder during installation?

You should install your application before running this test. Verify that you have a pre-installation (or "baseline") snapshot and a post-installation snapshot for the current installation.

NOTE: If your application asked you for the location of a temporary folder or offered to create one for you during installation, your application fails this test.

Applications that try to use the wrong temporary folder will usually create the temporary folder they think they need. Use Windiff to compare the pre-installation baselines to the post-installation snapshot to determine:

· If your application’s installation program created C:\TEMP, C:\TMP, E:\TEMP, E:\TMP, or any other temporary folders.

· If any files that appear to be temporary files were stored outside the user’s temporary folder, “D: \Logo Test Docs & Settings\Owner\Local Settings\Temp” for Owner in the base test environment.

Check “Pass” if your application did not create any temporary folders and it did not store any temporary files in the wrong places.


Pass
No temporary folder was created and no temporary files were stored in the wrong places.


Fail
One or more new temporary folders were created or one or more temporary files were stored in the wrong places. Record the full paths for the folders and files.

TC1.1.3.2
Does the application store its temporary files only in the user’s temporary folder during functionality testing?

You should run this test after finishing all functionality testing. Verify that you have post-installation baseline for the current installation. Create a post-functionality-testing baseline.

Use Windiff to compare the post-installation snapshot and the post-functionality-testing snapshot to determine:

· If your application created C:\TEMP, C:\TMP, E:\TEMP, E:\TMP, or any other temporary folders.

· If any files that appear to be temporary files were stored outside the user’s temporary folder, “D: \Logo Test Docs & Settings\User1\Local Settings\Temp” for User1 in the base test environment.

Check “Pass” if your application did not create any temporary folders and it did not store any temporary files in the wrong places.


Pass
No temporary folder was created and no temporary files were stored in the wrong places.


Fail
One or more new temporary folders were created or one or more temporary files were stored in the wrong places. Record the full paths for the folders and files.

TC1.1.4
Does the application not crash or lose data when presented with long path, file and printer names?

Although the Specification does not require that applications support MAX_PATH or MAX_FILE length path, file and printer names, your application must not crash or lose data if the user or another application tries to use long names with your application.

User1’s “My Documents” folder in the base test environment contains five long paths. The folders in the paths have names of varying lengths that use extended ANSI characters. You will use two of those paths for these tests. You can use the other long paths, and the similar paths in User2’s folder, for additional, optional long path tests as described in section A.6, “Support Long Path Names” in the “Best Practices” chapter of the Specification.

The support files XP_long_file_names.txt and XP_long_printer_names.txt contain several long file names and long printer names; see Appendix B, “Support Files.” You will use one name from each file for these tests. You can use the other long file names and long printer names for additional, optional tests described in section A.6, “Support Long Path Names” in the “Best Practices” chapter of the Specification.

NOTE: Some applications will only accept long path and file names, or names with extended ANSI characters, if the paths and names are enclosed in quotation marks. Use quotation marks if your application requires them. This is not a failure for requirement 1.1, unless your application crashes or loses data, even if you enclose the long names inside quotation marks.

The test cases in this series include the following:

TC1.1.4.1
Does the application maintain stability when a file is saved by drilling down through the “User1 LFNPath1” path in User1’s “My Documents” folder?
TC1.1.4.2
Does the application maintain stability when a file is saved by entering the full “User1 LFNPath2” path?
TC1.1.4.3
Does the application maintain stability when a file is saved using a long file name?
TC1.1.4.4
Does the application maintain stability when a file is opened by drilling down through the “User1 LFNPath1” path in User1’s “My Documents” folder?
TC1.1.4.5
Does the application maintain stability when a file is opened by entering the full “User1 LFNPath2” path?
TC1.1.4.6
Does the application maintain stability when a file is opened using a long file name?
TC1.1.4.7
Does the application maintain stability when printing to a printer with a long name?
TC1.1.4.1
Does the application maintain stability when a file is saved by drilling down through the “User1 LFNPath1” path in User1’s “My Documents” folder?

Log on as User1 to run the test series in TC1.1.4.

Create a document for this test with unique characteristics, so you can identify it later for TC1.1.4.4. Initiate a file save in your application to open your application’s common dialog box. Browse to User1’s “My Documents” folder if you need to.

Double-click the folder with the name that starts with “User1 LFNPath1” to drill down to the next folder in the path. Continue to drill down until you have reached the final folder in the path and there are no more folders to open. Type a name for the test file, eight characters or shorter, and if your application does not add a default extension, add an extension up to four characters long.

NOTE: If your application uses extensions longer than four letters, reduce the size of the eight-character file name to compensate.

Try to save the file.

NOTE: Your application may display a warning or error message that the path name is too long and not save the file. This is not an error, unless your application also crashes or loses the test document.

Check “Pass” if your application did not crash or lose the test document.

NOTE: If your application appears to save the file successfully with no error or warning messages, but you cannot find or open the test document in TC1.1.4.4, your application fails this test case and you may have to change your results for this test.

(
Pass
The application did not crash or lose the test document data.

(
Fail
The application crashed or lost the test document data.

TC1.1.4.2
Does the application maintain stability when a file is saved by entering the full “User1 LFNPath2” path?

Create a second document for this test with unique characteristics, so you can identify it later for TC1.1.4.5. Initiate a file save in your application to open your application’s common dialog box.

Open the support file “C:\XPLogo\XP_CSIDL_Folders.txt” in Microsoft Notepad. Turn Word Wrap off. Select the entire line containing the folder name “User1 LFNPath2” and copy it to the Clipboard.

[image: image5.png]\

Fie Edt Fomat View Help
Di\Logo Test Docs & SettingsUserl\lly Documents)Userl LFNPathi 644'\n2,0,Q0uk’sas¥iz)

Paste the path from the Clipboard into the control that accepts file names in your application’s common dialog box. Use the End key or the arrow keys to move to the far right end of the path and type a name for the test file, eight characters or shorter. If your application does not add a default extension, add one up to four characters long. Record the file name and extension. You will use it again in TC1.1.4.5.

NOTE: If your application uses extensions longer than four letters, reduce the size of the eight-character file name to compensate.

NOTE: Some applications use common dialogs that separate the path name and the file name in different edit controls. Adapt these instructions as necessary to accommodate your application.

Try to save the file.

NOTE: Your application may display a warning or error message that the path name is too long and not save the file. This is not an error, unless your application also crashes or loses the test document.

Check “Pass” if your application did not crash or lose the test document.

NOTE: If your application appears to save the file successfully with no error or warning messages, but you cannot find or open the test document in TC1.1.4.5, your application fails this test case and you may have to change your results for this test.

(
Pass
The application did not crash or lose the test document data.

(
Fail
The application crashed or lost the test document data.

TC1.1.4.3
Does the application maintain stability when a file is saved using a long file name?

Create a third document for this test with unique characteristics so you can identify it later for TC1.1.4.6. Initiate a file save in your application to open your application’s common dialog box.

Open the support file “C:\XPLogo\XP_long_file_names.txt” in Microsoft Notepad. Turn Word Wrap off. Select the entire line containing the file name “Long File Name 001” and copy it to the Clipboard.

[image: image6.png]Fle Edt Format View Hel

Long File Newe 0DZ - e*ne"R6*..u FE 31 O..LRCEAU-OAE), U &n..xH[E"TZ..0-’0x* IeOOyC
Long File Neme 003 - Sui-10.]..GAUDAS, Led.. ~Ai0-I°ncKB1T#h6b*,ed ¢ (G145, .-rCOLE

Paste the file name from the Clipboard into the control that accepts file names in your application’s common dialog box. Use the Home key or the arrow keys to move to the far left end of the path and type “D:\” to save the file to the root of drive D. If your application does not add a default extension, use the End key or arrow keys to move to the end of the file name and add one up to four characters long.

NOTE: If your application uses extensions longer than four letters, reduce the size of the eight-character file name to compensate.

NOTE: Some applications use common dialogs that separate the drive name and the file name in different edit controls. Adapt these instructions as necessary to accommodate your application.

Try to save the file.

NOTE: Your application may display a warning or error message that the file name is too long and not save the file. This is not an error, unless your application also crashes or loses the test document.

Check “Pass” if your application did not crash or lose the test document.

NOTE: If your application appears to save the file successfully with no error or warning messages, but you cannot find or open the test document in TC1.1.4.6, your application fails this test case and you may have to change your results for this test.

(
Pass
The application did not crash or lose the test document data.

(
Fail
The application crashed or lost the test document data.

TC1.1.4.4
Does the application maintain stability when a file is opened by drilling down through the “User1 LFNPath1” path in User1’s “My Documents” folder?

You must complete TC1.1.4.1 before you start this test case.

Initiate a file open in your application. Browse to User1’s “My Documents” folder if you need to.

Double-click the folder with the name that starts with “User1 LFNPath1” to drill down to the next folder in the path. Continue to drill down until you have reached the final folder in the path and there are no more folders to open. If your application saved the file in TC1.4.4.1, you should see the file in your application’s common dialog.

NOTE: If your application did not save the file in TC1.1.4.1, close your application. In Windows Explorer, copy a test document created by your application. Browse to the folder at the end of the target path and paste the copy there. Then restart this test case.

Try to open the file.

NOTE: Your application may display a warning or error message that the path name is too long and not open the file. This is not an error, unless your application also crashes or loses the test document.

Check “Pass” if your application did not crash or lose the test document.

NOTE: If your application appeared to save the file successfully with no error or warning messages in TC1.1.4.1, but you cannot find or open the test document for this test, return to TC1.1.4.1and report a failure for that test.

(
Pass
The application did not crash or lose the test document data.

(
Fail
The application crashed or lost the test document data.

TC1.1.4.5
Does the application maintain stability when a file is opened by entering the full “User1 LFNPath2” path?

You must complete TC1.1.4.2 before you start this test case.

Initiate a file open in your application. Open the support file “C:\XPLogo\XP_CSIDL_Folders.txt” in Microsoft Notepad. Turn Word Wrap off. Select the entire line containing the folder name “User1 LFNPath2” and copy it to the Clipboard; see the example for TC1.1.4.2.

Paste the path from the Clipboard into the control that accepts file names in your application’s common dialog box. Use the End key or the arrow keys to move to the far right end of the path and type the name (and extension, if you added one) you used for the test file in TC1.1.4.2.

NOTE: Some applications use common dialogs that separate the path name and the file name in different edit controls. Adapt these instructions as necessary to accommodate your application.

NOTE: If your application did not save the file in TC1.1.4.2, close your application. In Windows Explorer, copy a test document created by your application. Browse to the folder at the end of the target path and paste the copy there. Then restart this test case

Try to open the file.

NOTE: Your application may display a warning or error message that the path name is too long and not open the file. This is not an error, unless your application also crashes or loses the test document.

Check “Pass” if your application did not crash or lose the test document.

NOTE: If your application appeared to save the file successfully with no error or warning messages in TC1.1.4.2, but you cannot find or open the test document for this test, return to TC1.1.4.2 and report a failure for that test.

(
Pass
The application did not crash or lose the test document data.

(
Fail
The application crashed or lost the test document data.

TC1.1.4.6
Does the application maintain stability when a file is opened using a long file name?

You must complete TC1.1.4.3 before you start this test case.

Initiate a file open in your application. Open the support file “C:\XPLogo\XP_long_file_names.txt” in Microsoft Notepad. Turn Word Wrap off. Select the entire line containing the file name “Long File Name 001” and copy it to the Clipboard; see the example in TC1.1.4.3.

Paste the file name from the Clipboard into the control that accepts file names in your application’s common dialog box. Use the Home key or the arrow keys to move to the far left end of the path and type “D:\” to open the file from the root of drive D. If you added an extension when you saved the file in TC1.1.4.3, add it to the file name for this test.

NOTE: Some applications use common dialogs that separate the drive name and the file name in different edit controls. Adapt these instructions as necessary to accommodate your application.

NOTE: If your application did not save the file in TC1.1.4.3, close your application. In Windows Explorer, copy a test document created by your application. Browse to the root of drive D and paste the copy there. Then restart this test case

Try to open the file.

NOTE: Your application may display a warning or error message that the file name is too long and not open the file. This is not an error, unless your application also crashes or loses the test document.

Check “Pass” if your application did not crash or lose the test document.

NOTE: If your application appeared to save the file successfully with no error or warning messages in TC1.1.4.3, but you cannot find or open the test document for this test, return to TC1.1.4.3 and report a failure for that test.

(
Pass
The application did not crash or lose the test document data.

(
Fail
The application crashed or lost the test document data.

TC1.1.4.7
Does the application maintain stability when printing to a printer with a long name?

NOTE: You may need to run the device test series in TC1.1.6 before you install a printer with a long name for this test.

If there are no printers with long names installed on the computer, close your application and install one. You can copy a long printer name from the support file “C:\XPLogo\XP_long_printer_names.txt” to paste into the Add Printer Wizard printer name dialog box. The printer you use for this test can be any printer available in your environment. Make it the default printer if your test plan allows that.

Start your application, if you closed it to install a printer.

NOTE: Some applications will hang or crash immediately upon starting when the default printer has a long name. The errors seldom specify the printer name length as the cause of the problem. To verify that the printer name length caused the crash, change the default to a printer with a name shorter than 16 characters. Your application fails this test if it hangs or crashes when the default printer has a long name.

Create or open a test document and try to print it to the printer with the long name.

NOTE: Your application may display a warning or error message that the printer name is too long or the printer cannot be found. This is not an error, unless your application also crashes or loses the test document.

Check “Pass” if your application did not crash or lose the test document.

(
Pass
The application did not crash or lose the test document data.

(
Fail
The application crashed or lost the test document data.

(
The application does not have a “print hard copy” feature.
This is not a failure, but it is also very unusual. Make sure there is no printing functionality in any part of your application before you check this option.

TC1.1.5
Does the application perform primary functionality and maintain stability on a dual-processor computer?

This Test Framework requires that you install Windows XP x64 on a dual-processor computer. When you run TC1.1 during your test passes on Windows XP x64, you automatically also test this requirement.
TC1.1.6
Does the application not crash when devices it uses are not installed?

Most applications print hard copy. Many applications also use a modem, graphics tablet, scanner, digital camera, sound cards or other devices that must be installed. To run the test series in TC1.1.6, you must identify all the devices that your application uses and ensure that they are not installed for these tests. Because Windows XP x64 can detect many Plug and Play devices and install them when you reboot the system, you may have to disconnect, unplug, or remove devices to make sure they remain uninstalled for these tests.

Make a list of the devices your application uses for primary functions. Record the list. Then uninstall any of the devices that are already installed in the base test environment and run these tests.

NOTE: If your application uses sound card, game controller devices, or video/sound hardware acceleration, you must remove, uninstall, or disable those “devices” to test for this requirement.

The test cases in this series include:

TC1.1.6.1
Does the application maintain stability when printing if no printer is installed?
TC1.1.6.2
Does the application maintain stability when attempting to use devices that are not installed?
TC1.1.6.1
Does the application maintain stability when printing if no printer is installed?

Start your application if you closed it to uninstall printers.

NOTE: Some applications will hang or crash immediately upon starting when there is no default printer. The error messages may not identify the “missing” printer as the cause of the problem. Your application fails this test if it hangs or crashes upon starting when there is no default printer.

Create or open a test document in your application and print it.

Check “Pass” if your application did not crash or lose the test document.

(
Pass
The application did not crash or lose the test document data.

(
Fail
The application crashed or lost the test document data.

(
The application does not have a “print hard copy” feature.
This is not a failure, but it is also very unusual. Make sure there is no printing functionality in any part of your application before you check this option.

TC1.1.6.2
Does the application maintain stability when attempting to use devices that are not installed?

For each device on the list you made at the start of this test case series, choose the option in your application that uses the device. Your application should not crash, even though the device is not installed.

Check “Pass” if your application did not crash after you tried to choose all of the devices on the list.

(
Pass
The application did not crash.

(
Fail
The application crashed upon attempting to use one or more devices that were not installed. Record the names of the devices.

TC1.1.7
Does the application switch the system’s display mode back to the previous color mode, if application automatically changes to 256-color mode when it runs?

Windows XP x64 does not expose the functionality to invoke 256-color mode to users on the Display Properties dialog. Most users will have their systems set to color depths greater than 256 colors. To receive the "Designed for Windows XP x64" logo, if your application requires 256-color mode, it must automatically switch to that mode when the user starts your application. Your application must switch back to the user’s previous color mode when the user exits your application.

Open the Display Properties dialog, choose the Settings tab and note the current “Color quality” setting. If some other application or test has left the system in 256-color mode, change to a higher color depth. Close the dialog.

Start your application. If your application has a full screen mode that hides the entire Desktop and the Windows taskbar, select that mode if it is not the default. Perform some simple tasks, and then close your application.

Open the Display Properties dialog, choose the Settings tab and verify that the current “Color quality” setting is the same as it was before you started your application.

Check “Pass” if the system color quality setting was the same after your application closed as it was before your application was started.

(
Pass
The system color quality setting was the same after the application closed as it was before the application was started.

(
Fail
The system color quality setting was “256 colors” after the application was closed.

T1.2
Any kernel-mode drivers the application installs must pass verification testing on Windows XP x64 Edition
This section includes these test cases:

TC1.2.1
Do all related kernel-mode drivers pass testing as Windows XP x64 loaded them?
TC1.2.2
Do all related kernel-mode drivers pass functionality testing with standard kernel testing enabled?
TC1.2.3
Do all related kernel-mode drivers pass low-resources simulation testing?
Because kernel-mode drivers interact directly with Windows XP x64 at a low level, they have the potential to crash Windows. The kernel can be set to a testing mode to look for most common driver problems while you run your functionality tests. The Specification requires thorough kernel-level testing on all kernel-mode drivers your application installs.

NOTE: All kernel-mode driver tests should be run together, in sequence, as part of the same test pass.

TC1.2.1
Do all related kernel-mode drivers pass testing as Windows XP x64 loaded them?

Use the Windows Application Verifier to test for “Kernel mode drivers.” If Windows Application Verifier KernelModeDriverInstall test reports that your application does not install any kernel-mode drivers. Check “The application does not install kernel-mode drivers” for all test cases in this section. This test logs any attempt made by an application to load a kernel-mode driver.
.
Using the steps described in the “Boot load verification tests” section in Appendix D, “Testing Kernel-Mode Drivers,” perform kernel load verification tests for all your application’s kernel-mode drivers that load at boot time.

Using the steps described in “Verification tests for drivers not loaded at boot time” in Appendix D, perform kernel load verification tests for all your application’s kernel-mode drivers that load only when specific application functionality is invoked.

Verify that all the kernel-mode drivers have loaded and passed the initial kernel verifications.

Check “Pass” if all kernel-mode drivers your application installs passed initial load tests.

(
Pass
All kernel-mode drivers passed initial load tests.

(
Fail
At least one kernel-mode driver failed initial load tests.

(
The application does not install kernel-mode drivers.
This is not a failure.

TC1.2.2
Do all related kernel-mode drivers pass functionality testing with standard kernel testing enabled?

You must complete TC1.2.1 before you start this test.

Using the steps described in the “Functionality tests with standard kernel testing enabled” section in Appendix D, “Testing Kernel-Mode Drivers,” run tests using features in your application that will invoke the functionality of all of your application’s kernel-mode drivers.

Verify that all the kernel-mode drivers passed kernel verifications during functionality testing.

Check “Pass” if all kernel-mode drivers your application installs passed kernel verifications during functionality testing.

(
Pass
All kernel-mode drivers passed verifications during functionality testing.

(
Fail
At least one kernel-mode driver failed verifications during functionality testing.

(
The application does not install kernel-mode drivers.
This is not a failure.

TC1.2.3
Do all related kernel-mode drivers pass low-resources simulation testing?

You must complete TC1.2.2 before you start this test.

Using the steps described in the “Low resources verification tests” section in Appendix D, “Testing Kernel-Mode Drivers,” run tests using features in your application that will invoke the functionality of all of your application’s kernel-mode drivers while the kernel is set for low-resources simulation testing.

Verify that all the kernel-mode drivers passed kernel verifications during low-resources testing.

REMINDER: Your application will probably fail to perform some functions during low-resources tests, and it may eventually have to close. That is not a failure for this test. When applications do not have enough resources, they are not expected to perform well. What your application must not do is hang, crash, lose data, or give the user confusing or meaningless error messages when it does not have enough resources available.

Check “Pass” if all kernel-mode drivers your application installs passed low-resources testing.

Follow the steps described in the “Turning Verification Off” section in Appendix D, “Testing Kernel-Mode Drivers,” to disable kernel-mode verification before you continue testing.

(
Pass
All kernel-mode drivers passed verifications during low-resources testing.

(
Fail
At least one kernel-mode driver failed verifications during low-resources testing.

(
The application does not install kernel-mode drivers.
This is not a failure.

T1.3
Any device or filter drivers included with the application must pass Windows HCT testing

To comply with requirement 1.3, certain drivers your application that might install must be tested by Microsoft Windows Hardware Quality Labs (WHQL). Also, any drivers that require digital signatures must be signed.

This section includes these test cases:

TC1.3.1
Are proofs of WHQL testing attached to the submission for all required drivers?
TC1.3.2
Do no warnings appear about unsigned drivers during testing?
NOTE: Your application may fail TC1.3.2 at any time during functionality testing, if your tests invoke an unsigned driver.

TC1.3.1
Are proofs of WHQL testing attached to the submission for all required drivers?

Verify that all device drivers and filter drivers your application installs are listed, that they have been tested by WHQL, and that proof of passing the WHQL tests is part of your Logo submission.

Check “Pass” if passing WHQL testing for all device and filter drivers has been completed.

(
Pass
All device and filter drivers have been tested by WHQL and proofs are attached when submitting your application.

(
Fail
At least one device and filter driver has not been tested by WHQL.

(
The application does not install drivers that require WHQL testing.
This is not a failure.

TC1.3.2
Do no warnings appear about unsigned drivers during testing?

Windows XP x64 should not warn you about any unsigned drivers during any of the Framework tests. You should answer this test question when you have completed all testing.

Check “Pass” if no unsigned driver warnings appeared during any testing.

(
Pass
No unsigned driver warnings appeared during any testing.

(
Fail
At least one unsigned driver warning appeared during any testing. Record the name of the driver.

T1.4
Perform Windows version checking correctly

This section includes these test cases:

TC1.4.1
Does the application install correctly under current and future versions of Windows?
TC1.4.2
Does the application perform all functionality tests correctly under current and future versions of Windows?
When applications do not detect the Windows version properly, they usually display messages like these:

“This application only runs on Microsoft Windows.”
“This application requires Windows 98 or greater.”
“This application requires Service Pack 3 or later.”

To qualify for the “Designed for Windows XP x64” Logo, your application must correctly identify the Windows version and not fail inappropriately or give the user invalid messages. Your application may fail requirement 1.4 in two ways:

· It may improperly determine that it is running on an older version of Windows when you install and run it on Windows XP x64.

· It may work well for all versions of Windows up to and including Windows XP x64, but fail on the next version of Windows.

There are two parts to requirement 1.4:

1.
The application must install and run with full primary functionality on the current version of Windows XP x64.

2.
The application must install and run with full primary functionality on all later versions of Windows.

When you install your application and run functionality tests on Windows XP x64, you are automatically testing the first part of this requirement. Any inappropriate version error message you see during installation is a failure for TC1.4.1. Any subsequent inappropriate version error message you see during functionality testing is a failure for TC1.4.2.

To test the second part of this requirement, you will perform at least one installation and full TCO functionality tests on a simulated “future version” of Windows, using Windows Application Verifier to emulate a higher Windows version number when your application asks for it.

Your application may choose to block installation or refuse to run some or all functionality tests on a future version of Windows. That may be appropriate if your application works with system components that may change, and your application could cause data loss. However, your application must give the user a meaningful message explaining why your application will not perform as requested, and you must document your rationale.

CAUTION: All applications must pass the version requirement for the “current version” of Windows XP x64 to receive the “Designed for Windows XP x64” Logo. Any inappropriate version error message your application displays when you are not running future-version tests is a failure for this requirement. Download the Windows Application Verifier as part of the Application Compatibility Toolkit to assist with this testing at: http://go.microsoft.com/fwlink/?linkid=9513&clcid=0x409.
TC1.4.1
Does the application install correctly under current and future versions of Windows?

Your application must not be installed when you start this test. Using the steps described in the “Installing the Test Application on the Future Version of Windows” section of Appendix C, “Future Version Testing,” install your application on the “future version” of Windows.

Attempt the future-version installation, even if your application does not support running on a future version of Windows. Your application may still fail to detect the future version properly and have functionality or stability problems that are failures of this requirement.

NOTE: If your application displays any inappropriate version error messages during installation when you are not running future-version tests, your application fails this requirement.

Check “Pass” if your application’s install process completes without error while the system is configured to perform a version lie. If your application’s install process displays a message about it’s compatibility with Windows, this is only acceptable if the application meets all of the following:

· The message is specific about which versions of Windows the application is compatible with. For example, it would be unacceptable to say “This product is not compatible with this version of Windows”

· The message does not make false implications of version such as “This product is only compatible with Windows XP x64 and later”. Since the version lie is exposing a later version of Windows, then this message indicates that the application is failing to check versions correctly.
· The application does not block installation unless there is a valid reason. For example, if your application interacts with fundamentals of the file system (like some backup/restore applications do), then it would be reasonable to only allow installation on the specific versions of Windows that it was tested for.

· Both the installation and application do not hang, crash, or loose data.

(
Pass
The application successfully installed on the future version of Windows, or it appropriately blocked the installation without hanging, crashing or losing data.

(
Fail
The application displayed an inappropriate version error message, hung, crashed or lost data during the installation.

TC1.4.2
Does the application perform all functionality tests correctly under current and future versions of Windows?

You must complete TC1.4.1 before you run this test.

Using the steps described in “Running the Test Application on the Future Version” of Appendix C, “Future Version Testing,” run all functionality (TCO) tests for your application on the “future version” of Windows.

NOTE: Unless your application blocked installation on the future version of Windows, run all functionality tests, even if your application does not support running on a future version of Windows and you have provided the appropriate documentation. Your application may still fail to detect the future version properly and have functionality or stability problems that are failures of this requirement.

If your application displays any inappropriate version error messages during functionality tests when you are not running future-version tests, your application fails this requirement.

Check “Pass” if no inappropriate version error messages appeared and the installation succeeded, or if you documented that your application blocks functionality on future versions of Windows.

NOTE: Use the steps described in “Turning Off Future Versioning” in Appendix C, “Future Version Testing,” to turn off future versioning before you continue testing.

(
Pass
The application passed all functionality tests on the future version of Windows, or it appropriately blocked some or all tests without hanging, crashing or losing data.

(
Fail
The application displayed an inappropriate version error message, hung, crashed or lost data during functionality testing.

(
The application blocks functionality for future versions as documented.
This is not a failure.
T1.5
Support Fast User Switching

This section includes these test cases:

TC1.5.1
Does the application properly support Fast User Switching?
TC1.5.2
Does the application properly support Remote Desktop?
TC1.5.3
If the Application installs a replacement GINA, does the GINA properly support Remote Desktop?
TC1.5.1 Does the application properly support Fast User Switching?

Your application must be installed before you start this test.

Log on as User1 and start your application. Leave your application open as User1 and switch to User2. Do not log off as User1. Start your application as User2. Run all CVTs.

If you have any specific potentially problematic functions that you block for Fast User Switching, for each function:

· Switch to User1 and invoke the problematic functionality.

· Switch back to User2, invoke the same functionality and verify that your application blocks the function and displays a meaningful message.

Check “Pass” if:

· Your application passed all CVTs as User2; or
· Your application blocked User2 from starting your application and displayed a meaningful message; or
· Your application blocked User2 from executing specific functionality and displayed a meaningful message.

(
Pass
The application passed all CVTs as User2; or the application blocked User2 from starting the application; or the application blocked User2 from executing specific functionality.

(
Fail
The application failed some functionality testing, or incorrectly blocked User2 from starting the application.

TC1.5.2 Does the application properly support Remote Desktop?

Your application must be installed before you start this test.
If you have any specific potentially problematic functions that you block for Remote Desktop, for each function:
· Log on physically at the local machine and invoke the problematic functionality.
· Use the Remote Desktop Connection client to open a remote desktop session. Load the application and invoke the same functionality and verify that your application blocks the function and displays a meaningful message.
Check “Pass” if:
· Your application passed all CVTs over the remote desktop connection; or
· Your application blocked the remote desktop user from starting your application and displayed a meaningful message; or
· Your application blocked the remote desktop user from executing specific functionality and displayed a meaningful message.
(
Pass
The application passes all CVTs as the remote desktop user, or the application blocked the remote desktop user from starting the application; or the application blocked the remote desktop user from executing specific functionality

(
Fail
The application failed some functionality testing, or incorrectly blocked the remote desktop user from starting the application

TC1.5.3
If the Application installs a replacement GINA, does the GINA properly support Remote Desktop?

If your application installs a replacement GINA, check your GINA implementation for the following:
· The replacement GINA should include WlxGetConsoleSwitchCredentials, which is called by winlogon.
· The replacement GINA must send a call into WlxQueryConsoleSwitchCredentials in response to sas message of WLX_SAS_TYPE_AUTHENTICATED.
· The replacement GINA must call WlxQueryTsLogonCredentials to get credentials from the Remote Desktop client.
“Pass” if:
· The replacement GINA adheres to current Winlogon APIs and functions properly.
(
Pass
The replacement GINA adheres to the current Winlogon APIs and functions properly

(
Fail
The replacement GINA does not adhere to the current Winlogon APIs or does not function properly

T1.6 Support new visual styles

This section includes only one test case.

TC1.6
Does the application pass all functionality tests with a Windows XP x64 theme applied?

Your application must be installed before you start this test.

For efficiency in executing your test plan, you may want to start this test before beginning T1.1 tests, and verify that your application passed this test only after completing the T1.1 tests.

Open the Display Properties dialog and verify that you are not running the “Windows Classic” theme, “My Current Theme,” or a theme with the phrase “(Modified)” in its name. Test all primary functions in your application. You can verify that any problems that you see are related to the selected Windows XP x64 visual style by switching to the “Windows Classic” theme and repeating the test.

Check “Pass” if your application did not lose functionality or usability when one of the new visual styles was selected.

(
Pass
The application did not lose functionality or usability when one of the new visual styles was selected.

(
Fail
The application lost some functionality or usability when one of the new visual styles was selected.

T1.7 Support switching between tasks

This section includes the following test cases:

TC1.7.1
Does the application display normally and not lose data when focus is switched among other applications with Alt+Tab?
TC1.7.2
Does the application display normally and not lose data when Windows logo key and the taskbar are used to switch among applications?
TC1.7.3
Does the Windows Security dialog box or the Task Manager display normally and Can the application be cancelled or closed without losing data?
Close your application if it is running. Check the “Keep the taskbar on top of other windows” property for the taskbar and uncheck the “Auto-hide the taskbar” property. Open several Windows XP x64 applications such as Notepad, Microsoft WordPad, or Microsoft Paint.

Start your application and maximize it. If it has a mode that displays full screen, so that the taskbar is not visible, set your application to that mode. Then perform each of these tests.

NOTE: The T1.7 series of tests should all be run in sequence in the same test pass to avoid changing the desktop settings several times.

TC1.7.1
Does the application display normally and not lose data when focus is switched among other applications with Alt+Tab?

You should be running your application as described at the start of this section before you begin this test.

Use the Alt+Tab key combination to switch from your application to one of the other running applications. Perform a normal action in that application such as entering text or drawing lines. Then use Alt+Tab to return to your application and perform a normal action in your application.

Check “Pass” if you can switch among the applications without losing data, and if all applications displayed normally, and if you can return to your application and continue using it as expected.

(
Pass
No data was lost when switching among applications and all applications displayed normally.

(
Fail
Data was lost data switching among applications or some display irregularities appeared.

TC1.7.2
Does the application display normally and not lose data when Windows logo key and the taskbar are used to switch among applications?

You should complete TC1.7.1 and your application should be running as described at the start of this section before you begin this test.

Press the Windows logo key on the keyboard. The Start menu should open and the taskbar should appear, even if your application is in full screen mode. Use the mouse to select one of the other running applications on the taskbar. Perform a normal action in that application such as entering text or drawing lines. If the taskbar is not visible any longer, press the Windows logo key on the keyboard again to open the Start menu. Then click your application on the taskbar and perform a normal action in your application.

Check “Pass” if you can switch between the applications without losing data, and if all applications displayed normally, and if you can return to your application and continue using it as expected.

(
Pass
No data was lost when switching among applications and all applications displayed normally.

(
Fail
Data was lost data switching among applications or some display irregularities appeared.

TC1.7.3
Does the Windows Security dialog box or the Task Manager display normally and can the application be cancelled or closed without losing data?

You should complete TC1.7.2 and your application should be running as described at the start of this section before you begin this test.

Press CTRL+ALT+DEL. The Windows Security dialog box or the Task Manager should appear. The dialog box displayed should not be distorted or so large that some of its buttons are off screen. All commands should be executable. Click Cancel on the Security dialog box or close the Task Manager. You may have to use ALT+TAB or press the Windows logo key switch focus to the Task Manager to close it. Perform a normal action in your application.

Check “Pass” if the Windows Security dialog box or the Task Manager displayed normally, and if you can return to your application and continue using it as expected without any data loss.

(
Pass
Everything displayed normally and the application did not lose data when canceling the Windows Security dialog box or closing the Task Manager.

(
Fail
Something displayed abnormally, or a dialog could not be closed, or the application could not be restored or lost data when canceling the Windows Security dialog box or closing the Task Manager.

T2.1
Do not attempt to replace files protected by Windows File Protection

This section includes only one test case.

TC2.1
Does the installation finish without any Windows File Protection messages appearing?

Windows XP x64 does not allow certain critical system files to be replaced. To qualify for the “Designed for Windows XP x64” Logo, your application must not try to replace any of the protected files. If you are installing your application and it tries to replace a system file, WFP will try to restore the system file with a “good copy.” You set the System File Cache size to zero as part of the Windows XP x64 installation, which tells Windows XP x64 that there are no “good copies” of any system files available. With no “good copy” replacement available, Windows XP x64 displays a dialog box prompting you for the Windows XP x64 CD.

NOTE: Your functionality tests may trigger just-in-time installations that try to replace WFP protected files. Any WFP messages you see at any time during your testing are also failures of this test case.

You can also use the Windows Application Verifier DFWChecksAll – NoOVerWriteWFP setting to test this requirement.

Check “Pass” if no WFP dialogs appeared during installation.

If WFP prompted you for the Windows XP x64 CD, check “Fail,” make a note of the file the installation program tried to replace, and insert the Windows XP x64 installation CD so that Windows XP x64 can restore its “good” copy of the system file. Then remove the CD and complete your application installation. Repeat these steps if necessary.

NOTE: Do not click Ignore in any WFP dialogs. If you do not allow WFP to replace the incorrect system files, you may miss other problems with the test application during the rest of your tests, or you may cause system instability or false application errors.

(
Pass
The installation completed and no WFP dialogs appeared.

(
Fail
At least one WFP dialog appeared during the installation. Write down the name of each file WFP had to replace. You may need to look in the System and Application logs using the Event Viewer to find the names of the files.

T2.2
Support upgrades to next Service Pack of Windows
This section includes the following test cases:

Note this section will only become applicable after the first service pack becomes available for Windows XP x64.

Your application may choose to block or refuse to run some or all functionality tests on a future version of Windows. That may be appropriate if your application works with system components that may change, and your application could cause data loss. However, your application must give the user a meaningful message explaining why your application will not perform as requested, and you must document your rationale.

TC 2.2.1
Does the application perform all functionality tests correctly under service pack version of Windows?

After the application is installed and functioning normally, take a snapshot and then apply the latest Service pack. run all functionality (TCO) tests for your application on the “Service Packed” of Windows.

Check “Pass”:

· if no inappropriate version error messages appeared and the CVT succeeded.

· If you documented that your application blocks functionality on service packed versions of Windows.

(
Pass
The application successfully ran on the Service Packed version of Windows, or it appropriately blocked the startup of the application without hanging, crashing or losing data.

(
Fail
The application displayed an inappropriate version error message, hung, crashed or lost data during the running of the application

(
The application blocks functionality for service packed versions as documented.

This is not a failure.
T2.3 Do not overwrite non-proprietary files with older versions

This section includes the following test cases:

TC2.3.1
Does the application not overwrite non-proprietary files with older versions?
TC2.3.2
Do all application executable files have file version, product name and company name information?
Non-proprietary files are files you either do not own or allow anyone to redistribute. Windows system files are non-proprietary files for purposes of this requirement. However, you already test to make sure your application does not overwrite any Windows system files with TC2.1. Compliance with requirement 2.3 ensures that your application do not overwrite a newer version of a file your application shares with another application on the user’s system with an older version.

To comply with the second part of this requirement, all executable files you distribute with this application must contain valid descriptions and version information.

TC2.3.1
Does the application not overwrite non-proprietary files with older versions?

Your application should not be installed when you start this test case.

Create a list of all non-proprietary files your application installs. For each file listed:

· If a newer version is available, either install the newer version by itself or install an application that uses it.

· Browse to the file in Windows Explorer.

· Right-click the file in Explorer and choose Properties on the context menu.

· Choose the Version tab and record the version number and the file name.

Use the Windows Application Verifier test DFWChecksSetup – NoOverWriteNewerBinaries test.
Install your application. Run all CVTs to trigger any just-in-time functionality installations.
Check “Pass” if the all the non-proprietary files your application overwrote during installation were older than the versions your application installed.

(
Pass
The application did not overwrite any non-proprietary files with older versions.

(
Fail
At least one non-proprietary was overwritten with an older version. Record the file name and versions for each file.

TC2.3.2
Do all application executable files have file version, product name and company name information?

Executable files are any files that could be given version, product name, and company name properties, and that contain code that defines functionality. Common extensions of executable files include: .exe, .dll, .ocx, .sys. .cpl, .drv, and .scr, but may include other file types and can even be application specific. Unless it is clear from documentation or other information, any file that the application places in common shared location such as System32 should be assumed to be executable and must meet this requirement.
You should run this test case after you have completed full functionality tests. Verify that you have pre- and post-functionality snapshots.

Use the Windows Application Verifier test DFWChecksSetup – ValidVersionForBinaries test.

Check “Pass” if the all executable files your application installs have version number, product name and company name information.

(
Pass
All executable files the application installs have version number, product name and company name information.

(
Fail
At least one executable file the application installs is missing version number, product name, or company name information. Record the names of the files that are missing information.

T2.4
Do not require a reboot inappropriately

This section includes the following test cases:

TC2.4.1
Does the installation finish without requiring a reboot?
TC2.4.2
Can all Test Framework testing be completed without application requiring a reboot?
Customers do not welcome reboots. To receive the “Designed for Windows XP x64” Logo, applications must not require or suggest an unnecessary reboot during or after installation.

TC2.4.1
Does the installation finish without requiring a reboot?

In Windows XP x64, very few application installations will require a reboot. To qualify for the “Designed for Windows XP x64” Logo, your application must not reboot during the installation, unless it installs a GINA.DLL, Windows approved Service Pack, or certain filter drivers under specific situations. Updating a service or replacing a DLL that is in use would not be sufficient grounds for a reboot.
NOTE: Even if your application is allowed to require a reboot after the installation is complete, it must prompt you that a reboot is required and allow you to postpone the reboot.

Check “Pass” if your application did not require a reboot, or your application prompted for a reboot and you have documented an acceptable reason.

(
Pass
During installation, the application did not require or suggest a reboot, or it prompted for a reboot and one or more reasons detailed in the Specification requirement 2.4 are documented.
(
Fail
During installation, the application prompted for a reboot and no reasons are documented; or the reasons documented are not allowed by the Specification; or the application rebooted without giving the user the option to postpone the reboot (even if the documented reasons are allowed by the Specification).

TC2.4.2
Can all Test Framework testing be completed without application requiring a reboot?

Your application may perform a just-in-time feature installation as you perform functionality tests. To qualify for the “Designed for Windows XP x64” Logo, your application must not reboot during primary functionality tests, or the reason why the reboot is required is allowed by the Specification and is documented.
NOTE: Even if your application is allowed to require a reboot, it must prompt you that the reboot is required and allow you to postpone the reboot.

Windows Setup requires you to reboot several times as it upgrades to Windows XP x64, and those reboots should be ignored for this test case. However, if the application requires you to perform some additional installation steps after the upgrade, the application must not require a reboot. Any reboot the application requires after Windows Setup has completed the upgrade to Windows XP x64 is a failure of this test case.
Check “Pass” if, after all Logo testing is finished, your application did not require a reboot; or your application prompted for a reboot and you have documented an acceptable reason.

(
Pass
During functionality testing, the application did not require or suggest a reboot, or it prompted for a reboot and one or more reasons detailed in the Specification requirement 2.4 are documented.
(
Fail
During functionality testing, the application prompted for a reboot and no reasons are documented; or the reasons documented are not allowed by the Specification; or the application rebooted without giving the user the option to postpone the reboot (even if the documented reasons are allowed by the Specification).
T2.5
Install to Program Files (or Program Files (x86)) by default

File System Redirector

The %systemroot%\System32 directory is reserved for 64-bit applications. Most DLL file names were not changed when porting to 64-bit, so 32-bit applications must use a different directory as their System32 directory. WOW64 hides this difference using a file system redirector.

Whenever a 32-bit application attempts to access %systemroot%\System32, the access is redirected to a new directory, %systemroot%\SysWOW64. To retrieve the name of the 32-bit system directory, 64-bit applications should use the GetSystemWow64Directory function. Certain subdirectories are exempt from redirection:

%windir%\system32\drivers\etc
%windir%\system32\spool
%windir%\system32\catroot
%windir%\system32\catroot2

WOW64 does not redirect directories like %ProgramFiles%. Applications should use the SHGetSpecialFolderPath function to determine this directory name.

To help applications that write REG_EXPAND_SZ keys containing %ProgramFiles% to the registry, WOW64 intercepts these writes and replaces them with "%ProgramFilesx86%". This environment variable is defined for all processes. For example, if the Program Files directory is on the C drive, then "%ProgramFilesx86%" expands to "C:\Program Files (x86)".

The Session Manager creates two lists of DLLs on 64-bit Windows®: KnownDLLs lists 64-bit DLLs and KnownDLLs32 lists 32-bit DLLs. WOW64 intercepts references to the named object called KnownDLLs and redirects to KnownDLLs32.

This section includes only one test case.

TC2.5
Does the application offer a default installation folder under “E:\Program Files (or Program Files (x86))?”

This section includes only one test case. By default, applications must install into an appropriate sub-directory of the folder specified by the operating system for holding program files, the folder returned by the Windows XP x64 SHGetSpecialFolderPath API when it is called with the CSIDL_PROGRAM_FILES parameter.
NOTE: If your application does not give the user an option to view or change the installation folder, it may choose the folder itself and complete the installation. If that happens, look for your application’s installation folder under “E:\Program Files” (or Program Files (x86)). If your application used that folder as the default installation location, it passes this test.

Use the Windows Application Verifier test DFWChecksSetup – ProgFilesWriteOnly test.

Check “Pass” if your application displays as the default path for installation a folder under “E:\Program Files” (or Program Files (x86)), and its non-shared files were installed under that folder.

NOTE: Shared files must follow special rules, and the testing is defined in 2.6.

(
Pass
Both “E:” and “Program Files” (or Program Files (x86)) appeared in the default installation path.

(
Fail
“E:” and/or “Program Files” (or Program Files (x86)) was missing from the default installation path. Write down the actual default path the application used or offered you.

T2.6
Install any shared files that are not side-by-side to the correct locations

This section includes only one test case.

TC2.6
Does the application install shared files only to correct locations?

Verify that you have a pre-installation (or "baseline") snapshot and a post-installation snapshot for the current installation.

Run a comparison report on the pre- and post-installation snapshots. For each new file installed by your application that is shown by Windiff, verify that the file meets one of these conditions:

· The file is located in “E:\Program Files\Common Files\<company name>”

· The file is located in “E:\Program Files\<company name>\Shared Files”

· The file is located in “E:\Program Files (x86)\Common Files\<company name>”

· The file is located in “E:\Program Files (x86)\<company name>\Shared Files”

· The file is located in the system folder E:\Windows, or a subfolder of the system folder, or the %systemroot%\SysWOW64 folder, and the file is documented as a service or driver. For example, a file with the extension SYS that is installed to the system32\drivers folder is clearly a driver and would need no other documentation.
· The file is located in the system folder E:\Windows, or a subfolder of the system folder, or the %systemroot%\SysWOW64 folder and the file is documented as a DLL or OCX required for legacy software support or documented as shared with applications from other vendors.

· The file is not a shared file.

For side-by-side files your application installs, you should verify by code inspection that the files follow good side-by-side coding procedures. You should also load the files or install the applications with which your application’s side-by-side files are intended to work, and verify that all applications work as expected.

Check “Pass” if your application installs shared components in the correct locations, and your provide documentation for services, drivers and legacy support files.

(
Pass
Either all shared files are installed in the correct locations.

(
Fail
At least one shared file was not stored in the correct location. Record the full path and name of each incorrectly installed file.

T2.7
Support Add or Remove Programs properly

To meet this requirement your application must add information to the registry and remove all the right things when a user uninstalls your application.

This section includes the following test cases:

TC2.7.1
Does installation add an uninstall to the Add or Remove Programs utility?
TC2.7.2
Does uninstalling application as Owner remove and leave all the correct files and registry settings?
TC2.7.3
Does uninstalling application as User1 either degrade gracefully or both remove and leave all the correct files and registry settings?
TC2.7.4
Can the application be reinstalled after uninstalling it?
TC2.7.1
Does installation add an uninstall option to the Add or Remove Programs utility?

After installing the application, go to Add or Remove Programs and look for an entry related to the application. Does the entry include an option to uninstall the application?
Check “Pass” if your application created an uninstall to the Add or Remove Programs utility.

(
Pass
The application added an uninstall to Add or Remove Programs.
(
Fail
The application did not add an uninstall to Add or Remove Programs.

TC2.7.2
Does uninstalling application as Owner remove and leave all the correct files and registry settings?

Your application must be installed before you can run this test case. Verify that you have a pre‑installation baseline for your current installation.

Log on as Owner. Use Add or Remove Programs to uninstall your application. Unless the information you verified in TC2.7.1 is missing or incomplete, your application should uninstall.

Create a post-uninstallation snapshot and compare it with the pre-installation baseline. Look at all files your application left on the machine using Windiff, files that are new in the post-uninstallation snapshot. None of the following file types should be left behind, unless they are documented by name and rationale:

· Non-shared application files and folders.

· Shared application files whose refcount reached zero.

· Registry entries, except for values that might be shared by other programs.

· All shortcuts on the Start menu that your application created during installation.

· The uninstaller itself (unless it is a shared component).

Your application is allowed to leave user preferences and setting files and registry entries, if it provides an option for the user to remove them. Your application should leave behind any user-created data files you saved as a user during functionality tests, or prompt you for permission to remove them.

Check “Pass” if your application’s uninstaller removed all the files it is supposed to, left all the user-created files, and has an option to remove all user settings if it leaves them by default.

(
Pass
The application removed and left all the correct files and registry settings.
(
Fail
The application did not remove everything it should have, or the application removed user-created data without prompting the user for permission, or the application left user settings and preferences data without providing an option to completely remove them.

TC2.7.3
Does uninstalling application as User1 either degrade gracefully or both remove and leave all the correct files and registry settings?

Your application must be installed before you can run this test case. Verify that you have a pre‑installation snapshot baseline for your current installation.

Log on as User1. Use Add or Remove Programs to uninstall your application. Unless the information you verified in TC2.7.1 is missing or incomplete, either:

· Your application should uninstall; or

· Your application should tell you that a Limited User is not allowed to uninstall your application and degrade gracefully.

If your application does not allow User1 to uninstall, verify that your application has full functionality after the attempted uninstall by running all CVTs.

If your application allowed User1 to uninstall, create a post-uninstallation snapshot and compare it with the pre-installation baseline. Look at all files your application left on the machine, files that are new in the post-uninstall snapshot. None of the following file types should be left behind, unless they are documented by name and rationale:

· Non-shared application files and folders.

· Shared application files whose refcount reached zero.

· Registry entries, except for keys that might be shared by other programs.

· All shortcuts on the Start menu that your application created during installation.

· The uninstaller itself (unless it is a shared component).

Your application is allowed to leave user preferences and setting files and registry entries, if it provides an option for the user to remove them.

Your application should leave behind any user-created data files you saved as a user during functionality tests, or prompt you for permission to remove them.

Check “Pass” if your application’s uninstaller removed all the files it is supposed to, left all the user-created files, and has an option to remove all user settings if it leaves them by default.

(
Pass
Either the application degraded gracefully (and did not allow User1 to uninstall it), or it both removed and left all the correct files and registry settings.
(
Fail
The application failed to completely uninstall because User1 is a Limited User and the application did not degrade gracefully, or it did not remove everything it should have, or the application removed user-created data without prompting the user for permission, or the application left user settings and preferences data without providing an option to completely remove them.

TC2.7.4
Can the application be reinstalled after uninstalling it?

Your application must have been installed, and then uninstalled before you can run this test case.

Log on as Owner. Reinstall your application. Your application should install without hanging, crashing, or displaying unexpected error messages or warnings. Run all CVTs as Owner to verify all functionality.

Check “Pass” if you reinstalled your application without problems.

(
Pass
The application can be installed without problems.
(
Fail
The application could not be fully reinstalled, or Owner’s preferences and settings were not fully retained.

T2.8
Support “All Users” installations

This section includes the following test cases:

TC2.8.1
Does the application default to an “all users” installation or provide an “all users” installation as an option when installed by Owner?
TC2.8.2 Does the application default to an “all users” installation or provide an “all users” installation as an option when installed by User1?
To comply with this requirement, your application must default to an “all users” option for installations and either allow Limited Users to install for “all users,” block Limited Users from installing your application, or degrade gracefully when a Limited User attempts an “all users” installation.

TC2.8.1
Does the application default to an “all users” installation or provide an “all users” installation as an option when installed by Owner?

Your application must not be installed when you start this test.

The Specification requires applications to default to installing for “all users” on the computer. Your application can meet this requirement by doing one of these things:

· Install for all users without giving the user the opportunity to choose to install for only some users.

· Ask if the installing user wants to install for only the current user, and if the user declines that opportunity, install for all users.

· Provide option buttons, check boxes or a similar user interface that allows the user to install for all users or only selected users. However, the “all users” option must be pre-selected by your application as the default option.

Log on as Owner and install your application by selecting the “all users” option if it is available. Verify that your application is installed for all users by starting it as Owner, User1 and User2.

Check “Pass” if your application uses one of the three installation options listed during installation and the “all users” option is successful. .

(
Pass
The application successfully installed using one of the accepted “all users” installation options.

(
Fail
The application either could not be installed for all users, or it did not offer “all users” as the default option.

TC2.8.2
Does the application default to an “all users” installation or provide an “all users” installation as an option when installed by User1?

Your application must not be installed when you start this test. You may be able to combine this test case with TC3.3.4 in some test plans.

The Specification requires applications to either allow Limited Users to install your application for “all users,” or block the user from installing your application and degrade gracefully.

Log on as User1. Create a pre-installation baseline and install your application for “all users.” If your application does not block User1 from installing your application, verify that your application is installed for all users by starting it as Owner, User1 and User2.

If your application blocked User1 from installing your application, and your application’s installer degraded gracefully, create a post-attempted-installation snapshot and compare it with the pre‑installation baseline. Your application should not have installed any files on the system and should have removed all temporary files.

Check “Pass” if your application allowed User1 to install your application for “all users,” or if your application blocked User1 from installing your application, degraded gracefully and did not install any files on the system.

NOTE: Allowing User1 to completely install your application, but only for User1 and not for “all users,” is a failure for this test.

(
Pass
Either User1 installed the application successfully for “all users” or the installer degraded gracefully and did not install any files on the system.

(
Fail
Either User1 was able to install the application for User1 only, or the installation failed and did not degrade gracefully and/or installed some files on the system.

T2.9
Support Autorun for CDs and DVDs

This section includes the following test cases:

TC2.9.1
Does the application’s installer start by way of Autorun?
TC2.9.2
Does the application’s installer correctly detect that application is already installed and avoid restarting the installation?
The Specification requires applications to correctly support Autorun from CD or DVD drives. To successfully pass this requirement your application’s installation program must do these things:

1.
After the user selects the autorun menu item from the cdrom context menu, the application installation should start using Autorun, if your application is not already installed.

2.
If your application is supplied on several discs and more than one is required for installation, the installation must continue without user intervention when the user inserts the second and subsequent discs.

3.
Do not start the default installation again After the user selects the autorun menu item from the cdrom context menu,0 after your application is fully installed.

Most test plans use “future version” tests in TC1.4.1 and TC1.4.2 as the basis for installing the application and running all user functionality tests. You must bypass Autorun to run the future-version installation test case. You may decide, for your test plan, not use the installations started by Autorun in these test cases to run other tests in your test plan. Because you only need to make sure that Autorun starts the installation program to verify the results of TC2.9.1, you may choose to exit the installation for that test as soon as it begins.

NOTE: Use a comparison between pre-installation and post-attempted-then-exited-installation baselines to be certain that no files were installed or registry settings changed during the partial installations you exited. If your application leaves a partial installation in place, it may affect any subsequent tests you run.

If your application does not install from CD or DVD, check “The application is not installed from CD/DVD” for all test cases for this requirement. You must document the media your application uses for its installation.
TC2.9.1
Does the application’s installer start by way of Autorun?

On a clean base test environment where your application has never been installed, insert your application’s (first) CD/DVD into a CD/DVD drive. After the user selects the autorun menu item from the cdrom context menu, autorun should start your application’s installation program. Unless you plan to fully install your application for a test pass, you may exit the installation at the first opportunity.

Check “Pass” if your application’s installation started using Autorun.

(
Pass
The application’s installation started using Autorun.
(
Fail
The application’s installation did not start automatically.
(
The application is not installed from CD/DVD.
The application media must be documented.
TC2.9.2
Does the application’s installer correctly detect that application is already installed and avoid restarting the installation?

Fully install your application, and then reinsert your application’s CD/DVD into any available drive, and the select the autorun menu item from the cdrom context menu,. Your application’s installer should not restart the installation, although it may ask if the user wants to update or change the current installation.

Check “Pass” if your application’s installer did not try to reinstall your application.

(
Pass
The application’s installer did not try to reinstall the application

(
Fail
The application’s installer restarted the installation process as if the application was not already installed.
(
The application is not installed from CD/DVD.
The application media must be documented.
T3.1
Default to the correct location for storing user-created data

This section includes the following test cases:

TC3.1.1
Does the application offer a correct location for opening User1’s user-created data?
TC3.1.2
Does the application offer a correct location for saving User1’s user-created data?
TC3.1.3
Does the application offer a correct location for opening User2’s user-created data?
TC3.1.4
Does the application offer a correct location for saving User2’s user-created data?
You may ask: What are “user created files” and “user data”? User created files are any files that are created under the direction of the user and that a user would expect to be able to open. User data could be created under the direction of the user, or might be created on behalf of the user, but could include files that a user would not expect to open. For example, user preference information could well be considered user data for the purposes of trying to determine which files to remove on uninstall, but would not usually be stored in a file that a user would expect to be able to simply open from explorer. Such a file would not be considered a “user created” file and instead must follow the guidance in requirement 3.2.

The first time a user opens your application and tries to open or save data, your application should offer the user either the user’s “My Documents” (CSIDL_PERSONAL) folder as the default folder or a subfolder under the user’s “My Documents,” such as “My Music,” “My Pictures,” or a folder your application creates under the user’s “My Documents.” Run these test cases for User1 and also for User2 the first time each user starts your application after installing it.

TC3.1.1
Does the application offer a correct location for opening User1’s user-created data?

When you first open your application as User1 after your application is installed, try to open a file or document. For this test, it is unimportant that there may be no files or documents available for User1 to open.

Your application should display the contents of either User1’s “My Documents” folder or a subfolder under User1’s “My Documents.” You can identify User1’s “My Documents” folder because you created several special test folders there in the base test environment and the name of each of those folders contains the user’s name; for example, “User1 LFNPath1_ßåã‘”.

If you cannot easily determine if the folder your application displays is not User1’s “My Documents” folder, use the “Up one level” button to move upward in the folder path until you reach User1’s “My Documents.” If your application’s common dialog box does not have an “Up one level” option, save a test document to the default folder offered to User1, then use Windows Explorer to verify that the test document is in a subfolder of User1’s “My Documents.”

Check “Pass” if your application defaults to a correct location for opening User1’s user-created data.

(
Pass
The application uses a correct default location.

(
Fail
The application used an incorrect default location. Record the full path the application used.

TC3.1.2
Does the application offer a correct location for saving User1’s user-created data?

When you first open your application as User1 after your application is installed, create a simple file or document and try to save it.

Your application should display the contents of either User1’s “My Documents” folder or a subfolder under User1’s “My Documents.” You can identify User1’s “My Documents” folder because you created several special test folders there in the base test environment and the name of each of those folders contains the user’s name; for example, “User1 LFNPath1_ßåã‘”.

If you cannot easily determine if the folder your application displays is not User1’s “My Documents” folder, save the test document to the default folder offered to User1. Then use the “Up one level” button to move upward in the folder path until you reach User1’s “My Documents.” If your application’s common dialog box does not have an “Up one level” option, use Windows Explorer to verify that the test document is in a subfolder of User1’s “My Documents.”

Check “Pass” if your application defaults to a correct location for saving User1’s user-created data.

(
Pass
The application uses a correct default location.

(
Fail
The application used an incorrect default location. Record the full path the application used.

TC3.1.3
Does the application offer a correct location for opening User2’s user-created data?

When you first open your application as User2 after your application is installed, try to open a file or document. For this test, it is unimportant that there may be no files or documents available for User2 to open.

Your application should display the contents of either User2’s “My Documents” folder or a subfolder under User2’s “My Documents.” You can identify User2’s “My Documents” folder because you created several special test folders there in the base test environment and the name of each of those folders contains the user’s name; for example, “User2 LFNPath1_ßåã‘”.

If you cannot easily determine if the folder your application displays is not User2’s “My Documents” folder, use the “Up one level” button to move upward in the folder path until you reach User2’s “My Documents.” If your application’s common dialog box does not have an “Up one level” option, save a test document to the default folder offered to User2, then use Windows Explorer to verify that the test document is in a subfolder of User2’s “My Documents.”

Check “Pass” if your application defaults to a correct location for opening User2’s user-created data.

(
Pass
The application uses a correct default location.

(
Fail
The application used an incorrect default location. Record the full path the application used.

TC3.1.4
Does the application offer a correct location for saving User2’s user-created data?

When you first open your application as User2 after your application is installed, create a simple file or document and try to save it.

Your application should display the contents of either User2’s “My Documents” folder or a subfolder under User2’s “My Documents.” You can identify User2’s “My Documents” folder because you created several special test folders there in the base test environment and the name of each of those folders contains the user’s name; for example, “User2 LFNPath1_ßåã‘”.

If you cannot easily determine if the folder your application displays is not User2’s “My Documents” folder, save the test document to the default folder offered to User2. Then use the “Up one level” button to move upward in the folder path until you reach User2’s “My Documents.” If your application’s common dialog box does not have an “Up one level” option, use Windows Explorer to verify that the test document is in a subfolder of User2’s “My Documents.”

Check “Pass” if your application defaults to a correct location for saving User2’s user-created data.

(
Pass
The application uses a correct default location.

(
Fail
The application used an incorrect default location. Record the full path the application used.

T3.2
Classify and store application data correctly

This section includes only one test case.

Applications often create persistent stores for preferences, settings and temporary data for users. Typical examples of user application data are the sizes and location of application windows, the states of toolbars, the default page settings or templates, macros and scripts, and the list of most recently used documents. To qualify for the “Designed for Windows XP x64” Logo, your application must store each user’s application data in one of three folder paths. Applications may also save user application data in the HKEY_CURRENT_USER registry hive and they may save some user configuration information in HKEY_LOCAL_MACHINE during the installation, but the impact your application is allowed to have on the registry is limited by Specification requirement 3.2.

NOTE: You will need a start-of-User1-functionality-tests snapshot for the T3.2 series of tests. You will need to create that snapshot before you start testing your application as User1.

NOTE: The T3.2 test cases should all be verified at the same time and only after you have completed all the functionality tests for User1, so your application has had the maximum opportunity to store application data.

TC3.2.1
Does the application store configuration data for User1 only in acceptable folders?

Applications may store configuration information for User1 in one of three folders. In the Logo test environment, those folders are named:

D:\Logo Test Docs & Settings\User1\Application Data
D:\Logo Test Docs & Settings\User1\Local Settings\Application Data
D:\Logo Test Docs & Settings\All Users\Application Data

Steps for TC3.2.1:

1.
Verify that you have a post-installation snapshot for the current installation,

2.
Log in as User1

3.
Run your CVT and do a post-functionality testing snapshot for the current installation,

4.
Run a Windiff comparison of the snapshots in steps 1 and 3. Look at all folders on the computer where your application stored user configuration information that are not folders in the three acceptable paths listed in this test case. For example, some legacy applications store configuration data in private .ini files in their program folders.

If the configuration information is in a proprietary or binary format, it may be difficult to identify. If you suspect that your application has stored configuration data somewhere, but you cannot identify it as configuration information, run your application and make some changes that should affect the configuration information. Then use Explorer or any other tools you have available to look for files that have recently changed. Although it is possible that your application does not store any configuration data, that would be quite unusual.

Check “Pass” if you find no configuration information in folders outside the three paths listed in this test case.

(
Pass
The application stored configuration data for User1 in acceptable folders (or stored no configuration data in folders).

(
Fail
The application stored User1 configuration data in unacceptable locations. List the locations and file names.

T3.3
Deal gracefully with access-denied scenarios

These are the test cases in this section:

TC3.3.1
Does the application prevent User1 from saving to the Windows system folder, E:\Windows?
TC3.3.2
Does the application prevent User1 from modifying documents owned by User2?
TC3.3.3
Does the application prevent User1 from modifying system-wide settings?
TC3.3.4
Does the application’s installer either allow User1 to install application or degrade gracefully if the installation fails?
By default on Windows XP x64, Limited Users cannot write to locations such as HKEY_LOCAL_MACHINE and the Windows system folder. They are also prevented from making changes to system-wide settings, or modifying documents owned by other users. Applications must not allow users to perform any of those actions if the user running your application is a Limited User. For these tests, start your application as User1.

TC3.3.1
Does the application prevent User1 from saving to the Windows system folder, E:\Windows?

Create or open a document in your application. Try to save it to the Windows system folder, E:\Windows.

Check “Pass” if your application prevents you saving the file, and displays a meaningful message, and does not stop responding, cause the system to stop responding, and does not lose the contents of the file.

(
Pass
The application prevented User1 from saving the file with a meaningful message and did not hang, crash, or lose the test document.

(
Fail
The application allowed User1 to save the file, or it prevented the save but did not display meaningful message, or it hung, crashed or lost the test document.

TC3.3.2
Does the application prevent User1 from modifying documents owned by User2?
Start your application as User2. You may be able to use Fast User Switching to switch to User2 and start your application. Or, you may have to log off as User1 and log on as User2, if your application will not run two instances as separate users under Fast User Switching.

Create a document as User2 and save it to “D:\Logo Test Docs & Settings\All Users\Documents\”. Use unique data in the file and/or a unique file name so you can identify the file later. When you are creating your test plan, you may want to save this file before you start testing as User1.

Start your application again as User1, or switch back to User1 using Fast User Switching. Browse to the document you created as User2 and open it. Make a change to the document and try to save it using the same name.

Check “Pass” if your application prevents you from saving the file, and gives you a meaningful message, and does not stop responding, cause the system to stop responding, and does not lose the contents of the file.

(
Pass
The application prevented User1 from saving the file with a meaningful message and did not hang, crash, or lose the test document.

(
Fail
The application allowed User1 to save the file, or it prevented the save but did not display meaningful message, or it hung, crashed or lost the test document.

TC3.3.3
Does the application prevent User1 from modifying system-wide settings?

Some applications allow users to make system-wide settings, settings that affect the appearance or behavior of Windows XP x64 for all users. For example, an application may allow the user to change the system time and date, modify device settings, or change the paging file size. If your application allows users to change system settings, it must block Limited Users from making any changes that they are not allowed to make outside your application.

Look through the list of primary functions for your application and identify any that appear to be system settings. If you find any system settings available in your application, try to make changes to the settings as User1 from outside your application. If User1 is blocked from making the changes from the Windows XP x64 desktop or control panel, try to make the changes as User1 from your application

Check “Pass” if your application prevents you from making any of the system-wide changes it supports as primary functions.

(
Pass
The application prevented User1 from making system-wide changes.

(
Fail
The application allowed User1 to system settings changes that User1 was blocked from making from outside the application.

(
Does not apply.
The application has no functionality that allows users to make system settings changes.

TC3.3.4
Does the application’s installer either allow User1 to install application or degrade gracefully if the installation fails?

Start a new test pass with a clean base test environment. You may be able to combine this test case with TC2.8.2 for some test plans.

Log on as User1, create a pre-installation baseline snapshot, and start installing your application.

If your application installation appears to complete normally, run all CVT tests to make sure all primary functionality was installed and works as expected.

If the installation cannot be completed, the installer must display a meaningful message, such as, “You must be a Computer Administrator to install this application.” Then User1 must be able to abandon the installation and the installer must remove the partial or incomplete installation. Create a second snapshot and compare it using Windiff with the pre-installation baseline to make sure the installer has removed all your application’s files.

Check “Pass” if either User1 could complete installing your application or if the installation provided a meaningful dialog that blocked the installation, allowed User1 to exit the installation, and completely removed the partial installation.

(
Pass
Either User1 was able to install the application, or the application gave User1 an appropriate dialog and degraded gracefully.

(
Fail
The application either failed to install so CVTs failed, or the application did not degrade gracefully.

T3.4
Support running as a Limited User

There is only one test case in this section.

TC3.4
Does the application support running as User1, a Limited User?

To qualify for the “Designed for Windows XP x64” Logo, your application must perform all of its primary functions when run by a member if the Limited Users group. If you run the T1.1 test cases as User1, a Limited User, you will be testing for compliance with requirement 3.4 at the same time.

Exception: The Specification allows your application to require elevated privileges for users running it in these two situations:

(
If your application is a utility that is intrinsically administrative such as modifying system security settings, performing backup and restore functions, etc. then it is acceptable for the intrinsically administrative function to require administrative privilege to execute. When a limited user runs the application and attempts to use those administrative specific functions, it is acceptable for the function to fail gracefully.

(
When the major features of the application can be successfully run by a non-privileged user, contributing function features are allowed to fail gracefully. These minor features must not be installed by any default mechanism (for example, a minimal or typical install) other than a complete install and must not be considered important for the operation of the program. Examples of such minor features include components necessary to support legacy file formats.

Examples:

Games should not be attempting to perform functions that are administrative. If any of the primary functionality of a game does not execute for a limited user, then the game fails requirement 3.4 even if it is failing gracefully and thus meets requirement 3.3.

Utilities such as backup/restore should execute under Limited User even if most of the functions could not be used by the limited user. If there are no features of the utility that can be used by the limited user, or if there are special reasons why a limited user must not have access to any part of the utility, an exception may be given to have the utility fail gracefully when launched by a limited user instead of having it run and have individual administrative specific features fail gracefully. Failing gracefully includes providing the user with clear direction on the issue and an explanation of why the feature/utility is not available.
Most failures of this requirement are caused by opening files for write or full access in folders where Limited Users do not have such privileges, or by opening keys in the registry for access those users do not have. Those applications seldom give users error messages that identify the cause of the failure. Instead, you may see error messages relating to incorrect licensing, failure to change or set configurations, or problems with low Windows resources. If you see any unusual error messages unrelated to specific tests you are running, you may have found a failure of this test case. You can verify that the problem is a failure of this requirement by trying to run the same tests as Owner. If both the Owner and User1 experience the failure, then it is likely a failure of requirement 1.1 and should be reported as such. If Owner can perform the test, but User1 cannot, you have found a failure for this requirement.
Example: The application prompts for credentials when user1 attempts to use a particular feature. If it is not clear from the prompt and the context that the user does not have access unless they are administrator, then this would be a failure to fail gracefully. If the application crashed or hung when user1 presented their credentials, then this would be a failure of requirement 1.1.
Check “Pass” if you ran all test cases for TC1.1.1 through TC1.1.7 as User1 and all tests passed, or if your application meets either of the requirements described in the bulleted list above and you have documented the reasons.

(
Pass
All primary function tests succeeded with User1 running the application.
(
Fail
One or more primary functions failed with User1 running the application, and the failure was caused by insufficient privileges.

Appendix A
Example Test Plan Using Framework Test Cases

It is inefficient to test an application in the order in which the requirements appear in the Specification, because you have to repeat many of the tests several times. To test your application efficiently, become familiar with all the Framework test cases. Decide how you can group and order the tests to take advantage of your resources, and then organize the test cases into a test plan that best suits your application. Your test plan will use several test passes, because you need several new installations of your application to execute all the installation/uninstallation and migration tests.

Some test cases ask the question, “Did this specific thing happen at any time while you installed or ran the application?” Those test cases are “executed” for the entire time you test the application, and you can only verify that the application passed or failed each test when you have finished the test pass. Other test cases have several parts that will be run at different times in a test pass. You cannot verify those test cases until all their parts have been run, although that may happen before you have finished the test pass.

This appendix describes the following test passes:

TEST PASSES A– Run most test cases on Windows XP x64 Professional
TEST PASS b – Install as User1, a Limited User

This appendix describes a test plan that will work for many applications. Although the test passes can be run in any order, you may prefer to run test passes A and B first. Those test passes include TC1.1, and they verify your CVTs.

NOTE: If you try to modify this sample test plan, make sure you incorporate all the tests from the Framework into your revision. It is easy to lose or skip tests when you edit an existing test plan.

1.
Create the base test environment (or restore from archived image) with special settings

· Do not install any printers, as preparation for TC1.6.1.

· Do not install any other devices the application uses, as preparation for TC1.6.2.

· Set a Windows XP x64 theme other than Windows Classic theme as the default, preparation for TC1.6.

2.
Log on as Owner and create a pre-installation snapshot baseline

3.
Run TC2.9.1 Autorun starts automatically

· Exit the installation as soon as possible after it starts. Do not install the application.

· Create a post-2.9.1-test baseline.
Compare it with the pre-installation baseline and make sure TC2.9.1 did not add anything to the base test system. If it did, recreate the base test environment (or restore from archived image) and repeat Steps 1 and 2.

4.
Run TC1.4.1 Install on a “future version” of Windows

· If the test fails or the application blocks future installation, reinstall on current version.

· If the application fails during future-version testing, you must determine if the problem is exposed by TC1.4.1, or some other, unrelated failure. To do that, you must reinstall the application and retest it using the current version of Windows XP x64, without future-versioning applied.

· Verify these test cases:

TC2.4.1 – Installation did not require a reboot.

TC2.5 – Default installation location is a descendant of “Program Files.”

TC2.8.1A – Default option for Owner is an “all users” installation.
This test pass runs TC2.8.1 in two parts, identified here as parts A and B. Part B is verified in Steps 7 and 8.

5.
Create a post-first-installation baseline and compare with pre-installation baseline:

· Verify TC2.6 – Install shared files to correct locations.

· Verify TC2.7.1 – Registry support for Add/Remove Programs.

· If comparison report shows kernel-mode drivers installed, log on as Owner as necessary to set up verification modes, and log on as User1 to test app functionality.

· If kernel-mode testing exposes serious failures, you may need to recreate the base test environment (or restore from archived image), reinstall the application and repeat steps to this point in the test pass, without setting the kernel to verification mode, to complete testing.

Run TC1.2.1 – Driver verification on load.

Run TC1.2.2 – Driver verification during functionality tests.

Run TC1.2.3 – Driver verification during low-resource tests.

Run TC1.3.1 – Required WHQL proofs submitted.

· Verify TC2.9.2 – Autorun did not restart installation.

6.
Log on as User1 and start TC1.4.2, Functionality tests under “future version.”

· If TC1.4.2 fails or the application blocks future installation, reinstall on current version.

· Verify TC2.8.1B – “All users” installation by Owner installed the application for User1. The final part of this test case, part C is verified in Step 8.

· Run TC3.1.1 and TC3.1.2. Default to descendant of User1’s “My Documents.”

7.
General functionality and stability tests, begin TC1.1.1 and related tests:

· Run TC1.1.6.1 – Fail elegantly if no printers installed.

Close the application.

Log off as User1, log on as Owner and install a default printer with a long name.

Log off as Owner, log on as User1 and start the application.

Verify TC1.1.4.7A – Application does not crash when it starts and the default printer has a long name. This test pass runs TC1.1.4.7
· Run TC1.1.6.2 – Fail elegantly if other devices are not installed.

For each additional device the application uses, verify TC1.1.6.2.

After verifying for all devices, close the application.

Log off as User1, log on as Owner and install the device.

Log on as User1 and start the application.

· Run TC1.1.1 – the TCO tests – as User1, verify results in the final Step 7 sub step. Run these tests separately if they are not incorporated in the TCO:

Run TC1.1.2 – Multi-button mouse tests.

Run TC1.1.4.1 – TC1.1.4.6 and TC1.1.4.7B – Long path, file, and printer name tests. This completes verification for TC1.1.4.7.

Run TC1.1.7 – Verify 256-color switch if applicable.

Run the T1.7 test series – Switching between tasks.

· Complete TC1.1.1:

Verify TC1.1.1 – General functionality and stability.

Verify TC3.4 – All functionality works for User1, a Limited User.

· Create a post-User1-functionality baseline and compare with pre-installation baseline

Verify TC1.1.3 – Use correct locations for temporary files.

Verify TC3.2.1 and TC3.2.2 – Classify and store application data correctly.

8.
Run User2 and Fast User Switching tests

· Run these tests if the application allows full Fast User Switching functionality or only blocks problematic features:

Do not log off as User1. Make sure User1 has the application open and running at all times, unless the application blocks Fast User Switching; see the related Step 8 sub step.

Set up problematic User1 scenarios based on the TCO and your response for requirement 1.5. You may have to switch back and forth between User1 and User2 several times if there is more than one interesting scenario.

· Switch to User2 using Fast User Switching. If the application fails Fast User Switching testing or blocks running under Fast User Switching, log off as User1 and log on as User2 instead.

Verify TC2.8.1C – “All users” installation by Owner installed the application for User2. This completes verification for this test case.

Run TC3.1.3 and TC3.1.4 – Default to descendant of User2’s “My Documents”.

Run CVTs as User2.

Create a file as User2 for TC3.3.2. User1 will try to open it in Step 9.

· Verify TC1.5 – Support Fast User Switching.

· Switch back to User1. (You may have to log on as User1 instead, depending on how the application supports Fast User Switching).

9.
Complete application tests as User1

· Run TC3.3.1 through TC3.3.3 – Deal gracefully with access-denied scenarios.

10.
Log on as Owner to complete functionality testing for this test pass and verify results.

· When running on the dual-processor system verify TC1.1.5 – Application installs and runs on a dual-processor system.

· Verify TC1.3.2 – No unsigned driver warnings appeared.

· Verify TC1.4.2 – Application has full functionality on a future version of Windows. If the application fails during future-version testing, you must determine if the problem is exposed by TC1.4.2, or some other, unrelated failure. To do that, you must reinstall the application and retest it using the current version of Windows XP x64, without future-versioning applied.

· Verify TC1.6 – Supports Windows XP x64 visual styles.

· Verify TC2.1 – No Windows File Protection messages appeared.

· Verify TC2.4.2 – No reboots requested during functionality tests.

· Create a post-all-users-functionality baseline and compare it with the pre-installation baseline:

Verify TC2.3.1 – Application did not overwrite non-proprietary files.

Verify TC2.3.2 – All installed executables have required information.

11.
Uninstall the application as Owner. Run a post-uninstallation baseline and compare with the pre-installation baseline.

· Verify TC2.7.2 – All the correct things were removed and left behind.

12.
Reinstall the application as Owner. Run a post-second-installation baseline and compare with the post-first-installation baseline.

· Verify TC2.7.4 – Application can be reinstalled after uninstalling it.

TEST PASS B – Install as User1, a Limited User

1.
Create the base test environment (or restore from archived image).

2.
Create a pre-installation snapshot baseline.

3.
Log on as User1. Install the application.

· Verify TC3.3.4 – Install as User1 or degrade gracefully.

· Verify TC2.8.2 – Default to “all users” for User1 installation. If the application blocks installation by Limited Users, log on as Owner and install.

· Run a post-installation baseline

4.
Run CVTs as User1

5.
Uninstall as User1

· Verify TC2.7.3A – Allow uninstall as a Limited User or degrade gracefully. This test pass runs TC2.7.3 in two parts, identified here as parts A and B. Part B is verified in later in Step 5.

· If the application allows User1 to uninstall, create a post-uninstallation baseline and compare with the pre-installation baseline.

· Verify TC2.7.3B - All the correct things removed and left behind, unless the application does not allow uninstallation by Limited Users. This completes verification for this test case.

Appendix B
Support Files

The Support Archive, available at http://www.microsoft.com/downloads/details.aspx?FamilyID=2842ed69-68c2-468b-b324-9a5f6e054070&displaylang=en&Hash=99NFGL8, contains several tools you will use to create the base test environment and run specific tests. Copy the contents of the archive to a folder named XPLogo on drive C. Storing the tools on drive C allows you to reformat and recreate the test environment on drives D and E without disturbing the tools. If you store the tools in another location, you will have to specify that new location in all the commands and procedures in this Framework that refer to the tools.

The tools described in this appendix are summarized in the following table.

Files in the Support Archive

	Tool
	Description

	Create_Folders_from_File.exe
	A commend line utility used to create long paths in the “My Documents” folders for User1 and User2. For details, see “Create_Folders_from_File.exe” later in this appendix.

	Unattend.txt
	The unattended setup answer file used to create the base Windows XP x64 test environment. For details on how to use and make changes to the file, see “Installing Windows XP x64 with the Unattended Answer File” earlier in this Framework and “Unattend.txt” later in this appendix.

	XP_CSIDL_Folders.txt
	The support file used with the Create_Folders_from_File.exe utility to create long folder paths in the test environment. For details, see “Create_Folders_from_File.exe” later in this appendix.

	XP_long_file_names.txt
	A list of ten file names you can use for long file name tests. See TC1.1.4.6 for details.

	XP_long_printer_names.txt*
	A list of five long printer names you can use when you create the default printer with a long name in the test environment. For details, see “TC1.1.4.7 Does the application maintain stability when printing to a printer with a long name?”

Create_Folders_from_File.exe

You need to create two sets of paths in the test environment before you can start testing your application. Both sets of paths can be created using the Create_Folders_from_File.exe utility and the XP_CSIDL_Folders.txt support file.

To create the folders, run this command from a command window.

C:\XPLogo> Create_Folders_from_File.exe XP_CSIDL_Folders.txt

Unattend.txt

The unattend.txt answer file creates a base test environment that helps you verify many of the test cases in this Framework. This section describes the significant lines in the answer file and shows you the changes you can make without affecting the results of your tests.

CAUTION: If you do not use the unattend.txt answer file when you install Windows XP x64 on your test machine, you may miss test failures that will prevent your application receiving the “Designed for Windows XP x64” Logo. See the “Installing Windows XP x64 with the Unattended Answer File” section earlier in this Framework for the command syntax to use when you install Windows XP x64 using the answer file.

[UserData] Section

Values in the UserData section set the computer and organization name, and provide the product key that Windows Setup uses during installation. You can change any of these values without affecting the results of the Framework test cases.

[UserData]

 FullName = Admin

 ComputerName = XPLogo

 OrgName = "Microsoft"

 Description=""

 ProductID=XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

CAUTION: You must replace the “X’s” in the ProductID value with the twenty-five character product key for your copy of Windows XP x64. If you use the incorrect ProductID, you may not be able to log on when the installation is complete.

[Identification] Section

This section specifies the name of the workgroup the test machine is joined to. You can change this name without affecting the results of Framework test cases. However, joining an existing workgroup may give your application access to shared resources that may give you unexpected results for functionality tests.

 [Identification]

 JoinWorkgroup = LogoTest

[GuiRunOnce] Section

Windows XP x64 Setup copies commands in the GuiRunOnce section to the Windows registry when the installation is complete. When the first user logs on, Windows XP x64 executes each command as if that user had entered it in a command window.

 [GuiRunOnce]

 Command0="net user User1 LogoTest.1 /add"

 Command1="net user User2 LogoTest.1 /add"

 Command2="net user Owner /add"

 Command3="net localgroup Administrators /add Owner"

 Command4="net localgroup Users /delete Owner"

The first two lines create User1 and User2 in the base test environment. Users created this way are Limited Users (members of the Users group) by default. These commands assign the password “LogoTest.1” to each user. You can change the password for either or both users by editing that user’s command line in the answer file. For example, these changes assign User1 the password “NewPW” and create User2 with no password.

 Command0="net user User1 NewPW /add"

 Command1="net user User2 /add"

The last three commands create a new user named Owner with no password, add Owner to the Administrators group, and then remove Owner from the Users group. Together, the commands create a user named Owner on Windows XP x64 Professional systems that has the same characteristics as the default Owner on Windows XP x64 Home Edition systems. When you use the answer file to install Windows XP x64 Home Edition, these commands execute, but they have no effect because the user Owner already exists.

[GuiUnattended] Section

Two of the values in this section of the answer file are important for Framework testing. The AdminPassword value creates the password for the default Administrator. You will need this password to perform the first log on when you create the test environment on Windows XP x64 Professional systems. For all other setup and testing, you will log on as Owner, User1 or User2. You will not need the password on systems running Windows XP x64 Home Edition unless you need to log on as the Administrator from Safe Mode. You can change this password to any value you wish.

Windows XP x64 Setup uses the ProfilesDir value to move and rename the folder tree that is named “Documents and Settings” on default systems running Windows XP x64. This change is required for the T3.1 and TC1.1.4 series of tests.

CAUTION: If you change the value in ProfilesDir, you must make corresponding changes in the test cases or you may miss failures that will prevent your application receiving the “Designed for Windows XP x64” Logo.

[GuiUnattended]

 AdminPassword=LogoTest.1

 ProfilesDir="d:\Logo Test Docs & Settings"

[SystemFileProtection] Section

The single value in this section enables the test environment for the Framework Windows File Protection tests. For details, see “Required Changes to the Windows XP x64 Configuration” earlier in this Framework and “T2.1 Do not attempt to replace files protected by Windows File Protection.”

[SystemFileProtection]

SFCQuota = 0

CAUTION: If you change or remove the value in the SystemFileProtection section, you will miss failures that will prevent your application receiving the “Designed for Windows XP x64” Logo.

Additional Sections and Values in the Answer File

Several sections and values in the answer file are not discussed in this appendix. In general, those values and sections do not affect Framework test cases. The values in the file will work for most systems, but you can change them as required for your test environment.

Appendix C
Future Version Testing

The Application Verifier HighVersionLie test's primary purpose is to ensure that applications that run on Windows XP x64 will run correctly as future versions of Windows are released. This test is NOT intended for internal system components or applications that ship with the operating system. Running this test on the aforementioned components will cause unforeseen results as these components expect a certain version to be returned. This test is designed for applications that will perform version checking and will respond based on the operating system version information returned.

The Application Verifier is a component of the Microsoft Windows Application Compatibility Toolkit. For more information on how to use the Application Verifier and the Future checking version feature, please visit the Application Compatibility web site: http://www.microsoft.com/windows/appcompatibility/default.mspx
Appendix D
Testing Kernel-Mode Drivers

If your application installs kernel-mode drivers, you will need to run these types of tests on the drivers to comply with “Designed for Windows XP x64” Logo requirements:

Boot Verification Tests
Verification Tests for Drivers Not Loaded at Boot Time
Functionality Tests with Standard Kernel Testing Enabled
Low-Resources Verification Tests
Turning Verification Off
Collecting Additional Information for Kernel-Mode Driver Test Failures
NOTE: You will run your application as User1 for all kernel-mode driver tests. However, only users with Computer Administrator privileges can change Driver Verifier settings. So, you must log on as Owner to set up the kernel-mode tests, reboot, and then log on as User1 to continue the kernel-mode driver tests for your application.

You will use the Driver Verifier (Verifier.exe), installed by default on all Windows XP x64 installations, to set up the Windows XP x64 kernel to perform all four types of tests. To start Driver Verifier, type the command “verifier” in the Run dialog from the Start menu or from a command line, or browse to “E:\Windows\system32” in Windows Explorer and double‑click the verifier.exe icon.

The kernel reports driver verification failures by breaking to an attached kernel-mode debugger. You can use debugger commands to collect additional information about the driver failures; see “Collecting Additional Information for Kernel Mode Driver Test Failures” later in this appendix.

This appendix gives you an overview on using the Driver Verifier for “Designed for Windows XP x64” Logo testing. For more detailed information and ideas on using the tool to help diagnose driver problems, at http://www.microsoft.com/hwdev/driver/verifier.htm.

Boot Verification Tests

Many kernel-mode drivers load as Windows XP x64 boots. If you have set verification mode for those drivers, the Windows XP x64 kernel runs tests on the drivers as they are loaded. If any drivers fail the tests, the kernel breaks to the attached debugger. In verification mode, the kernel can test about ten percent of the function code in most kernel-mode drivers as they load into memory. You must run functionality tests to test the balance of the drivers’ functions.

To use Driver Verifier to run boot verification tests

1.
Log on as Owner.

2.
Start the Driver Verifier, choose the “Create standard settings” option and click Next.

[image: image7.png]& Driver Verifier Manager,

Select atask

© Eieaie sandnd eigg

€ Create custom setings (fo cods developers)
€ Delee ssising setings
€ Display evisting setings

€ Display nformation about th curertly verled divers

Clck Net o create standard selfings.

“You wil then be asked to select the divers to veriy.

3.
Choose the option “Select driver names from a list” and click Next.

Driver Verifier displays a list of drivers, sorted alphabetically by name.

[image: image8.png]& Driver Verifier Manager,

Select what diivers ta veity

© Automatical select rsigned divers

€ Automatical select civers bl for glder versons of Windaws

€ utomaticaly select al dives installed on this computer

© e e e o 3

Click Nestto manualy select the divers to vy from a st of al the divers nstalled on this computer.

Click Back to review or change the seltings you want to create.

ok Corce

4.
If the drivers installed by your application are listed, check the box next to each driver’s name.

If one or more driver’s names are not in the list, click Add currently not loaded driver(s) to the list.

[image: image9.png]& Driver Verifier Manager,

Selectdivers to verty

Verity? | Divers Provider Version

acpisys Mictosoft Corporation 51.2462.0 main 010,
aldsys Mictosoft Corporation 51.2462.0 (main 010,
aoptdlsys Mictosoft Corporation 51.2462.0 (main 010,
stapi sy Mictosoft Corporation 51.2462.0 main 010,
amiddl ‘Adobe Systems Incorporated 5.08Buld 225

audstub.sys Mictosoft Corporation 51.2462.0 (main 010,
beep.sys Mictosoft Corporation 51.2462.0 (main 010,

dd curenty notloaded divers] o the fist

Click Fiish aher selecting the divers t verl. The curtent settings wil be saved and tis program wil et

looooooo

Clck Back ta review or change the seltings yau want o create or to select another set o divers veriy.

5.
Click the Add button.

6.
In the dialog box that displays all the drivers located in E:\Windows\system32\drivers, choose all the drivers for your application that were not on Driver Verifier’s list.

You can use the Shift and Ctrl keys to select several drivers in the dialog box. Click Open to dismiss the dialog and add the drivers to Driver Verifier’s list.

[image: image10.png]Driver Verifier, Manager,

Lookin: [(2D divers]« ®mef

cdfs.as laass
Slaomers Slawesrs Slankedss Dotk
Slemizers Bldstkors Slosicsys Blemaokic
Slcsrpors Bldskrs Sl amksrs Slresfabor:

Slasmpsys Blamwdss Sidesrs
Slanboctsys Blowisrs Slipsers

Fiename: ["Coolipphainsys™ "Coolippl sys™ "CookiprZ

2
(=
Fies of type: [Drivers [“sys) hd _I

7.
In the next dialog, under “Select drivers to verify”, check the checkbox for the name of each driver that you just added to Driver Verifier.

8.
Click Finish. Driver Verifier will close.

[image: image11.png]& Driver Verifier Manager,

Selectdivers to verty

Verity? | Divers Provider Version

watchdog sys Mictosoft Corporation 51.2462.0 main 010,
wamaud sys Mictosoft Corporation 51.2462.0 (main 010,
wind2k.sys Mictosoft Corporation 51.2462.0 (main 010,
wnill. sy Mictosoft Corporation 51.2462.0 (main 010,
Coolbpphainsys <urknown> <unknon>
Cooltppt sy <unkronn <unknon>
Coolipp2sys <unkronn <unknon>

dd curenty notloaded divers] o the fist

Click Fiish aher selecting the divers t verl. The curtent settings wil be saved and tis program wil et

Clck Back ta review or change the seltings yau want o create or to select another set o divers veriy.

9.
When the “You must reboot” dialog box appears, click OK to dismiss it, but do not reboot yet.

[image: image12.png]€3 R

o

10.
Start Driver Verifier again, and choose the “Display existing settings” option. Click Next.

You should see all of the drivers you have selected listed in the list on the right. All tests except “Enhanced I/O” and “Low resources simulation” should be enabled in the list on the left.

[image: image13.png]& Driver Verifier Manager,

Setings and vered diivers

Setings:

Vel thess divers:

Enabled?

Test Type

Name.

Desciption

Yes
Yes
Yes
Yes
No

Yes
Yes
No

Spesial ool
Poal acking

Force IRGL checking

10 veification

Erhanced /0 veificatian (beta version)
Deadock detection

DMA chesking

Low esauces simulation

Coolbppt sy
Coolipp2.ys
Coolapphain

unknoun>
<unknown>
<unknovn>

Clck Firsh to st this program or Back to reate o delete verifer selfings.

11.
After you verify that everything is correct, click Finish to dismiss Driver Verifier, and then reboot.

As Windows XP x64 boots and loads the drivers, the kernel will perform each of the enabled tests on each driver that uses functions that expose the tests at load time. If any driver fails any of the tests, the kernel will break to the attached debugger where you can collect additional information about the failure; see “Collecting Additional Information for Kernel Mode Driver Test Failures” later in this appendix.

CAUTION: If you do not have a debugger attached during kernel-mode driver tests and a driver fails a test, Windows XP x64 will stop and display a character mode screen with an error number only. You will have to use the hardware reset switch to reboot the system.

NOTE: Any failure of any kernel-mode driver during boot tests is a failure of TC1.2.1 and it prevents your application from receiving the “Designed for Windows XP x64” Logo.

When Windows XP x64 finishes testing and all drivers pass, you will be prompted to log on. Proceed to the next section to continue testing the drivers.

Verification Tests for Drivers Not Loaded at Boot Time

Some kernel-mode drivers are not loaded by Windows XP x64 until the user invokes the functionality they support in your application. After the kernel has run all the boot tests, you need to identify any drivers that were not loaded during boot.

To use Driver Verifier to text drivers that are not loaded at boot time

1.
Log on as User1, not Owner.

2.
Start Driver Verifier, choose “Display information about the currently verified drivers,” and click Next.

Driver Verifier displays the list of verified drivers in the list on the right. Any drivers with “Never Loaded” did not load during boot and have not been verified by the kernel.

[image: image14.png]& Driver Verifier Manager,

Cuent seffings and verfied divers (un tin irfomatior]
Setings: Diivers:

Enabled? | Test Type Diivers Status
Yes Spesial ool Coolbppt sy Never Loaded
Yes Fool acking Coolipp2.sys Never Loaded
Yes Force IRGL checking

Yes 10 veification

No Enhanced I/0 veiication (beta version)
Yes Deadock detection

Yes DMA chesking

No Low esources simulation

Change. Add Remove

Click Nextto display global counters for the curently veriied v or Back to create o delets veriie setings.

3.
Close Driver Verifier and start your application as User1.

4.
Using the list of functions for each driver, exercise your application’s functionality that will trigger the load for each driver.

5.
Start Driver Verifier again and verify that all drivers were loaded.

If you cannot determine how to load the drivers, get that information from your application’s developers.

NOTE: Any failure of any kernel-mode driver during these functionality load tests is a failure of TC1.2.1, and it prevents your application from receiving the “Designed for Windows XP x64” Logo.

When all driver loads have been verified by the kernel without any failures, proceed to the next section to run the functionality tests.

Functionality Tests with Standard Kernel Testing Enabled

With verification mode enabled, the kernel will test drivers as you exercise their functionality. For most drivers, the kernel can test about ten percent of their function code as they are loaded into memory. If the kernel detected any test failures for your application’s kernel-mode drivers during load, it has already reported them. To test the rest of your drivers’ functionality code, you need to perform tests in your application that use the drivers.

To test driver functionality

· Perform functionality tests as User1 that will exercise all the functionality the drivers expose in your application.

The CVT tests may be sufficient for this purpose, or you may need special sets of functionality tests to thoroughly exercise the drivers.

NOTE: Most kernel-mode drivers support primary functions in applications. Your TCO and CVT include tests for all primary functions. So, running the TCO/CVT tests usually exercises all kernel-mode drivers sufficiently to test them for compliance with Specification requirement 1.2. However, some kernel-mode functionality may support features that you have decided are contributing functions in your application. Most TCOs and CVTs do not test contributing functions. For kernel-mode requirement 1.2, you must run tests for all kernel-mode functions, even if they only support contributing functions. You may to create special tests, in addition to those in your TCO and CVT, to test those functions for this requirement.

NOTE: Any failure of any kernel-mode driver during these functionality tests is a failure of TC1.2.1, and it prevents your application from receiving the “Designed for Windows XP x64” Logo.

When all driver functionality has been verified by the kernel without any failures, proceed to the next section to run the low-resources tests.

Low-Resources Verification Tests

To receive the “Designed for Windows XP x64” Logo, all kernel-mode drivers your application installs must degrade gracefully, give the user a meaningful error message, and not cause data loss. The low-resources tests help make sure your application’s drivers comply with that requirement. With low-resources testing enabled, the kernel randomly denies resources that the selected drivers request. For example, a driver may request a memory allocation, but the kernel will deny the request and return a null or uninitalized pointer.

The kernel also returns the appropriate error message to the driver. Well-designed drivers will check the error message and try to deal with the low-resources situation. They might do that by warning the user to close applications to free memory, or they may simply report that your application cannot perform the function the user requested.

Your application passes the T1.2 low-resources test if it gives the user either of these responses, or takes any other action that tells the user what happened and does not lose the user’s data.

Your application probably will not work very well during low-resources testing. It may eventually tell the user it cannot continue, and prompt the user to shut it down. That is acceptable behavior during low-resources testing.

Your application fails this requirement if it stops responding, causes the system to stop responding, loses user data, or gives the user incoherent messages during low-resources testing.

To initiate low-resources tests

1.
Log off as User1 and log on as Owner.

2.
Start Driver Verifier and choose the “Create custom settings” option, and then click Next.

[image: image15.png]& Driver Verifier Manager,

Select atask

© Creste stendard setings

@ Ereate custom seliings (io code developers)
€ Delte eisting setings

© Displag evisting seltngs

€ Display nformation about th curertly verled divers

Clck Net o create custom selfings.

Yo wil then be asked to selectthe custom setings and st ofdiversto vey.

= Corce

3.
Choose the Enable predefined settings option, uncheck Standard settings, and check Low resource simulation.

[image: image16.png]& Driver Verifier Manager,

Create custom seltings

& Enabls prsdefned sfings)

I Standard setings

I Rigorous but possily excessive orspuious tests

¥ Low resource simulation

€ Select individual selfings fram a full st

Click Next o enable any checked-of predsfined setings

“You wil then be asked to select the divers to veriy.

4.
Click Next.

5.
Choose “Select driver names from a list” and add the kernel-mode drivers, just as you did in the earlier section of this appendix.

6.
Click Finish to close Driver Verifier, and then click OK to dismiss the reboot reminder, and reboot the computer.

7.
Log on as User1 and verify that drivers were loaded, as you did in the earlier section of this appendix.

Only the low-resources tests should be enabled in the list of the left.

[image: image17.png]& Driver Verifier Manager,

Setings and vered diivers

Setings:

Vel thess divers:

Enabled?

Test Type

Name.

Desciption

No
No
No
No
No
No
No
Yes

Spesial ool
Poal acking

Force IRGL checking

10 veification

Erhanced /0 veificatian (beta version)
Deadock detection

DMA chesking

Low esauces simulation

Coolbppt sy
Coolipp2.sys

unknoun>
<unknovn>

Clck Firsh to st this program or Back to reate o delete verifer selfings.

8.
Perform functionality tests as User1 that will load the drivers, if necessary, and exercise all the functionality the drivers expose in your application.

The CVT tests may be sufficient for this purpose, or you may need special sets of functionality tests to thoroughly exercise the drivers. You should see warnings and error messages as the kernel simulates low resources to the drivers. But you should not see your application hang, crash, lose data, or display confusing messages to the user.

After you have completed the low-resources tests, proceed to the next section to turn off kernel-mode driver verification.

Turning Verification Off

To turn verification off

1.
After completing the low-resources tests, reboot the computer.

2.
Log on as Owner and start Driver Verifier.

3.
Choose “Delete existing settings” and click Finish.

[image: image18.png]& Driver Verifier Manager,

Select atask

© Create standard settings
€ Create custom setings (for cods developers)
@ Delete srising setings

€ Display evisting setings

€ Display information about the curertly verlied divers

Click Fiish to deete althe esisting veier setings and ext this pogram.

4.
Click Yes to dismiss the dialog that warns you that all settings will be deleted.

5.
Click OK to the reminder to reboot the computer. Then reboot and continue with the remaining tests in your test plan.

Collecting Additional Information for Kernel-Mode Driver Test Failures

If your application installs kernel-mode drivers, use Driver Verifier to enable driver testing in the kernel, as described in earlier sections of this appendix. If a driver fails while the kernel is verifying it, the kernel breaks to an attached kernel-mode debugger so you can obtain details on the problem.

NOTE: If you do not have a kernel-mode debugger attached when a kernel-mode driver verification errors occurs, the system will “bugcheck” to the character mode screen and only limited information about the error will be available.

When the kernel breaks to the debugger:

· An error message appears on the debugger with the driver name, the type of error found and an error code.
In this example, a driver named KernelModeDriver corrupted its memory pool:
KernelModeDriver: DriverCorruptedExPool

*** Fatal System Error: 0x000000c1

 (0xB0AA6F68,0xB0AA6F60,0xEB004098,0x00000023)

A fatal system error has occurred.

Debugger entered on first try; Bugcheck callbacks have not been invoked.

· This debugger command queries the Driver Verifier interface for additional information:

!verifier 3

· Copy all the information displayed in the debugger after you execute the command. Add a copy of the stack backtrace and save the information in a safe location. This information will help your application’s developers solve the driver problems.

For information on the error codes used by the kernel’s verification mode, see http://www.microsoft.com/hwdevdriver/verifier.htm.

The kernel purposely bugchecks the test computer to provide the driver error information. You must reboot the test machine to continue testing. Depending on the nature of the driver error, the test application or the system may be unstable after the reboot, and some data may have been lost. You may need to revert to a known-good system image, or reinstall a base test environment, and reinstall the test application to continue testing.

Appendix E
Example Primary Function List, TCO, and CVTs

To help with your testing for the “Designed for Windows XP x64” Logo, you can create these three documents:
1.
A list of the primary functions in your application.

2.
A TCO that describes briefly tests that exercise all of the primary functions.

3.
A list of consistency verification tests (CVTs), a subset of the TCO that use consistent input data and produce consistent results when they are run repeatedly in the same environment.
You can create the documents using the traditional formal test plan you have already created for your application. If you do not have a formal test plan, you can create them using the exploratory methodology described in the Windows Applications Exploratory Test Procedure, which is part of the Windows XP x64 Application Compatibility Toolkit, available at http://msdn.microsoft.com/compatibility.
This appendix discusses how to create the three documents using the exploratory methodology and Notepad as an example application. This appendix is divided into the following sections:

Example Purpose Statement
Example Description of Normal Users
Example List of Primary Functions
Example TCO
Example CVTs
Example List of Contributing Functions
Although most applications are more sophisticated than Notepad, you can adapt the ideas presented in these Notepad examples to any application. Before you can create the three documents, you need to determine the purpose of the application and define the normal users of the application. When you have a full list of all features in the application and you have selected all the primary functions from that list, the functions left over are called “contributing” functions.

This appendix applies the exploratory testing methods to Notepad as described in the Windows Applications Exploratory Test Procedure, rather than adapting a formal test plan.

Example Purpose Statement

Almost everyone who has every used any version of Microsoft Windows has been exposed to Notepad. It is so easy to use that most people never think to look for help in the Help files in Windows or in Notepad itself. However, as an exploratory tester, you need to collect all the information available about the application to help you decide its purpose, how to define its normal users, and what functions you will need to test.

When you examine the Windows XP x64 Help files for Notepad, you may find some features you do not expect. For example, the overview Help page, titled “Using Notepad,” has only three paragraphs. Yet two of them mention that some users create and edit HTML documents with Notepad. That is obviously a primary function for some users. Notepad is the default editor for a file type that supports several very common kinds of files in Windows. On Windows XP x64, Notepad supports four character formats. It is also limited to basic formatting and does not save font or layout information, except tabs.

NOTE: Everything in the purpose statement must relate to characteristics you attribute to normal users. Everything in the purpose statement must be supported by one or more primary functions.

Based on the Help files, you might create a purpose statement similar to the following.

	Purpose Statement
Notepad is a basic text editor that:

· Can view, create, edit and print text files.

· Opens .txt, .log, and .ini files by default on most systems (txtfile type in HKEY_CLASSES_ROOT).

· Some people use to create Web pages.

· Supports only very basic formatting; you cannot accidentally save special formatting in documents that need to remain pure text.

· Saves files as Unicode, ANSI, UTF-8, or big endian Unicode.

Example Description of Normal Users

Some of the information in the Microsoft Notepad Help files describes Notepad users. You can also infer some characteristics of normal Notepad users based on your own experience with the product, your associates’ experiences with Notepad, and even your knowledge of similar text editors.

For example, many people who tried to use Notepad on early versions of Windows were frustrated because Notepad did not support some of the common accelerator keys used in many other Windows applications, such as Ctrl+S to save files and Ctrl+F to open the find/search dialog box. The Windows 2000 version of Notepad added support for these and other common accelerators. Anyone who started using Notepad again, because it added that support, will consider it a primary function. By definition, a primary function is one that is so important that, if it no longer works, the user will not be able to use Notepad any longer for what they want it to do.

Based on reading the Help files, exploring Notepad, and talking with others who have used Notepad, you may create a description of normal users like this one.

NOTE: Every characteristic you ascribe to normal users should be reflected in the purpose of the application. Every characteristic you ascribe to normal users should have one or more associated primary functions.

	Description of Normal Users
Notepad normal users need to create, save, open and print simple text documents, using only basic formatting, that other users can read without a proprietary program. They create/view/edit simple HTML documents and other non-text files (for example: .exe, .dll, and .sys files) without adding formatting codes. They may open and save files as ANSI, Unicode or UTF-8, and they may change the display font to make files easier to read while they are displayed in Notepad. Some of them decided to start using Notepad (again) when common accelerator key support was added.

None of the users needs common word processor functions such as spell check, individual character formatting, bullets and styles.

Example List of Primary Functions

Look for functions based on your purpose statement and your definition of normal users. Keep a record of every function or feature that you find. When you have finished exploration, you will have a list of everything the application can do.

If your application is as simple as Notepad, your exploration is likely to provide you with a complete list of the application’s functions. For applications that are more complex than Notepad, you may still have only a partial list. Your list of primary functions will be complete when you have ensured that you have listed all functions required to accomplish the purposes you identified in your purpose statement, and to meet all the requirements that you attribute to normal users.

Microsoft testers will use these sources to verify that your list of primary functions is complete:

· On-line help

· The Application’s menus

· Setup options for components that have not been installed

· Dialog boxes and wizards

· Buttons on toolbars

· Context (right-click) menus on data objects, interface elements, and windows

· Double-clicking data objects, interface elements, and windows, which may invoke trigger hidden functions

· Check product options settings for functions that are dormant unless switched on (for example, automatic grammar checking in a word processor)

· Check for functions that are invoked only by certain input (for example, saving a JPEG image might trigger a JPEG Save wizard)

· Examine sample data provided with the application

· Look for error handling and recovery functions that are embedded in other functions

After you have identified all the primary functions, you will probably have several features remaining on your list. These are contributing functions, and you are not generally required to test them in “Designed for Windows XP x64” Logo test plans; but see Appendix D, “Testing Kernel Mode Drivers,” for a discussion of possible required contributing function tests for applications that install kernel-mode drivers. The contributing functions for this Notepad example are listed separately at the end of this appendix.

Based on exploration, the purpose statement and the definition of normal users for Notepad, you might create the following list of primary functions.

Function #10, “Accelerator keys,” is noteworthy, because it is an example of a primary function that is made up of several contributing functions. In the description of normal users earlier, we mentioned two accelerator keys that are common to many Windows applications, but were missing in some down-level Windows versions of Notepad. Users frustrated by those missing accelerators may have started using Notepad again when Microsoft added them to Notepad. Probably those same users would describe their favorite accelerators as primary functions, because they would stop using Notepad again if those accelerators stopped working.

Does that make all accelerators primary functions? Probably not. Few users would complain if F1 did not open Notepad Help, because few users ever look at Help in Notepad. But, if no accelerators worked, many users would find Notepad so hard to use, they would resort to a different text editor. So, while accelerator keys as a group are a primary function, you have to decide, based on the purpose statement and your set of normal users, which of the keys make it a primary function, and which are “contributing keys.” This Notepad example uses the accelerator keys that are new in the most recent versions of Notepad, and also the standard copy/cut/paste accelerators common in many applications. You might pick a different list, based on your definition of normal Notepad users.

Some products have similar primary functions, made up of many contributing functions, where there are no obvious items that are “more primary” than others. Drawing tools might fit that category in some applications. The “drawing toolbar” may be a primary function, because many normal users think it is. However, each user may have their own set of favorite tools and rarely touch the others. If any drawing tools they do not use are broken, the users can still use the application. So, those rarely used tools are contributing.
However, because the various normal users’ sets are not alike, you have a problem. Someone thinks each tool is primary, for them. You could solve this dilemma by making all the tools primary functions in their own right. If you do that in a complex application, you will create a very long TCO. Instead, you could decide that at least 20% of the tools must work for the application to pass the “drawing toolbar” tests, and then allow the tester to choose which tools to test for each test pass. If you anticipate you will run more than five test passes, you can keep track of which tools you test each time and not repeat any until all tools are tested at least once.

NOTE: Every primary function should relate to a purpose in the purpose statement for the application. Every primary function should be “primarily” important to the normal users you have described.

	List of Primary Functions
1.
Create text files and Web pages

2.
Edit files (copy/cut/paste/delete)

3.
Undo

4.
Find/replace

5.
Word wrap

6.
Change font size/style

7.
Print

8.
Save/open as ANSI, Unicode, big-endian Unicode, UTF-8

9.
View documents that are not text files, DO NOT save them, and make sure Notepad does not change them

10.
Accelerator keys (including Ctrl+S, Ctrl+O, Ctrl+F, Ctrl+A, Ctrl+P, Ctrl+H, F3, the standard Windows editing keys, and possibly others)

11.
Open txtfile types (if Windows is set for default associations)

Example TCO

This TCO tests all the Notepad primary functions listed earlier. Because it is a TCO, the tests do not specify test parameters such as what input data to use or where to save test files. Most tests rely on the tester’s experience with Windows applications, their exploration of Notepad, and their understanding of consistency heuristics to verify the test results. The tests in series #1 are exceptions, because ANSI, Unicode and UTF-8 files all look the same when they are opened in Notepad, and without some verification ideas, the tester might spend a lot of unnecessary time deciding whether the tests passed or failed.

For more information about the consistency heuristics and verifying TCO tests, see “Sources and Oracles” in the Windows Applications Exploratory Test Procedure. Available as part of the Application Compatibility Toolkit.
http://www.microsoft.com/windows/appcompatibility/default.mspx

If you are using a formal test plan to create the TCO for your application, you can either adopt the consistency heuristic approach for verification, or you can add your formal test plan’s methods for deciding whether the tests pass or fail to the TCO.

NOTE: Every primary function should be tested by at least one test in the TCO.

	Test Case Outline (TCO)
Test series 1 – Tests primary functions 1, 8, 11 and part of 10

Create a text file by entering text; include some chars with ANSI codes > 0127

Save the file four times, use different file names for each file:
· File type ANSI using Save on the File menu (use .txt extension)

· File type Unicode, using “Save as” on the File menu (use .log extension)

· File type big endian Unicode, using Ctrl+S (use .ini extension)

· File type UTF-8, using Ctrl+S (use .htm extension - NOTE: this doubles as the Web page test)

Open each file and verify (diskedit.exe is part of the SDK tools, displays files in hex codes):

· Open ANSI, using Ctrl+O, verify only one byte per char with diskedit.exe

· Open ANSI file again by double-clicking it in Windows Explorer

· Open Unicode file by double-clicking it in Windows Explorer, verify with diskedit.exe, file starts with two codes bytes, then has two bytes per char, second byte is “00” for US English chars

· Open big endian Unicode by double-clicking it in Windows Explorer, verify with diskedit.exe, file starts with two code bytes, then has two bytes per char, first byte is “00” for US English chars

· Open UTF-8 using Open on the File menu, verify by opening in Internet Explorer and using the context menu (shows UTF-8 encoding used)

Test series 2 - Tests primary functions (part of) 2 and part of 10
Open one of the test series #1 files or create a new one by entering text:

· Select text with mouse drag, copy text with Edit menu, paste text with context menu

· Select text with keyboard arrow keys, copy text with context menu, paste text with Edit menu

· Select text with selection accelerator keys Shift+Home and Shift+End, copy text with edit menu, paste text with context menu

· Select text with Select All on Edit menu, copy text with Ctrl+C, paste text with Ctrl+V
· Select text with Select All on context menu, copy text with Edit menu, paste text with Edit menu

· Select text with Ctrl+A, copy text with Edit menu, paste text with Edit menu

Test series 3 - Tests primary functions 3, the balance of 2, and part of 10

Open one of the test series 1 files or create a new one by entering text

· Cut text with the Edit menu, paste with the Edit Menu, undo with Edit menu

· Cut text with the context menu, paste with the context menu, undo with context menu

· Cut text with Ctrl+X, paste with Ctrl+V, undo with Ctrl+Z
Open Windows Paint, draw with any tool, select all the drawing and copy to Clipboard, then Atl+Tab back to Notepad
· Delete text with Edit menu, use Ctrl+V to verify delete placed no text on Clipboard, undo with Edit menu

· Delete text with context menu, use Ctrl+V to verify delete placed no text on Clipboard, undo with context menu

· Delete text with Del key, use Ctrl+V to verify delete placed no text on Clipboard undo with Ctrl+Z
Test series 4 - Tests primary functions 4, 5, 6, 7 and the balance of 10
Create a new file with several long lines of words of varying length separated by spaces.
· Toggle Word Wrap and verify

· Change font size/style and verify (selections available may be printer dependent)

· Invoke Print using File menu, print hard copy and verify

· Invoke Print using Ctrl+P, cancel

· Test Find using the Edit menu

· Test Find Next using the Edit menu

· Test Replace using the Edit menu

· Invoke Find using Ctrl+F, cancel

· Invoke Find Next using F3
· Invoke Replace using Ctrl+H, cancel

Test series 5 - Tests primary function 9

· Make a copy of notepad.exe in a temporary folder

· Open the copy of notepad.exe in Notepad

· Delete several lines at the start of the file

· Close, DO NOT SAVE CHANGES

· Verify that you can still start the copy of Notepad.exe

Example CVTs

Consistency verification tests are used when you need to make sure your pass/fail results are based only on changes in the environment and not caused by the parameters you have used for the tests.

For example, Notepad can be set to display text in any font available on the test system. When some applications are installed, they may add dozens of fonts to the computer. Systems on which several such applications have been installed may have hundreds of fonts available for test #2 in series #4 of the TCO. It is possible that one of those fonts has bad code that causes Notepad to crash or lose data. But all other fonts on the system work fine. You may spend a lot of time determining that the system change is really not the cause of the problem.

To ensure that any failures you see can only be caused by a specific environment change, the CVTs tell you exactly what test data to use and what the results should be, every time.

On the other hand, you will want to use different data every time you run TCO tests. The TCO specifies only a few very high level tests, and using different data will help you find more failures.

CVTs usually have fewer tests than TCOs, because they test each primary function as few times as possible. In the Notepad example, the series #2 tests select text using six different methods. The CVT will use only one.

 NOTE: The CVTs must include at least one test for every primary function.

	Consistency Verification Tests (CVTs)

Test series 1 – Tests primary functions 1, 8, 11 and part of 10

Create a text file by entering this text:

I’m a software developer,

and I’m okay.

© Copyright - ANSI code 0169

½ fraction ½ - ANSI code 0189

ÿ ANSI code 0255
•
Save the file four times to the current user’s “My Documents” folder, using “Save as” on the File menu each time

1.
File type ANSI, name ANSI.txt

2.
File type Unicode, name Unicode.log

3.
File type big endian Unicode, name BEUnicode.ini

4.
File type UTF-8, name UTF-8.htm

•
Open each file and verify (diskedit.exe is part of the SDK tools, displays files in hex codes)

1.
Open ANSI.txt using Ctrl+O, verify only one byte per char with diskedit.exe

2.
Open Unicode.log by double-clicking it in Windows Explorer, verify with diskedit.exe, file starts with two codes bytes, then has two bytes per char, second byte for each char is “00”

3.
Open BEUnicode.ini by double-clicking it in Windows Explorer, verify with diskedit.exe, file starts with two code bytes, then has two bytes per char, first byte for each char is “00”

4.
 Open UTF-8.htm by double-clicking it in Windows Explorer, verify using the context menu in Internet Explorer (shows UTF-8 encoding used)

Test series 2 - Tests primary functions 2, 3 and part of 10

•
Open ANSI.txt

1.
Select all text with Ctrl+A, copy text with Ctrl+C, use Ctrl+End to move to end of file and paste text with Ctrl+V. All text should be duplicated below original text.

2.
Press Ctrl+Home and then Shift+End to select the entire first line. Use Cut on the Edit menu to cut the line. Use Undo on the Edit menu to replace the line. File should look unchanged from the start of this test.

3.
Click with the mouse at the dot following “okay” on the second line. Press the Del key five times to delete “okay.” Use Ctrl+V to paste Clipboard. The first line in the file should appear instead of “okay.” to verify that deleted text was not copied to the Clipboard.

Test series 3 - Tests primary functions 4, 5, 6, 7 and the balance of 10

•
Change the Notepad font to 10pt Arial. Turn Word Wrap off. Choose Status Bar on the View menu to turn the status bar on. Create a new file and enter this text on one line. Copy the line and paste it nine times, each time on a separate line:

Let me not to the marriage of true minds admit impediments.

•
Replicate the ten lines using 10pt Arial in Microsoft WordPad and keep WordPad open.

1.
Invoke Print in Notepad using Ctrl+P, print hard copy. Print hard copy from WordPad and compare to verify Notepad test.

2.
Change Notepad font to 72pt Times New Roman (TNR). Change WordPad font to 72pt TNR. Compare both applications visually on screen to verify font and size.

3.
Turn Word Wrap on, resize the Notepad window horizontally until the first line is, “Let me not to the”. Verify that the second, third and fourth lines are:

 “marriage of true”

 “minds admit”

 “impediments.”

4.
Change to 10pt TNR, turn Word Wrap off. Click at the end of line #2, verify location on status bar. Invoke Find using Ctrl+F, verify on status bar that the “admit” found is on line on line #3. Close the Find dialog box with Cancel button.

5.
Invoke Find Next using F3, verify that next “admit” found is on line #4.

6.
Invoke Replace using Ctrl+H, replace “admit” with “allow”, click Find Next and Replace, and verify that line #5, and only line #5, is now, “Let me not to the marriage of true minds allow impediments.”

Test series 4 - Tests primary function 9

1.
Make a copy of E:\Windows\notepad.exe in the current user’s “My Documents” folder.

2.
Open the copy of notepad.exe in Notepad.

3.
Delete all characters from the beginning of the file through the dot at the end of this text, “This program cannot be run in DOS mode.”

4.
Close Notepad, DO NOT SAVE CHANGES.

5.
Verify that you can still start the copy of Notepad.exe.

Example List of Contributing Functions

After you have created the list of primary functions for Notepad, any remaining functions that you found during exploration are the contributing functions. The contributing functions are listed here for your reference as you follow along with the Notepad example.

	List of Contributing Functions
· Use tabs

· Create headers and footers

· Page orientation/margins

· Goto

· View status bar -
 NOTE: This is actually the “view line number and column number at insertion point” function,
 because the line and column numbers are the only information that the status bar displays.

· Insert time/date

· Use private characters

· Append a log date/time to document (using .LOG as the first line of the document)

· Help

Appendix F
Test Case Summary

This appendix provides a comprehensive checklist of the test cases and Pass/Fail statements for each test case.

T1.1 Perform primary functionality and maintain stability

TC1.1.1 Does the application perform its primary functions and maintain stability during functionality testing?
(
Pass The application performed all its primary functions and did not crash, stop responding, or lose data.
(
Fail The application failed to perform one or more primary functions, or it crashed, stopped responding, or lost data.
TC1.1.2 Does the application remain stable when a mouse with more than three buttons was used?
(
Pass The application did not crash, stop responding, or lose data.
(
Fail The application crashed, stopped responding, or lost data as a result of executing the test for at least one mouse button.
TC1.1.3 Does the application use the user’s temporary folder for temporary files?
TC1.1.3.1 Does the application store its temporary files only in the user’s temporary folder during installation?
(
Pass No temporary folder was created and no temporary files were stored in the wrong places.
(
Fail One or more new temporary folders were created or one or more temporary files were stored in the wrong places. Record the full paths for the folders and files.
TC1.1.3.2 Does the application store its temporary files only in the user’s temporary folder during functionality testing?
(
Pass No temporary folder was created and no temporary files were stored in the wrong places.
(
Fail One or more new temporary folders were created or one or more temporary files were stored in the wrong places. Record the full paths for the folders and files.
TC1.1.4 Does the application not crash or lose data when presented with long path, file and printer names?
TC1.1.4.1 Does the application maintain stability when a file is saved by drilling down through the “User1 LFNPath1” path in User1’s “My Documents” folder?
(
Pass The application did not crash or lose the test document data.
(
Fail The application crashed or lost the test document data.
TC1.1.4.2 Does the application maintain stability when a file is saved by entering the full “User1 LFNPath2” path?
(
Pass The application did not crash or lose the test document data.
(
Fail The application crashed or lost the test document data.
TC1.1.4.3 Does the application maintain stability when a file is saved using a long file name?
(
Pass The application did not crash or lose the test document data.
(
Fail The application crashed or lost the test document data.
TC1.1.4.4 Does the application maintain stability when a file is opened by drilling down through the “User1 LFNPath1” path in User1’s “My Documents” folder?
(
Pass The application did not crash or lose the test document data.
(
Fail The application crashed or lost the test document data.
TC1.1.4.5 Does the application maintain stability when a file is opened by entering the full “User1 LFNPath2” path?
(
Pass The application did not crash or lose the test document data.
(
Fail The application crashed or lost the test document data.
TC1.1.4.6 Does the application maintain stability when a file is opened using a long file name?
(
Pass The application did not crash or lose the test document data.
(
Fail The application crashed or lost the test document data.
TC1.1.4.7 Does the application maintain stability when printing to a printer with a long name?
(
Pass The application did not crash or lose the test document data.
(
Fail The application crashed or lost the test document data.
(
The application does not have a “print hard copy” feature. This is not a failure, but it is also very unusual. Make sure there is no printing functionality in any part of your application before you check this option.
TC1.1.5 Does the application perform primary functionality and maintain stability on a dual-processor computer?
TC1.1.6 Does the application not crash when devices it uses are not installed?
TC1.1.6.1 Does the application maintain stability when printing if no printer is installed?
(
Pass The application did not crash or lose the test document data.
(
Fail The application crashed or lost the test document data.
(
The application does not have a “print hard copy” feature. This is not a failure, but it is also very unusual. Make sure there is no printing functionality in any part of your application before you check this option.
TC1.1.6.2 Does the application maintain stability when attempting to use devices that are not installed?
(
Pass The application did not crash.
(
Fail The application crashed upon attempting to use one or more devices that were not installed. Record the names of the devices.
TC1.1.7 Does the application switch the system’s display mode back to the previous color mode, if application automatically changes to 256-color mode when it runs?
(
Pass The system color quality setting was the same after the application closed as it was before the application was started.
(
Fail The system color quality setting was “256 colors” after the application was closed.
T1.2 Any kernel-mode drivers that the application installs must pass verification testing on Windows XP x64
TC1.2.1 Do all related kernel-mode drivers pass testing as Windows XP x64 loaded them?
(
Pass All kernel-mode drivers passed initial load tests.
(
Fail At least one kernel-mode driver failed initial load tests.
(
The application does not install kernel-mode drivers. This is not a failure.
TC1.2.2 Do all related kernel-mode drivers pass functionality testing with standard kernel testing enabled?
(
Pass All kernel-mode drivers passed verifications during functionality testing.
(
Fail At least one kernel-mode driver failed verifications during functionality testing.
(
The application does not install kernel-mode drivers. This is not a failure.
TC1.2.3 Do all related kernel-mode drivers pass low-resources simulation testing?
(
Pass All kernel-mode drivers passed verifications during low-resources testing.
(
Fail At least one kernel-mode driver failed verifications during low-resources testing.
(
The application does not install kernel mode drivers. This is not a failure.
T1.3 Any device or filter drivers included with the application must pass Windows HCT testing

TC1.3.1 Are proofs of WHQL testing attached to the submission for all required drivers?
(
Pass All device and filter drivers have been tested by WHQL.
(
Fail At least one device and filter driver has been tested by WHQL
(
The application does not install drivers that require WHQL testing. This is not a failure.
TC1.3.2 Do no warnings appear about unsigned drivers during testing?
(
Pass No unsigned driver warnings appeared during any testing.
(
Fail At least one unsigned driver warning appeared during any testing. Record the name of the driver.
T1.4 Perform Windows version checking correctly

TC1.4.1 Does the application install correctly under current and future versions of Windows?
(
Pass The application successfully installed on the future version of Windows, or it appropriately blocked the installation without hanging, crashing or losing data.
(
Fail The application displayed an inappropriate version error message, hung, crashed or lost data during the installation.
TC1.4.2 Does the application perform all functionality tests correctly under current and future versions of Windows?
(
Pass The application passed all functionality tests on the future version of Windows, or it appropriately blocked some or all tests without hanging, crashing or losing data.
(
Fail The application displayed an inappropriate version error message, hung, crashed or lost data during functionality testing.
(
The application blocks functionality for future versions as documented. This is not a failure.
T1.5 Support Fast User Switching

TC1.5.1 Does the application properly support Fast User Switching?
(
Pass The application passed all CVTs as User2; or the application blocked User2 from starting the application; or the application blocked User2 from executing specific functionality.
(
Fail The application failed some functionality testing, or incorrectly blocked User2 from starting the application.
TC1.5.2 Does the application properly support Remote Desktop?

(
Pass The application passes all CVTs as the remote desktop user, or the application blocked the remote desktop user from starting the application; or the application blocked the remote desktop user from executing specific functionality

(
Fail The application failed some functionality testing, or incorrectly blocked the remote desktop user from starting the application

TC1.5.3 If the application installs a replacement GINA, does the GINA propely support Remote Desktop?

(
Pass The replacement GINA adheres to the current Winlogon APIs and functions properly.
(
Fail The replacement GINA does not adhere to the current Winlogon APIs or does not function properly.
T1.6 Support new visual styles

TC1.6 Does the application pass all functionality tests with a Windows XP x64 theme applied?
(
Pass The application did not lose functionality or usability when one of the new visual styles was selected.
(
Fail The application lost some functionality or usability when one of the new visual styles was selected.
T1.7 Support switching between tasks

TC1.7.1 Does the application display normally and not lose data when focus is switched among other applications with Alt+Tab?
(
Pass No data was lost when switching among applications and all applications displayed normally.
(
Fail Data was lost data switching among applications or some display irregularities appeared.
TC1.7.2 Does the application display normally and not lose data when Windows logo key and the taskbar are used to switch among applications?
(
Pass No data was lost when switching among applications and all applications displayed normally.
(
Fail Data was lost data switching among applications or some display irregularities appeared.
TC1.7.3 Does the Windows Security dialog box or the Task Manager display normally and can the application be cancelled or closed without losing data?
(
Pass Everything displayed normally and the application did not lose data when canceling the Windows Security dialog box or closing the Task Manager.
(
Fail Something displayed abnormally, or a dialog could not be closed, or the application could not be restored or lost data when canceling the Windows Security dialog box or closing the Task Manager.
T2.1 Do not attempt to replace files protected by Windows File Protection

TC2.1 Does the installation finish without any Windows File Protection messages appearing?
(
Pass The installation completed and no WFP dialogs appeared.
(
Fail At least one WFP dialog appeared during the installation. Write down the name of each file WFP had to replace. You may need to look in the System and Application logs using the Event Viewer to find the names of the files.
T2.2 Support upgrades to next Service Pack of Windows
TC2.2.1 Does the application perform all functionality tests correctly under service pack version of Windows?

(
Pass The application successfully ran on the Service Packed version of Windows, or it appropriately blocked the startup of the application without hanging, crashing or losing data.

(
Fail
The application displayed an inappropriate version error message, hung, crashed or lost data during the running of the application

(The application blocks functionality for service packed versions as documented.

 This is not a failure.
T2.3 Do not overwrite non-proprietary files with older versions

TC2.3.1 Does the application not overwrite non-proprietary files with older versions?
(
Pass The application did not overwrite any non-proprietary files with older versions.
(
Fail At least one non-proprietary was overwritten with an older version. Record the file name and versions for each file.
TC2.3.2 Do all application executable files have file version, product name and company name information?
(
Pass All executable files the application installs have version number, product name and company name information.
(
Fail At least one executable file the application installs is missing version number, product name, or company name information. Record the names of the files that are missing information.
T2.4 Do not require a reboot inappropriately

TC2.4.1 Does the installation finish without requiring a reboot?
(
Pass During installation, the application did not require or suggest a reboot, or it prompted for a reboot and one or more reasons detailed in the Specification requirement 2.4 are documented.
(
Fail During installation, the application prompted for a reboot and no reasons are documented; or the reasons documented are not allowed by the Specification; or the application rebooted without giving the user the option to postpone the reboot (even if the documented reasons are allowed by the Specification).
TC2.4.2 Can all Test Framework testing be completed without application requiring a reboot?
(
Pass During functionality testing, the application did not require or suggest a reboot, or it prompted for a reboot and one or more reasons detailed in the Specification requirement 2.4 are documented.
(
Fail During functionality testing, the application prompted for a reboot and no reasons are documented; or the reasons documented are not allowed by the Specification; or the application rebooted without giving the user the option to postpone the reboot (even if the documented reasons are allowed by the Specification).
T2.5 Install to Program Files by default

TC2.5 Does the application offer a default installation folder under “E:\Program Files?” (or Program Files (x86))
(
Pass Both “E:” and “Program Files” (or Program Files (x86)) appeared in the default installation path.
(
Fail “E:” and/or “Program Files” (or Program Files (x86)) was missing from the default installation path. Write down the actual default path the application used or offered you.
T2.6 Install any shared files that are not side-by-side to the correct locations

TC2.6 Does the application install shared files only to correct locations?
(
Pass Either all shared files are installed in the correct locations, or there are no shared files.
(
Fail At least one shared file was not stored in the correct location. Record the full path and name of each incorrectly installed file.
T2.7 Support Add or Remove Programs properly

TC2.7.1 Does installation add an uninstall to the Add or Remove Programs utility?
(
Pass The application added all the required information to the registry.
(
Fail Some required information is missing or appears to be incorrect.
TC2.7.2 Does uninstalling application as Owner remove and leave all the correct files and registry settings?
(
Pass The application removed and left all the correct files and registry settings.
(
Fail The application did not remove everything it should have (and there are no exemptions for the data), or the application removed user-created data without prompting the user for permission, or the application left user settings and preferences data without providing an option to completely remove them.
TC2.7.3 Does uninstalling application as User1 either degrade gracefully or both remove and leave all the correct files and registry settings?
(
Pass Either the application degraded gracefully (and did not allow User1 to uninstall it), or it both removed and left all the correct files and registry settings.
(
Fail The application failed to completely uninstall because User1 is a Limited User and the application did not degrade gracefully, or it did not remove everything it should have, or the application removed user-created data without prompting the user for permission, or the application left user settings and preferences data without providing an option to completely remove them.
TC2.7.4 Can the application be reinstalled after uninstalling it?
(
Pass The application can be installed without problems.
(
Fail The application could not be fully reinstalled, or Owner’s preferences and settings were not fully retained.
T2.8 Support “All Users” installations

TC2.8.1 Does the application default to an “all users” installation or provide an “all users” installation as an option when installed by Owner?
(
Pass The application successfully installed using one of the accepted “all users” installation options.
(
Fail The application either could not be installed for all users, or it did not offer “all users” as the default option.
TC2.8.2 Does the application default to an “all users” installation or provide an “all users” installation as an option when installed by User1?
(
Pass Either User1 installed the application successfully for “all users” or the installer degraded gracefully and did not install any files on the system.
(
Fail Either User1 was able to install the application for User1 only, or the installation failed and did not degrade gracefully and/or installed some files on the system.
T2.9 Support Autorun for CDs and DVDs

TC2.9.1 Does the application’s installer start by way of Autorun?
(
Pass The application’s installation started using Autorun.
(
Fail The application’s installation did not start automatically.
(
The application is not installed from CD/DVD.
TC2.9.2 Does the application’s installer correctly detect that application is already installed and avoid restarting the installation?
(
Pass The application’s installer did not try to reinstall the application
(
Fail The application’s installer restarted the installation process as if the application was not already installed.
(
The application is not installed from CD/DVD.
T3.1 Default to the correct location for storing user-created data

TC3.1.1 Does the application offer a correct location for opening User1’s user-created data?
(
Pass The application uses a correct default location.
(
Fail The application used an incorrect default location. Record the full path the application used.
TC3.1.2 Does the application offer a correct location for saving User1’s user-created data?
(
Pass The application uses a correct default location.
(
Fail The application used an incorrect default location. Record the full path the application used.
TC3.1.3 Does the application offer a correct location for opening User2’s user-created data?
(
Pass The application uses a correct default location.
(
Fail The application used an incorrect default location. Record the full path the application used.
TC3.1.4 Does the application offer a correct location for saving User2’s user-created data?
(
Pass The application uses a correct default location.
(
Fail The application used an incorrect default location. Record the full path the application used.
T3.2 Classify and store application data correctly

TC3.2.1 Does the application store less than 128K of application data in the registry for User1?
(
Pass The application saved less than 128K of application data in the registry.
(
Fail The application saved more than 128K of application data in the registry.
TC3.2.2 Does the application store configuration data for User1 only in acceptable folders?
(
Pass The application stored configuration data for User1 in acceptable folders (or stored no configuration data in folders).
(
Fail The application stored User1 configuration data in unacceptable locations. List the locations and file names.
T3.3 Deal gracefully with access-denied scenarios

TC3.3.1 Does the application prevent User1 from saving to the Windows system folder, E:\Windows?
(
Pass The application prevented User1 from saving the file with a meaningful message and did not hang, crash or lose the test document.
(
Fail The application allowed User1 to save the file, or it prevented the save but did not display meaningful message, or it hung, crashed or lost the test document.
TC3.3.2 Does the application prevent User1 from modifying documents owned by User2?
(
Pass The application prevented User1 from saving the file with a meaningful message and did not hang, crash or lose the test document.
(
Fail The application allowed User1 to save the file, or it prevented the save but did not display meaningful message, or it hung, crashed or lost the test document.
TC3.3.3 Does the application prevent User1 from modifying system-wide settings?
(
Pass The application prevented User1 from making system-wide changes.
(
Fail The application allowed User1 to system settings changes that User1 was blocked from making from outside the application.
(
Does not apply. The application has no functionality that allows users to make system settings changes.
TC3.3.4 Does the application’s installer either allow User1 to install application or degrade gracefully if the installation fails?
(
Pass Either User1 was able to install the application, or the application gave User1 an appropriate dialog and degraded gracefully.
(
Fail The application either failed to install so CVTs failed, or the application did not degrade gracefully.
T3.4 Support running as a Limited User

TC3.4 Does the application support running as User1, a Limited User?
(
Pass All primary function tests succeeded with User1 running the application.
(
Fail One or more primary functions failed with User1 running the application, and the failure was caused by insufficient privileges.
Glossary

Analyzer The VeriTest-Rational Installation Analyzer tool, which is available from http://www.veritest.com/mslogos/windows2000/.

base test environment – The initial environment, described in the “Windows XP x64 Testing Environment” section of this Test Framework, with Windows XP x64 installed and additional special settings that support Framework test cases.

baseline A snapshot of registry settings and files installed/saved on local hard drives. Windiff is used to compare two baselines to produce a comparison report that shows any changes in the registry and files on the system.

comparison report A report created by using Windiff comparing two baselines, that shows any changes in the registry and files on the system.

common dialog box The dialog supplied by an application that allows users to browse for files to open and save, invoked by choosing Open, Save, or Save As on the File menu in many Windows applications.

consistency verification tests (CVTs) A set of tests that consistently exercises all primary functionality of a test application. CVTs are used to verify that the application performs as expected after changing environment parameters.

crash, crashes For this Test Framework, when the application crashes, it stops responding and may lose data. A failure that does not cause loss of data, displays a message that allows a user to understand what went wrong and tells the user how to avoid the problem in the future, and allows the user to continue running the application or close it, is not considered a “crash.”

CSIDL The prefix for a set of manifest constants, defined in the windows.h include file, used by the Win32 API functions SHGetFolderPath and SHGetSpecialFolderPath to get the special paths to folders such as “Program Files” (CSIDL_PROGRAM_FILES) and “My Documents” (CSIDL_PERSONAL) which may not have the same names and locations for all users in all locales on Windows XP x64 systems.

CVTs See “consistency verification tests.”

degrade gracefully In this Test Framework, an application that encounters a problem such that it cannot fulfill the functionality the user requested degrades gracefully if it does not stop responding, does not cause Windows to stop responding, and does not lose any of the user’s data. An application that degrades gracefully also presents a dialog box or other visual cue with a meaningful message explaining what happened and perhaps how the user can take steps to avoid the problem.

exploratory testing Testing performed using the methodology described in the Windows Applications Exploratory Test Procedure to identify primary functionality in the test application, locate specific areas of the application that may be impacted by Specification requirements, and create a set of consistency verification tests (CVTs). The Windows Applications Exploratory Test Procedure is part of the Windows XP x64 Application Compatibility Toolkit, available at http://msdn.microsoft.com/compatibility.

fail, failure Outcome of a test that indicates the test application does not comply with one or more requirements for the “Designed for Windows XP x64” Logo.

Framework “Designed for Microsoft Windows XP x64” Application Test Framework, this document.

Hardware Compatibility List The list of all computers and peripherals that have passed Microsoft compatibility testing on Windows XP x64. The most current HCL is available at http://www.microsoft.com/hcl/default.asp.

HCL See “Hardware Compatibility List”

HKCU The HKEY_CURRENT_USER registry hive.

HKLM The HKEY_LOCAL_MACHINE registry hive.

LFN – See “long file name” and “long path name.”

long file name A file name used to test applications for compliance with the Windows XP x64 file system naming convention. Windows XP x64 allows file names that are up to MAX_FILE characters long, may contain most printable characters, and may contain multiple spaces and periods (dots) .

long path name – A path name used to test applications for compliance with the Windows XP x64 file system naming convention. Windows XP x64 allows paths that are up to MAX_PATH characters long, may contain most printable characters, and may contain multiple spaces and periods (dots).

MAX_FILE A manifest constant defined in the windows.h include file. The current value assigned to MAX_FILE is 255.

MAX_PATH A manifest constant defined in the windows.h include file. The current value assigned to MAX_PATH is 260.

pass Outcome of a test that indicates the test application complies with one or more requirements for the “Designed for Windows XP x64” Logo.

primary functionality The functions in an application that are so important that, in the estimation of a normal user, their inoperability or impairment would render the product unfit for its purpose. See the Windows Applications Exploratory Test Procedure for a detailed explanation.

run tests, running tests In this Test Framework, performing the steps described in a test case.

safe build – In this Framework, a version of Windows, other than Windows XP x64, that is installed on drive F. The test engineer can boot to the safe build to reformat drive E and drive F and install Windows XP x64 on drive E, or to investigate test issues outside the Windows XP x64 base test environment.

side-by-side sharing File/function sharing in Windows XP x64, Windows XP, Windows 2000, Windows Me and Windows 98 Second Edition that enables multiple versions of the same DLL to run at the same time.
stability - The ability of an application to continue to function, over time and over its full range of use, without failing or causing failure in other applications or the operating environment. See the Windows Applications Exploratory Test Procedure for a detailed explanation.

Specification “Designed for Microsoft Windows XP x64” Application Specification,” upon which this Test Framework is based.

TCO See “test case outline.”

test See “test case.”
test application All components of an application being tested for the “Designed for Windows XP x64” Logo.

test case Description of the steps a test engineer must take to verify that the application passes or fails a Specification requirement. Some requirements have several parts and this Framework specifies a test case for each part. The test engineer organizes all of the test cases into one or more test passes as part of a test plan unique to each application.

test case outline (TCO) A brief, high-level description of tests performed using the methodology described in the Windows Applications Exploratory Test Procedure. Unlike CVTs, tests described in the TCO do not require consistent data and results, so test engineers may exercise primary functionality differently on each test pass, which can help find new issues when several test passes can be run.

test engineer The person or team who creates the test plan for a test application (based on this Test Framework), assembles the test environment hardware and software, executes the tests in the test plan, and reports results of the tests.

Test Framework “Designed for Microsoft Windows XP x64” Application Test Framework, this document.

test pass A set of test cases organized for efficient testing, based on the unique test plan for each application. Most test plans requires several test passes.

test plan The set of all tests created, based on the test descriptions in this Test Framework, that determine if a test application complies with all requirements of the “Designed for Microsoft Windows XP x64” Application Specification. The test plan specifies the test case sequence, and may use several test passes to execute all necessary test cases.

tester See “test engineer.”

theme See “visual style.”

visual style A user selectable visual configuration provided in Windows XP x64 that includes a color scheme, fonts, font sizes, and wallpaper settings, as well as the way controls, window borders, and menus are drawn.

© 2005 Microsoft Corporation. All rights reserved.

