Windows Logo Program

Guidelines for products that work well with the Microsoft® Windows® XP operating systems

“Designed for Microsoft Windows XP x64” Application Specification

[image: image1.png]

Version 2.3
March 11, 2005

[image: image2.jpg]g

Designed for

Windows®XP,
Windows®XP
x64 Edition

[image: image3.jpg]x64 Edition

Portions of this document specify software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of final documentation or software. Microsoft assumes no responsibility for any damages that might occur directly or indirectly from these inaccuracies.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties or merchantability, fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented. This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, MSDN, Windows, the Windows logo, Active Accessibility, DirectX, Direct3D, DirectDraw, DirectSound, DirectInput, IntelliMirror, Win32, Win64, x64 and Windows NT, are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

© 1998 - 2005 Microsoft Corporation. All rights reserved.

Revision History

	Date
	Changes from Application Specification Version 2.3

	March 3, 2005
	Revised to support Microsoft Windows XP x64. Temporarily removed Optimized and Future Guidelines sections.

	Date
	Changes from Application Specification Version 2.2

	January 2, 2002
	Added section S5 “Optimized for Enterprises"

	January 2, 2002
	Revised Section S4.0 "Optimized for .NET"

	January 2, 2002
	Renamed "Best Practices" sections to "Optimized for"

	Date
	Changes From Application Specification Version 2.1

	September 12, 2001
	Reference the Application Compatibility Toolkit for the tools to use for the Logo Program

	September 12, 2001
	Clarified Section 1.1: 3 mouse buttons

· Must not crash when a mouse with more than three buttons is used. You do not need to use all the buttons in your application

	September 12, 2001
	Dual Proc testing not a requirement (Section 1.1)

	September 12, 2001
	Do not need to submit documents about your application when submitting your application for the Windows Logo Program

	September 12, 2001
	Clarification of Section 1.6 Visual Styles
· You do not need to use the new themes/visual styles that XP provides, your application just cannot crash/lose functionality when these styles are used

	September 12, 2001
	.NET Passport Aware (Section S2.7) rolled into Optimized for .NET section

	September 12, 2001
	Insert DFW – Optimized for .NET Section (Beta requirements). This will be under Section 2, titled S4.0 Optimized for .NET

	September 12, 2001
	Renamed sections of the Supplemental sections:

	September 12, 2001
	Rename S4.0 “Future Requirements” to F1.0 “Future Requirements”

	October 12
	Adding section S5 “Optimized for Enterprises"

	October 30, 2001
	In section S5, added Heap use, Critical Section use, Handle Check use, and code signing requirements (code signing will not take affect immediately).
Moved the no NULL DACL requirement to the future requirements section

	April 2, 2002
	Replaced section S3 with revised version of the Optimized for Accessibility requirements.

Contents

5Welcome

7Resources

8Windows XP x64 Logo Requirements List

9Section 1: Logo Requirements

101.0 Windows Fundamentals

10Summary of Windows Fundamental Requirements

10Windows Fundamentals Requirements

222.0 Install/Remove

22Summary of Installation Requirements

22Install/Remove Requirements

363.0 Data and Settings Management

36Summary of Data Requirements

36Data and Settings Management Requirements

45Glossary

Welcome

The “Designed for Microsoft Windows XP x64” Application Specification describes the technical requirements for applications to earn the "Designed for Microsoft Windows XP x64" logo. Section 1: Logo Requirements in this document provides basic information on the logo program.
These are the top reasons that your customers benefit from an application that meets this compatibility specification:

· The installation and removal of the application are similar to other applications with which the user is familiar.

· Application installation and application execution are less likely to interfere with other applications that the user has already installed.

· The user’s first experience with an application is improved because unnecessary reboots are eliminated.

· The application is unlikely to cause the user’s computer to fail or function improperly.

· The application makes it easier for family or friends to share a personal computer.

· The application runs in a tightly controlled environment to enable parents to secure the computer but still allow children to run applications, or enable Information Technology professionals to secure the computer properly.

· The application runs correctly on Microsoft® Windows XP x64, reducing customer frustration and reducing support calls.

“Designed for Microsoft Windows XP x64” Logo program

The technical requirements defined in “Designed for Microsoft Windows XP x64” Application Specification form the base requirements for applications that are eligible to earn the “Designed for Microsoft Windows XP x64” logo. This logo tells customers that your application provides a high-quality computing experience on the Windows XP x64 operating system.
An application that is fully compliant with the requirements in this document may carry the “Designed for Microsoft Windows XP x64” logo after:

· The application has passed self-testing on Windows XP x64 Professional Edition.

· Your company has completed a Logo License Agreement with Microsoft for that specific application on https://winqual.microsoft.com.

· Your company has submitted a copy of the application to Microsoft.

For more information about self-testing, what you need to submit to Microsoft, and tools to aid in compliance testing, see http://www.microsoft.com/winlogo/software/, or send email to swlogo@microsoft.com.
“Designed for Microsoft Windows XP x64” Logo – Optimized Status

If an application meets the core requirements the product has earned the right to carry the Designed for Windows XP x64 logo. If the product meets the core requirements, plus an additional set of requirements (only those requirements which apply to your application), the product will have achieved Designed for Windows XP x64 – Optimized status. Customers will see only the Designed for Windows XP x64 logo, but there are additional marketing benefits for those products that achieve this status.

The Designed For Windows XP x64 - Optimized section in this document includes valuable additional guidelines, but it is not required that applications comply with these guidelines to achieve the “Designed for Windows XP x64” logo. Products that meet the core logo requirements in addition to all of the requirements (which apply to your product) under one of five possible Optimized sections will be granted additional marketing benefits from Microsoft (e.g. better placement in the Windows Catalog and other partner opportunities).
Note: Your product can meet the Optimized requirements in one or more of the Optimized sections. The more Optimized requirements your product meets, the more marketing benefits you will receive.
Additional Logo Options

Applications may qualify for use of “Designed for Windows XP x64” logo or any the following logos that include additional Windows versions: Windows 98, Windows ME, Windows NT, or Windows 2000. To use any logo, your application must have been fully tested on Windows XP x64 and passed all of the “Designed for Windows XP x64” requirements.
If you choose a logo with multiple operating systems listed, your application must also install and perform all of its primary functionality on each of the additional Windows versions. Note that “Windows XP x64” is always included in any version of the logo.
[image: image4.jpg]g

Designed for

Windows®XP,
Windows®XP
x64 Edition

 
For more information about branding your products with the “Designed for Windows XP x64” logo, please see Exhibit A to the “Designed for Microsoft Windows” logo license agreement.
Resources

	Windows Logo Program Website
	http://www.microsoft.com/winlogo

	Application Compatibility Toolkit (including Application Verifier)
	http://www.microsoft.com/winlogo/downloads/tools.asp

	“Designed for Windows XP x64” for software developers
	http://www.microsoft.com/winlogo/software

	“Designed for Windows XP x64” support email
	swlogo@microsoft.com

	“Certified for Windows” logo program
	http://msdn.microsoft.com/certification

	Developer information
	http://msdn.microsoft.com/windows

	Application compatibility Information
	http://msdn.microsoft.com/compatibility

	Knowledge Base
	http://www.microsoft.com/support

	Microsoft Platform SDK (Software Developer Kit)
	Win32® and Win64™ application programming interfaces (APIs) - http://msdn.microsoft.com/downloads/

	MSDN 64-bit Windows Programming
	http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/64bitwindows.asp

	Gearing up for 64-Bit Computing Webcasts
	http://www.microsoft.com/events/series/msdn64bitwin.mspx

	Microsoft Windows XP Professional x64 Edition
	http://www.microsoft.com/windowsxp/64bit/default.mspx

Windows XP x64 Logo Requirements List

1.0 Windows Fundamentals

1.1
Perform primary functionality and maintain stability
1.2
Any kernel-mode drivers that the application installs must pass verification testing on Windows XP x64
1.3
Any device or filter drivers included with the application must pass Windows HCT testing
1.4
Perform Windows version checking correctly
1.5
Support Fast User Switching and Remote Desktop
1.6
Support new visual styles
1.7
Support switching between tasks
2.0 Install/Remove
2.1
Do not attempt to replace files that are protected by Windows File Protection
2.2
Support upgrades to next Service Pack of Windows
2.3
Do not overwrite non-proprietary files with older versions
2.4
Do not require a reboot inappropriately
2.5
Install to Program Files by default (or Program Files x86)
2.6
Install any shared files that are not side-by-side to the correct locations
2.7
Support Add or Remove Programs properly
2.8
Support "All Users" installs
2.9
Support Autorun for CDs and DVDs
3.0 Data and Settings Management
3.1
Default to the correct location for storing user-created data
3.2
Classify and store application data correctly
3.3
Deal gracefully with access-denied scenarios
3.4
Support running as a Limited User
Section 1: Logo Requirements

These three subsections define the technical requirements for applications to earn the “Designed for Microsoft Windows XP x64” logo.

1.0 Windows Fundamentals

2.0 Installation Requirements

3.0 Data and Settings Management

1.0 Windows Fundamentals

Summary of Windows Fundamental Requirements

Customer Benefits

Customers can be confident that a compliant product will execute on Microsoft® Windows XP x64 and will not adversely affect the reliability of the operating system.

List of Windows Fundamentals Requirements

1.1
Perform primary functionality and maintain stability
1.2
Any kernel-mode drivers that the application installs must pass verification testing on Windows XP x64
1.3
Any device or filter drivers included with the application must pass Windows HCT testing
1.4
Perform Windows version checking correctly
1.5
Support Fast User Switching and Remote Desktop
1.6
Support new visual styles
1.7
Support switching between tasks
References

General Functionality and Stability Test Procedure for the “Certified for Microsoft Windows” Logo
http://msdn.microsoft.com/certification/download.asp
Using Driver Verifier tool
http://www.microsoft.com/hwdev/driver/verifier.htm
Application Compatibility Toolkit
http://www.microsoft.com/winlogo/downloads/tools.asp

Windows Fundamentals Requirements

1.1
Perform primary functionality and maintain stability

The application must perform its primary functions without compromising the stability of the operating system or the application.

NOTE The following bullets mention “crash” in several places. For this document, a crash is considered to be an application failure that prevents the user from continuing with the application. A crash may or may not cause data loss. A failure within the application will not be considered a crash if it meets all 3 of the following conditions:
a) does not cause loss of data,
b) displays information that would allow a typical user to understand what went wrong and how to avoid the problem in the future
c) allows the user to continue running the application or close it.

EXAMPLE Performing primary functions without compromising stability:

· If the application creates, edits, and saves multi-page documents, it must not crash or stop responding, and it must not lose the user's data when he or she creates, edits, saves, or opens documents up to the maximum size that you specify.

· If the application displays information about the folders on the user’s hard drive, it must not crash or destroy data if the user performs any of the menu functions in the application, such as creating new folders, moving them, or renaming them.

Users must be able to use system features supported by Windows XP x64 with the application. You should test for all of the following:

· Windows XP x64 supports mice with more than three buttons. The application must not crash, stop responding, or lose data when the user presses any button on a supported mouse. (Note: This does not mean your application needs to use more than three buttons. It just cannot crash when a mouse with more than three buttons is used on the system)
· The application must not search for Windows XP x64 system files or temporary folders to be on any particular drive letter by default or assume that it has any maximum or minimum size. Windows XP x64 may be installed on drive letters other than C or D. The C or boot drive can be quite small, under 100 megabytes (MB).

· File and printer names can be long, and Windows supports many characters in these names. The application must not crash or lose data if a user attempts to use long file or printer names.

(Note: It is acceptable to block this action and warn the user when he or she attempts this. “S4.0 Future Requirements” explains how to go beyond this to full support of long path and printer names)
· Windows XP Professional x64 can support more than one processor. The application must operate as well on a dual-processor computer as it does on a single-processor computer. (Note: This is strongly recommended. Running on a dual processor computer is not a requirement for obtaining the DFW logo.)
· If the application uses devices, it must not crash if a device is not installed.

For example, if a user tries to print when a Printer, Fax, or other output device is not installed, the application must degrade gracefully.

· Windows XP x64 does not have an easily user-selectable 256-color mode. If the application requires 256-color mode, the application must switch modes automatically on entry and exit of the application.

Implementation Details – 1.1

Debugging WOW64
Applications running under WOW64 can be debugged two ways:

· Use an x86-hosted debugger, like NTSD, WinDBG, or Visual Studio®. The 32-bit NTSD is installed to %systemroot%\syswow64 on retail installs. Note that x86 debuggers can be used to debug x86 code, but cannot disassemble or set breakpoints within the WOW64 thunk layer because it is 64-bit native code.

· Use a native debugger, like NTSD or WinDBG, and the WOW64 debugger extensions. The extensions (Wow64exts.dll and W64cpuex.dll) are installed with the operating system. If the native debugger breaks while the processor is in x86 mode, the debugger presents the process as an x86 process. If the processor is in native mode, the debugger presents the process as native. The !wow64exts.sw command switches the debugger between the two modes.
Debugging Tools for Windows 64-bit Version
The 64-bit versions of Debugging Tools for Windows allow you to debug both 32-bit and 64-bit user-mode applications running on 64-bit processors. Use the following package to debug both the application and the WOW64 emulator. http://www.microsoft.com/whdc/devtools/debugging/install64bit.mspx

For more information about primary functions and stability, see the ”Designed for Microsoft Windows XP x64” Application Test Framework, located at http://www.microsoft.com/winlogo/downloads/software.asp.
Test Cases – 1.1

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC1.1.1
Does application perform its primary functions and maintain stability during functionality testing?

TC1.1.2
Does application remain stable when a mouse with more than three buttons was used?

TC1.1.3
Does application use the user’s temporary folder for temporary files?

TC1.1.3.1
Does application store its temporary files only in the user’s temporary folder during installation?

TC1.1.3.2
Does application store its temporary files only in the user’s temporary folder during functionality testing?

TC1.1.4
Does application not crash or lose data when presented with long path, file and printer names?

TC1.1.4.1
Does application maintain stability when a file is saved by drilling down through the “User1 LFNPath1” path in User1’s “My Documents” folder?

TC1.1.4.2
Does application maintain stability when a file is saved by entering the full “User1 LFNPath2” path?

TC1.1.4.3
Does application maintain stability when a file is saved using a long file name?

TC1.1.4.4
Does application maintain stability when a file is opened by drilling down through the “User1 LFNPath1” path in User1’s “My Documents” folder?

TC1.1.4.5
Does application maintain stability when a file is opened by entering the full “User1 LFNPath2” path?

TC1.1.4.6
Does application maintain stability when a file is opened using a long file name?

TC1.1.4.7
Does application maintain stability when printing to a printer with a long name?

TC1.1.5
Does application perform primary functionality and maintain stability on a dual-processor computer?

TC1.1.6
Does application not crash when devices it uses are not installed?

TC1.1.6.1
Does application maintain stability when printing if no printer is installed?

TC1.1.6.2
Does application maintain stability when attempting to use devices that are not installed?

TC1.1.7
Does application switch the system’s display mode back to the previous color mode, if application automatically changes to 256-color mode when it runs?

1.2
Any kernel-mode drivers that the application installs must pass verification testing on Windows XP x64
Poorly written kernel-mode drivers have the potential to crash the system. Therefore, it is critical that any application that includes kernel-mode drivers, such as backup, copy protection and compact disc (CD) burning products, be thoroughly tested to minimize this risk.

If the application includes any kernel-mode drivers, each of these drivers must pass validation testing under the Windows Driver Verifier Manager tool (Verifier.exe). That is, Driver Verifier must not report any stop error messages, or otherwise cause system instability, while exercising the system and your application with Driver Verifier installed on your kernel-mode components.

You are responsible for ensuring that all components provided with your application meet this requirement.

Implementation Details – 1.2

Porting Your Driver to 64-Bit Windows

The 64-bit version of Microsoft Windows is designed to make it possible for developers to use a single source-code base for their 32-bit- and 64-bit applications. To a large extent, this is also true for 32-bit and 64-bit Windows drivers.

For user-mode applications, 64-bit Windows includes a Windows on Windows (WOW64) thunking layer that enables 32-bit applications to execute (with some performance degradation) on 64-bit systems. It does this by intercepting 32-bit function calls and converting pointer-precision parameter types to fixed-precision types as appropriate before making the transition to the 64-bit kernel. This conversion process is called thunking.

Note This thunking is only done for 32-bit applications; 32-bit drivers are not supported on 64-bit Windows.

Supporting 32-Bit I/O in Your 64-Bit Driver

Windows on Windows (WOW64) enables Microsoft 32-bit user-mode applications to run on 64-bit Windows. It does this by intercepting 32-bit function calls and converting parameters from pointer-precision types to fixed-precision types as appropriate before making the transition to the 64-bit kernel. This conversion, which is called thunking, is done automatically for all 32-bit functions, with one important exception: the data buffers passed to DeviceIoControl. The contents of these buffers, which are pointed to by the InputBuffer and OutputBuffer parameters, are not thunked, because their structure is driver-specific.

Note Although the buffer contents are not thunked, the buffer pointers are converted into 64-bit pointers.

User-mode applications call DeviceIoControl to send an I/O request directly to a specified kernel-mode driver. This request contains an I/O control code (IOCTL) or file system control code (FSCTL) and pointers to input and output data buffers. The format of these data buffers is specific to the IOCTL or FSCTL, which in turn is defined by the kernel-mode driver. Because the buffer format is arbitrary, and because it is known to the driver and not WOW64, the task of thunking the data is left to the driver.

Your 64-bit driver must support 32-bit I/O if all of the following are true:

· The driver exposes an IOCTL (or FSCTL) to user-mode applications.

· At least one of the I/O buffers used by the IOCTL contains pointer-precision data types.

· Your IOCTL code cannot easily be rewritten to eliminate the use of pointer-precision buffer data types.

What's Changed

On 32-bit Windows, the integer, long, and pointer data types are all the same size—32 bits. This convenient uniformity in data type sizes has been a boon to clever C programmers, many of whom have come to take it for granted.

On 64-bit Windows, however, this assumption of uniformity is no longer valid. Pointers are now 64 bits in length, but integer and long data types remain the same size as before — 32 bits. This is because, while 64-bit pointers are needed to accommodate systems with as much as 16 TB of virtual memory, most data still fits comfortably into 32-bit integers. For most applications, changing the default integer size to 64 bits would only be a waste of space.

Driver Verifier is located in the \system32 directory on systems running Windows XP x64. For more information about using the Driver Verifier Tool and diagnosing driver problems, see http://www.microsoft.com/hwdev/driver/verifier.htm.

Test Cases – 1.2

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC1.2.1
Do all related kernel-mode drivers pass testing as Windows XP x64 loaded them?
TC1.2.2
Do all related kernel-mode drivers pass functionality testing with standard kernel testing enabled?
TC1.2.3
Do all related kernel-mode drivers pass low-resources simulation testing?

1.3
Any device or filter drivers included with the application must pass Windows HCT testing

If the product includes drivers for hardware devices and filter drivers, these drivers must pass the related tests provided in Windows Hardware Compatibility Test (HCT) 12.0 or later.

For certain categories of drivers, Windows XP x64 will present a warning to end users if they attempt to install a driver that does not have a digital signature from Microsoft. For any driver categories that require a digital signature, the component must be digitally signed by Microsoft.

You are responsible for ensuring that all components provided with your application meet this requirement.

Implementation Details – 1.3

For more information about the HCT and digital signatures, see http://www.microsoft.com/whdc/whql/default.mspx.

Test Cases – 1.3

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC1.3.1
Are proofs of WHQL testing attached to the submission for all required drivers?
TC1.3.2
Do no warnings appear about unsigned drivers during testing?
1.4
Perform Windows version checking correctly

The application must verify that the operating system meets the minimum version requirements for the application. The application must also install and run on all later versions of Windows.

EXAMPLE If the application requires Microsoft Windows NT® 4.0 with Service Pack 3 (SP3), version checking should allow installation on Windows NT, Major Version 4, Minor Version 0, SP3. It must also install on all operating system versions later than this number, such as Windows NT 4.0 Service Pack 4, Windows 2000, Windows XP x64, Windows XP x64 with any subsequent Service Packs, and so on.

WHEN DOES THIS APPLY?
In certain cases, it is acceptable to block installation of the application on later versions of Windows. If you choose to do this, you must display a clear message to the user when blocking installation or execution that the application is not designed for the later Windows version.

An example in which blocking installation might be appropriate is low-level disk utilities. In this case, running such an application on a Windows version for which the product was not tested for could potentially result in lost user data if there were changes in the file system on a later version of Windows.

Implementation Details – 1.4

In general, use the GetVersionEx API to determine the Windows version.

VerifyVersionInfo, a Windows API, compares a set of operating system version requirements with the corresponding values for the currently running version of Windows. There are many options and ways to use VerifyVersionInfo. However, to check whether the Windows version is new enough, call the function using the flags for checking the major version, minor version, and service pack flags.

VerifyVersionInfo is available only on Windows 2000 and later versions of Windows.

EXAMPLE Specify that “My application needs Windows 2000, with SP 1, or later” and then run VerifyVersionInfo to find out, “Is this OS that I'm running on up to that standard?” VerifyVersionInfo returns either a true or a false.

Example of flags: major version, minor version, and service pack

VerifyVersionInfo(&osvi,

 VER_MAJORVERSION |

 VER_MINORVERSION |

 VER_SERVICEPACKMAJOR,

 dwlConditionMask);

Test Cases – 1.4

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC1.4.1
Does application install correctly under current and future versions of Windows?
TC1.4.2
Does application perform all functionality tests correctly under current and future versions of Windows?
1.5
Support Fast User Switching and Remote Desktop
In Windows XP x64, the Fast User Switching feature allows multiple users sharing the same computer to have individual profiles and to swap their current work spaces without logging off. The application must not crash or lose data or settings when customers use Fast User Switching.

For example, if the first user has an editor application open and a subsequent user launches the same editor application, the first instance of the application must not shut down and must not lose any of the first user’s edits.

Remote Desktop lets you create a virtual session on your desktop computer using Microsoft’s Remote Desktop Protocol (RDP). With Remote Desktop, you can access all of the data and applications stored on your desktop computer from virtually any network connection, including a dial-up or VPN connection. In general, Remote Desktop will be supported if your application supports Fast User Switching. However, see note on Graphical Identification and Authentication dynamic link libraries (GINA’s) below.
By meeting the requirements for Data and Settings Management, your application is unlikely to have problems with Fast User Switching, except for possible conflicts with shared resources such as CD drives, printers, modems, and sound cards.

If additional instances of the application run by separate users can result in failure of primary functionality, you must do one of the following:
· Detect that it is already running under a separate user account and block the specific potentially problematic features, or

· Detect that it is already running and block all features of the application when launching subsequent instances of the application. You need to make the user who launches the second (or later) instance of the application aware that they will not be able to use the product. Please use meaningful messages.
When blocking any feature to prevent failure under Fast User Switching and Remote Desktop, the application must inform the user why it did so.

WHEN DOES THIS APPLY?
This clause applies somewhat differently for applications installing a Graphical Identification and Authentication dynamic link library (GINA). A correctly written GINA performs all identification and authentication user interactions, and by design all GINA’s replace the Windows XP x64 welcome screen and disable Fast User Switching. Applications that install a GINA must satisfy both of the following:

•
Upon installation to a computer that is not on a domain, the setup must warn the user that continuing the installation will disable Fast User Switching and replace the Windows welcome screen.

•
The GINA must work correctly with Remote Desktop

Implementation Details – 1.5

A common way to detect another running instance of the application is to use FindWindow or FindWindowEx to search for a window that the application opens.

Note that FindWindow and FindWindowEx will not find a window that is open in another user’s session. Therefore, if the application shares some global resource in an unsafe way, you will need to use a different technique to detect another instance of the application.

Another common way to detect another instance of the application is to create a mutex or semaphore when the application is opened and close it when the application exits. Unless you are using a global mutex, this technique will not find another instance of the application, if the other instance is running in another user’s session. This is because the local object namespace is separated for each desktop, allowing a unique list of mutexes and semaphores for each user’s session.

To prevent an instance of the application from running when the previous instance is in another user’s session, you need to give your mutex or semaphore a global namespace name. You do this by prefixing the object’s name with Global\. This allows you to detect instances of the application in other users’ sessions.

Note that versions of Windows other than Windows 2000, Windows XP, Windows 2003 and Windows XP x64 do not support global namespace names and will not operate correctly if you use a backslash (\) in the object name.

In previous versions of Windows, you could safely assume that FindWindow and FindWindowEx would be able to locate the other instance of the application. With Windows XP x64 and Fast User Switching, this may not be as safe.

When running on Windows XP x64 or later, your application should check to ensure that FindWindow and FindWindowEx have succeeded. If FindWindow or FindWindowEx has found the other instance, switching to that instance is the correct action.
However, if using a global mutex detects a previous instance and FindWindow or FindWindowEx is not successful, be sure to notify the user that the application is not starting because another user is already running it. Otherwise, the application will exit without giving the user any indication of why it does not work.

Replacement GINA

For Applications that install a replacement GINA, the replacement GINA must adhere to current Winlogon APIs. In Windows XP x64 there are some scenarios where not using the current Winlogon APIs breaks interface versioning & transparent cross session credential transfers. These breaks can cause failures of major Windows XP x64 features such as Remote Desktop. By design all replacement GINA’s will disable the Windows XP x64 welcome screen and Fast User Switching.
The new Winlogon APIs (Wlx APIs) that must be utilized by the replacement GINAs are WlxGetConsoleSwitchCredentials & WlxQueryConsoleSwitchCredentials. The APIs will export a new entry point to read logged on user credentials and versioning information.

Test Cases – 1.5

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC1.5.1
Does application properly support Fast User Switching?

TC1.5.2
Does application properly support Remote Desktop?

TC1.5.3
If the application installs a replacement GINA, does the GINA properly support Remote Desktop?

1.6
Support new visual styles

If the application loses functionality or usability when a user selects one of the new visual styles, you must disable the style for the application. (Note: You do not need to use the new themes/visual styles that XP provides, but the application must not crash/lose functionality when these styles are used)

Applications that are full-screen graphics typically do not need to do anything to meet this requirement, because changing the visual styles in Windows would be unlikely to have an adverse affect on the functionality or usability of the application.

Implementation Details – 1.6

To disable the new visual style for a top-level window, consider the following:

· As long as a window has a non-NULL region applied to it (SetWindowRgn), the Theme Manager assumes that this is a specialized window and the window will not use visual styles. A child window associated with a non-visual style top-level window may still apply visual styles even though the parent window does not.

· If you want to disable the use of visual styles for any top-level window in the application, call SetThemeAppProperties and do not pass the STAP_ALLOW_NONCLIENT flag.

· If an application does not call SetThemeAppProperties, the assumed flag values are STAP_ALLOW_NONCLIENT | STAP_ALLOW_CONTROLS | STAP_ALLOW_WEBCONTENT. The assumed values cause the non-client area, the controls, and Web content to have a visual style applied.

Test Cases – 1.6

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC1.6
Does application pass all functionality tests with a Windows XP x64 theme applied?
1.7
Support switching between tasks

The application must not block ALT+TAB, CTRL+ALT+DEL, CTRL+SHIFT+ESC and other task-switching scenarios. The application must not try to defeat these mechanisms in any way.

Test Cases – 1.7

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC1.7.1
Does application display normally and not lose data when focus is switched among other applications with Alt+Tab?
TC1.7.2
Does application display normally and not lose data when Windows logo key and the taskbar are used to switch among applications?
TC1.7.3
Does the Windows Security dialog box or the Task Manager display normally and can application be cancelled or closed without losing data?
2.0 Install/Remove

Summary of Installation Requirements

Customer Benefits

Customers can be confident that your product will install onto Microsoft® Windows XP x64 without degrading the operating system or other applications.

Installation Requirements List

2.1
Do not attempt to replace files that are protected by Windows File Protection
2.2
Support upgrades to next Service Pack of Windows
2.3
Do not overwrite non-proprietary files with older versions
2.4
Do not require a reboot inappropriately
2.5
Install to Program Files by default (or Program Files x86)
2.6
Install any shared files that are not side-by-side to the correct locations
2.7
Support Add or Remove Programs properly
2.8
Support "All Users" installs
2.9
Support Autorun for CDs and DVDs
Install/Remove Requirements

2.1
Do not attempt to replace files that are protected by Windows File Protection

The application must not attempt to replace any files that are protected by Windows File Protection (WFP). To ensure that the application does not invoke WFP, it should call SfcIsFileProtected when installing any file that it did not create. The Windows Installer service does this automatically.

Protected files include the following files that ship on the Windows XP x64 product CD:

· Most .SYS, .DLL, .EXE and .OCX files.

· The following fonts: Micross.ttf, Tahoma.ttf, Tahomabd.ttf, Dosapp.fon, Fixedsys.fon, Modern.fon, Script.fon, and Vgaoem.fon.

NOTE Some redistributable files, such as specific versions of Microsoft Foundation Classes (MFC) DLLs, are installed by Windows XP x64 and are protected by WFP.

Protected files form the core of the operating system and it is essential for system stability that the proper versions be maintained. These files can only be updated through service packs, operating system upgrades, Quick Fix Engineering (QFE) hot-fixes, and Windows Update. Applications cannot replace them, and attempting to replace these files by any means other than those listed above will result in the files being restored by the Windows File Protection feature (see the subsection About Windows File Protection, below).
If the application requires newer versions of these components, it must update these components by using a Microsoft Service Pack that installs the required versions.

EXAMPLE When Microsoft publishes an update to DirectX, it will be provided in a package (either a Windows service pack or its own service pack). An application including the updated DirectX must use the package install and not attempt to directly install files from the package. Installing individual files is not allowed under the Logo Program requirements; in addition, Windows File Protection would prevent it and the user experience would be poor.

About Windows File Protection

Windows File Protection is a feature of Windows XP x64 that prevents the unauthorized replacement of essential system files. WFP runs as a background process on Windows XP x64 and monitors the files listed earlier in this section. When WFP detects that a protected file has been changed, it restores the original.

Do not prompt the user to update or delete any Windows File Protected components.

NOTE Attempting to install components that are under Windows File Protection but have not yet been installed on the system will cause Windows File Protection to install the components. This is correct behavior.

Implementation Details – 2.1

The following code shows how to check whether a file (in this example, “ntdll.dll”) is protected by WFP. Note that SfcIsFileProtected is Unicode-only and requires a fully qualified path.

SHGetFolderPath(NULL,CSIDL_SYSTEM, NULL, 0, szSystemDir);

PathAppend(szSystemDir,"ntdll.dll");

MultiByteToWideChar(CP_ACP, 0, szSystemDir, -1, wzFileName, 265);

if (SfcIsFileProtected(wzFileName))

MessageBox(hWnd,szProtected,szSystemDir,MB_OK);

else

MessageBox(hWnd,szNotProtected,szSystemDir,MB_OK);

Test Cases – 2.1

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC2.1
Does the installation finish without any Windows File Protection messages appearing?
2.2
Support upgrades to next Service Pack of Windows

The application must continue to function correctly when the operating system is upgraded to next Service pack of Windows. It is strongly recommended that the application do this without requiring un-installation and reinstallation.

If your application requires Windows version specific code (kernel mode drivers, etc.), you must ensure that a solution is available to the user for download or retrieval when they upgrade to a later version of Windows.

· The application must not crash or lose data if run after the system is upgraded to a new version.

· The solution must be freely available.

· The solution must not require any technical actions. It must be easy to use and targeted for end-users. For example, it must not require the user to modify registry entries or change INI settings

To achieve this, the application may need to be able to react to operating system changes dynamically at runtime. Many applications detect the Windows version during installation and decide what to install based on that. This usually means that the installed application is operating system-specific, and when Windows is upgraded to a newer version it will not function properly.

Implementation Details – 2.2

For example, consider a case where a music player requires an operating system-specific sound library, which is either Sndlib9x.dll or Sndlibnt.dll (representing Window 9x and Windows NT, respectively).

Incorrect:

1.
Installer users GetVersionEx and detects platform as VER_PLATFORM_WIN32_WINDOWS. It installs Sndlib9x.dll, because that operates properly on the Windows 9x platform.

2.
User migrates to Windows XP x64.

3.
Upon launch of the music player, a crash occurs because Sndlib9x.dll doesn't run on NT-based operating systems.

Recommended solution:

1.
Installer copies both Sndlib9x.dll and Sndlibnt.dll to the program directory during installation.

2.
User migrates to Windows XP x64.

3.
Upon launch, the music player detects the platform and decides which library to use. In this case, it will load Sndlibnt.dll because that works properly on NT-based operating systems.

The latter example will allow the application to continue to function without reinstallation.

Test Cases – 2.2

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC2.2.1
Does application successfully function after a service pack is applied to Windows XP x64?
2.3
Do not overwrite non-proprietary files with older versions

The application’s installation program must properly check to ensure that the latest file versions are installed. Installing an application must never regress any files that you do not produce or that are shared by applications that you do not produce.

Do not prompt the user to update a component unless a version update is actually required.

Application binaries must have valid file version information

Correct file version information has several benefits, including making it easier to meet the requirement of not overwriting files with older versions. Accordingly, all executable images that you distribute must contain valid file version information. When you display or get the properties of an executable (EXE, DLL, OCX, CPL, and so on), they must contain an accurate Product Name, Company Name, and File Version.

Test Cases – 2.3

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC2.3.1
Does application not overwrite non-proprietary files with older versions?
TC2.3.2
Do all application executable files have file version, product name and company name information?
2.4
Do not require a reboot inappropriately

In Windows XP x64, very few installation situations require a reboot. Reboots are unwelcome by customers and, in some situations, can make deploying applications difficult. The application must not require or suggest an unnecessary reboot during or after installation.

Some situations that require a reboot

· Installing a Windows Service Pack or authorized system redistributable may require a reboot.

· Installing a Graphical Identification and Authentication dynamic link library (GINA) requires a reboot. The GINA is a replaceable DLL component that is loaded by Winlogon. The GINA implements the authentication policy of the interactive logon model, and it is expected to perform all identification and authentication user interactions. For example, replacement GINA DLLs can implement smart card, retinal scan, or other authentication mechanisms in place of the standard Windows XP x64 user name and password authentication. For more information on GINA, see 1.5 Support Fast User Switching.
Situations that do not require a reboot

· DLL registration.

· Updating a service component. If necessary, you must warn the user that certain services will be stopped while they are updated.

· Replacing an existing file that is in use by an application. You must give the user information about any open applications that have loaded the resource files you are updating so that the user can shut down those files and allow file replacement to occur without a reboot.

Also, for many components, you should install the components side-by-side or use MoveFileEx with the delay until reboot option to avoid this situation.

If you do require a reboot, you must prompt users and allow them the option of deferring the reboot.

You must also document the specific reason for the reboot, even if it is one of the specific items listed in this section.

Test Cases – 2.4

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC2.4.1
Does the installation finish without requiring a reboot?
TC2.4.2
Can all Test Framework testing be completed without application requiring a reboot?
2.5
Install to Program Files by default (or Program Files x86)
By default, the application must install into an appropriate sub-directory where the current user’s program files are stored.

Note that 32-Bit applications will install via WOW64.

File System Redirector

The %systemroot%\System32 directory is reserved for 64-bit applications. Most DLL file names were not changed when porting to 64-bit, so 32-bit applications must use a different directory as their System32 directory. WOW64 hides this difference using a file system redirector.

Whenever a 32-bit application attempts to access %systemroot%\System32, the access is redirected to a new directory, %systemroot%\SysWOW64. To retrieve the name of the 32-bit system directory, 64-bit applications should use the GetSystemWow64Directory function. Certain subdirectories are exempt from redirection:

%windir%\system32\drivers\etc
%windir%\system32\spool
%windir%\system32\catroot
%windir%\system32\catroot2

Applications should use the SHGetSpecialFolderPath function to determine this directory name.

To help applications that write REG_EXPAND_SZ keys containing %ProgramFiles% to the registry, WOW64 intercepts these writes and replaces them with "%ProgramFilesx86%". This environment variable is defined for all processes. For example, if the Program Files directory is on the C drive, then "%ProgramFilesx86%" expands to "C:\Program Files (x86)".

The Session Manager creates two lists of DLLs on 64-bit Windows®: KnownDLLs lists 64-bit DLLs and KnownDLLs32 lists 32-bit DLLs. WOW64 intercepts references to the named object called KnownDLLs and redirects to KnownDLLs32.

· If you are using the Windows Installer, this folder is represented by the ProgramFilesFolder property in a Windows Installer-based package. (The ProgramFilesFolder property is a variable that exposes the path to the Program Files folder, and the Windows Installer sets that variable appropriately on all Windows platforms.)

· If you are not using the Windows Installer, the recommended method is to use the SHGetSpecialFolderPath API to retrieve the string represented by the CSIDL_PROGRAM_FILES value. On English-language systems, this folder is often C:\Program Files. However, do not hard-code that path, even for use on English systems, because it is not universal.

WHEN DOES THIS APPLY?
If you are upgrading a previously installed version of the application, it is acceptable to default to the directory on which that version exists.

If your application does not require installation (it executes without any files being installed onto the system), then this requirement is not applicable.

Considerations for shared components

In some cases, shared components must be placed in locations other than the application directory. This is described in the following section.

Test Cases – 2.5

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC2.5
Does application offer a default installation folder for 64-bit Applications under “E:\Program Files? or E:\Program Files (x86)\ for 32-bit Applications?
2.6
Install any shared files that are not side-by-side to the correct locations

Windows-based applications can share code, application, and component state in the registry, application-specific data in the file system, and Windows APIs that expose global namespaces. Sharing enables the efficient leverage of limited hardware resources and reduces the exposed front that Quality Assurance groups must test.

However, there are costs to sharing. Sharing causes applications to become interdependent upon one another, which introduces an element of fragility. In the extreme, applications that previously worked might mysteriously start functioning oddly, or even fail. Typically, an application is dependent on a particular version or implementation of a shared component. If that shared component is upgraded (or downgraded) as a result of installing another application, the former application may break.

Windows XP x64, Windows XP, Windows 2000, Windows 98 Second Edition, and Windows Me enable side-by-side sharing, which minimizes this application fragility. Side-by-side sharing enables multiple versions of the same Win32/64 component to run at the same time in memory.

This means that applications can use the specific components that they were designed for and tested with, even if another application requires a different version of the same component. This enables developers to build more reliable applications, because they can choose the version of the component that they will use for their application, independent of other applications on the system.

The proper location for shared components that are not shared side by side depends on whether these components are shared across companies or by a single company:

· Shared components that are private to a single software vendor must be installed in one of two places: the common files directory, or the publisher’s directory under the Program Files folder. Do not store these files in the System directory.

· New Control Panel items (CPLs) must be installed in the application directory on Windows XP x64.

· Services and device drivers must be placed in the System directory

· OCXs and DLLs that are not side-by-side and are shared by multiple software vendors can be placed in the System directory (for 64-bit applications) or SysWOW64 directory (for 32-bit applications) to ensure backward compatibility with those applications.

When submitting your application, you must document any cases in which your software application writes to the System or SysWOW64 directories.

Implementation Details – 2.6

The proper location for shared components that are not shared side by side depends on whether these components are shared across companies or by a single company:

· Shared components that are private to a single software vendor must be installed in one of two places. Do not store these files in the System directory.

%CommonProgramFiles%\<company name>

-or-

%ProgramFiles%\<company name>\Shared Files

The common files directory can be accessed by passing CSIDL_PROGRAM_FILES_COMMON to the SHGetSpecialFolderPath API, or by using the Windows Installer CommonFilesFolder property. For more information about using Windows Installer Properties, see the Windows Installer Programmer’s Reference in the Platform SDK.

· Services and device drivers must be placed in the System directory.

· OCXs and DLLs that are not side-by-side and are shared by multiple software vendors can be placed in the System directory to ensure backward compatibility with those applications.

· New Control Panel items (CPLs) must be installed in the application directory on Windows XP x64. Register the path by adding a value under either of the following registry keys:

HKEY_LOCAL_MACHINE\software\microsoft\windows

\CurrentVersion\control panel\cpls

-or-

HKEY_CURRENT_USER\software\microsoft\windows

\CurrentVersion\control panel\cpls

EXAMPLE A name/value pair under this key:

MyCpl = “%ProgramFiles%\MyCorp\MyApp\MyCpl.cpl”

Test Cases – 2.6

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC2.6
Does application install shared files only to correct locations?
2.7
Support Add or Remove Programs properly

The application must supply your product’s name, the location of your application’s uninstaller, and so on, so that the Add or Remove Programs item in Control Panel can obtain information about the application as needed. You can write this information directly to the registry during install or, if you are using an installation system based on the Windows Installer service, you can set these values by using properties in the Windows Installer-based package.

WHEN DOES THIS APPLY?
This requirement is not applicable for an application that does not install — that is, if it executes without installing any components, writing to the registry, modifying the system, or leaving any files on the system other than user created files.

Uninstall:

The application’s uninstaller must correctly and fully remove the application.

Except as noted later in this section, the application must remove the following:

· All non-shared application files and folders.

· Shared application files whose reference-count (refcount) reaches zero.

· Registry entries, except for keys that might be shared by other programs.

· All shortcuts from the Start menu that the application created at the time of installation.

· The uninstaller itself (unless it is a shared component).

When submitting your application, you must document any files not created by users that the application’s uninstaller leaves behind.

The removal must be clean enough to allow the application to be reinstalled later. User preferences may be considered user data and left behind, but an option to do a completely clean removal should be included.

In general, all user data should be left on the system after removal. If your application removal is about to remove user data, the user must be prompted for confirmation.

An unprivileged user may attempt to remove the application. If a Limited User cannot uninstall the application, the uninstall must degrade gracefully.

Implementation Details – 2.7

The application must supply all the information in the following table so that the Add or Remove Programs item in the Control Panel can obtain information about the application as needed. You can write this information directly to the registry during install or, if you are using the Windows Installer service, you can set these values by using properties in the Windows Installer-based package.

The registry values must be written under the following key:

HKEY_LOCAL_MACHINE

 \Software

 \Microsoft

 \Windows

 \CurrentVersion

 \Uninstall

 \{ProductCode}

	Registry value
	Type
	Related Windows Installer Property
	Contains

	DisplayName
	REG_SZ
	ProductName
	Display name of application

	UninstallString
	REG_EXPAND_SZ
	N/A
	Full path to the application’s uninstall program, including the complete command line used to carry out your uninstall program

	InstallLocation
	REG_EXPAND_SZ
	ARPINSTALLLOCATION
	Full path where application is located (folder or .exe)

	Publisher
	REG_SZ
	Manufacturer
	Publisher/Developer of application

	VersionMajor
	DWORD
	ProductVersion
	Major version number of application

	VersionMinor
	DWORD
	ProductVersion
	Minor version of application

NOTE Property names are case sensitive.

For 32-bit Applications the registry values will be redirected to this key:

HKEY_LOCAL_MACHINE

 \Software

 \Wow6432Node

 \Microsoft

 \Windows

 \CurrentVersion

 \Uninstall

 \{ProductCode}

You can also provide additional properties to present in the Add or Remove Programs item, such as product ID, online support information, and so on. See the Microsoft Platform SDK for full details.

Registry Redirector

To support the coexistence of 32-bit and 64-bit COM registration and application states, WOW64 presents 32-bit applications with an alternate view of the registry. The 32-bit applications see an HKEY_LOCAL_MACHINE\Software registry tree that is completely separate from the true HKEY_LOCAL_MACHINE\Software tree. This isolates HKEY_CLASSES_ROOT, because the per-machine portion of this tree resides within the HKEY_LOCAL_MACHINE\Software tree.

To enable application interoperability through COM and other mechanisms, WOW64 uses a registry reflector, which copies specific registry keys and values between the two registry views. The reflector is intelligent and copies COM activation data for Local servers between the views, but not Inproc data, because 32/64 inproc mixing is not permitted on 64-bit Windows. The reflector uses a "last writer wins" policy for reflection to support the following scenario:

· After a clean install of 64-bit Windows, 64-bit Wordpad.exe is registered to handle .doc files. The reflector copies the .doc registration from the 64-bit registry view into the 32-bit registry view.

· An administrator installs 32-bit Office, which registers Winword.exe to handler .doc files, in the 32-bit registry view. The registry reflector copies this information into the 64-bit registry view, so both 32-bit and 64-bit applications launch the 32-bit version of Winword.exe for .doc files.

· An administrator installs 64-bit Office, which registers its Winword.exe to handle .doc files in the 64-bit registry view. The registry reflector copies this information into the 32-bit registry, so both 32-bit and 64-bit applications launch the 64-bit version of Winword.exe for .doc files.

Therefore, the file association information is for the most recently installed application.

For versions of Windows before Windows Server 2003 SP1, registry redirection is provided only for the registry on the computer where the application is running. Registry redirection is provided for remote registry access through the RegConnectRegistry function on Windows Server 2003 SP1 and later.

Registry Reflection

It can be useful for 32-bit and 64-bit applications to share specific registry key values that are normally written to separate registry views. For example, a 32-bit OLE server that can serve requests from both 32-bit and 64-bit clients could make its 32-bit registry data available to the 64-bit view of the system registry.

When a component writes data in the system registry, WOW64 analyzes the information and makes a copy of the data in the alternate view of the registry when appropriate. Typically, this process keeps two separate physical copies of the same registry keys in both views in the registry, and is called registry reflection or registry mirroring.

Most of the keys under the classes root are in this category. Updates to the keys are reflected when the update completes and the handle to the key closes. In specific cases, writes to a key are not reflected if the key has some bitness dependency. For example, the 32-bit InprocServer32 key does not have relevance for 64-bit applications, so the InprocServer32 key is not reflected to the 64-bit registry view. However, 64-bit applications can use the 32-bit LocalServer32 key and the LocalServer32 key gets reflected.

To disable and enable registry reflection for a particular key, use the RegDisableReflectionKey and RegEnableReflectionKeyfunctions. To determine the reflection state of a key, use the RegQueryReflectionKey function.

Shared Registry Keys

Sometimes, specific information in the registry needs to be shared and only one copy of the registry keys needs to be maintained—even when the keys are under split hives. The following list identifies the keys that are shared across 32-bit and 64-bit applications:

· HKEY_LOCAL_MACHINE\SOFTWARE\Classes\HCP

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Calais\Current

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Calais\Readers

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\Services

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CTF\SystemShared

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CTF\TIP

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Driver Signing

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\EnterpriseCertificates

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSMQ

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Non-Driver Signing

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\RAS

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Software\Microsoft\Shared Tools\MSInfo

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SystemCertificates

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\TermServLicensing

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Transaction Server

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\FontDpi

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\FontMapper

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Fonts

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\FontSubstitutes

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\NetworkCards

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Ports

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Print

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Time Zones

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Control Panel\Cursors\Schemes

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Setup\OC Manager

· HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Telephony\Locations

· HKEY_LOCAL_MACHINE\SOFTWARE\Policies

Test Cases – 2.7

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC2.7.1
Does installation add all necessary entries to the registry?
TC2.7.2
Does uninstalling application as Owner remove and leave all the correct files and registry settings?
TC2.7.3
Does uninstalling application as User1 either degrade gracefully or both remove and leave all the correct files and registry settings?
TC2.7.4
Can application be reinstalled after uninstalling it?

2.8
Support "All Users" installs

Applications are often used by more than one user on the computer. Your installer must default to “all users” or provide an “all users” installation as an option. For example, an installer might default to the option of installing the application only for the current user but the application must provide an option to install for all users.

An unprivileged user may attempt to install the application. If a limited user cannot install the application or cannot install for “all users,” the installation must degrade gracefully.

Test Cases – 2.8

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC2.8.1
Does application default to an “all users” installation or provide an “all users” installation as an option when installed by Owner?
TC2.8.2
Does application default to an “all users” installation or provide an “all users” installation as an option when installed by User1?
2.9
Support Autorun for CDs and DVDs

For applications distributed on CD, DVD, or other removable media that support Autorun, the first time the disc is inserted, the drive letter's shortcut menu will include an AutoPlay command. To run AutoRun manually, either right-click the drive icon and select AutoPlay from the shortcut menu or double-click the drive icon. The Autorun should run the application or prompt the user to install. In the case of applications distributed on multiple discs, subsequent discs must either use the Autorun feature or continue installation without prompting the user to press a key or take other action when the CD has been inserted.

It is not acceptable to require the user to use Start/Run to launch the installation from the CD or DVD.

After the application has been successfully installed, restarting Autorun must not cause installation to automatically begin again. It is acceptable to ask users if they want to update or change their installation choices.

Test Cases – 2.9

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC2.9.1
Does application’s installer start by way of Autorun?
TC2.9.2
Does application’s installer correctly detect that application is already installed and avoid restarting the installation?

3.0 Data and Settings Management

Summary of Data Requirements

Customer Benefits

Microsoft® Windows XP x64 provides an infrastructure that supports state separation of user data, user settings, and computer settings. Applications that use this infrastructure correctly offer the following benefits:

· Applications do not fail when run by Limited Users (non-Administrator), allowing family or friends to share a computer safely and easily.

· Parents can allow children to use the computer without giving them administrative privileges, which would give the child unrestricted access to modify the computer.

· Users can back up their individual documents and settings easily without needing to back up application and operating system files.

· Multiple users can share a single computer, each with his or her own preferences and settings.

· Applications are less likely to prevent Fast User Switching from operating correctly and efficiently.

Data and Settings Requirements List

3.1
Default to the correct location for storing user-created data
3.2
Classify and store application data correctly
3.3
Deal gracefully with access-denied scenarios
3.4
Support running as a Limited User
Data and Settings Management Requirements

3.1
Default to the correct location for storing user-created data

User-created files must be stored in the user’s My Documents (or descendant) folder. For imaging files, it is recommended to use My Pictures in place of My Documents. Similarly, use My Music for audio files.

The first time a user runs an application, the application’s File Open and Save dialogs must default to the user’s My Documents (or descendant) folder the first time these dialogs are called. On subsequent calls to these dialogs, it is recommended to default to the previously selected path.

Application data, such as user preferences, application state, temporary files, and so on, must not be stored within My Documents. The correct locations for these items are defined in requirement 3.2.

Calling the Common File Open/Save with no parameters will default to the My Documents folder. To target the My Documents folder directly, you must pass CSIDL_PERSONAL to SHGetFolderPath. In addition, if the user had selected a new location for saving files from the Common File Open/Save dialog, Common File Open/Save will be smart and default to the user selected location the next time.
The benefits of using the My Documents folder as the default location for data storage are:

· All users (including those with restricted account types) have write access to this location.

· Users have one familiar place to organize and store all their data.

· Data sharing is facilitated between applications because all applications using Common File Open can easily access the My Documents folder.

· My Documents is an abstracted location and can be redirected to the network transparently by an administrator.

· My Documents is available on the Start menu.

Retrieving the path to My Documents: The only acceptable way to do this is by passing CSIDL_PERSONAL to the SHGetFolderPath API. You must not use hard-coded paths or registry entries.

TCHAR szMyDocs[MAX_PATH];

...

hr = SHGetFolderPath(NULL, CSIDL_PERSONAL, NULL, 0, szMyDocs)

NOTE The user may need to move the My Documents folder (and other system documents folders), or they may be moved in a system update. Do not depend on the My Documents or other such folders being in the same location next time the application is launched. This issue can arise if you store the full path to files in the My Documents folder in an MRU or other application specific place.

Test Cases – 3.1

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC3.1.1
Does application offer a correct location for opening User1’s user-created data?

TC3.1.2
Does application offer a correct location for saving User1’s user-created data?

TC3.1.3
Does application offer a correct location for opening User2’s user-created data?

TC3.1.4
Does application offer a correct location for saving User2’s user-created data?

3.2
Classify and store application data correctly

Applications typically work with two fundamental types of documents: those that are created by the user, and those that are created for use by the application itself. For user-created data, please refer to the guidelines in section 3.1. Section 3.2 applies directly to the data that is created by an application to store user-specific information. This data is used by the application only, and is never intended to be accessed directly by the user.

By storing this application-specific data in one of the several valid locations as described by this specification, you make it possible for multiple people to use the same computer without corrupting or improperly modifying each other’s data. The specification provides several valid locations and you are free to choose the location that works best for your needs.

A clear benefit to the developer is that compliance with this requirement can actually result in fewer lines of code. There is a single API call, SHGetFolderPath, that enables you to determine the correct location in which to store the user’s data and the user-specific application data.
Classifying and storing application data according to the guidelines in this requirement provides these benefits:

· It enables multiple family members to share a computer and helps enable Fast User Switching.

· It enables business-related operations such as roaming, off-line storage, and allowing the operating system and its applications to be secured.

· It ensures a consistent and abstracted location for user data, enforces per-user separation of application data.

· It is one of the key factors in enabling remote use of the application.

Application data includes user preferences, application state, temp files, and so on.

IMPORTANT
For files that the user can open (such as documents, music, pictures, and so on), use the guidelines in section 3.1.

This section identifies the valid file folders and the valid registry locations that applications must use for this data, and gives guidance on how to choose which of these locations are best used in different circumstances. The choice of valid locations to use is left to the software developer.

Classify application data into the following categories:

· Per user, roaming

· Per user, non-roaming

· Per computer (non-user specific and non-roaming)

NOTE There may be more than one category for the different application data stored by your application.

For applications not intended to be used in a domain environment (most games and home products for example), classifying the application data as per user, non-roaming might be an appropriate choice.

It is best to use application data file folders rather than the registry for storing application data in excess of 64K. The registry is an acceptable choice for small amounts of data. At installation time, try to store less than a total of 128K across HKEY_CURRENT_USER (HKCU) and HKEY_LOCAL_MACHINE (HKLM).

To comply with this specification, store application data files appropriately as either common or per-user. That is:

· In a subfolder of either the common application folder (identified by CSIDL_COMMON_APPDATA), or

· In the user profile folders: application data (CSIDL_APPDATA) or local application data (CSIDL_LOCAL_APPDATA).

The subfolder to create to store user data files in is:
[company name]\[product name]\[version].

Using the Registry

Applications may also use the registry to store read/write application data and configuration files.

· The HKCU registry hive is appropriate for storing small amounts of data (approximately 64K) and for policy settings that are per user.

· Avoid writing to HKLM during runtime, because limited users have read-only access to the entire HKLM tree by default. In addition, HKLM does not support roaming.

· Larger, file-based data should be placed in the Application Data folder. For example, Internet Explorer’s Temporary Internet Cache is stored within the user profile and not in the registry.

· At installation time, the application must not store more than a total of 128K across HKCU and HKLM.
Note that HKEY_CLASSES_ROOT is excluded.

Implementation Details - 3.2

Using Application Data Folders. Once you have decided how to classify your data, you can use SHGetFolderPath to retrieve the corresponding folder locations.

The CSIDL values described here provide a consistent, unified way to access the physical paths to the desired folder locations, independent of the operating system. The preferred API is SHGetFolderPath, because it behaves consistently across all versions of Windows. To access the path for application data, applications should call SHGetFolderPath with the appropriate CSIDL and then append [company name]\[product name]\[version] to the returned path. Specifically:

To retrieve the CSIDL_APPDATA path:

TCHAR szAppData[MAX_PATH];

...

hr = SHGetFolderPath(NULL, CSIDL_APPDATA, NULL, 0, szAppData);

When storing application data in the user profile, applications must use the following hierarchy under the Application Data file structure:

[User Profile]\

Application Data\

[company name]\

[product name]\

[version]\

[file or folder]

	Data Type
	Folder CSIDL
	Folder Location

	Per user, roaming
	CSIDL_APPDATA
	[user profile]\Application data

	Per user, non-roaming
	CSIDL_LOCAL_APPDATA
	[user profile]\Local Settings\Application data

	Per computer (non‑user specific and non-roaming)
	CSIDL_COMMON_APPDATA
	All Users\Application data

To comply with this specification, applications must classify and store data appropriately as either common or per-user. That is, either CSIDL_COMMON_APPDATA or one of the user profiles: CSIDL_APPDATA or CSIDL_LOCAL_APPDATA.

CSIDL_APPDATA

This folder will be enabled for roaming with the user profile. Use this folder to store all user-specific application preferences. For example, if a user can specify a custom dictionary to be used in the application, you would store it here. That way, if a user roams from computer to computer, the dictionary will roam with him or her. This also allows other users to have their own custom dictionaries.

CSIDL_LOCAL_APPDATA

This folder is for application data that does not roam. As it is still part of the User profile, this is still per-user information. Application data that is computer-dependent, such as user-specified monitor resolution, must be stored here.

This data must not roam because different computers are likely to have different monitors. In addition, large blocks of data that can easily be recreated and temporary files must be placed here to minimize download time that is incurred when roaming.

EXAMPLE Internet Explorer keeps its cache of downloaded .html/.gif pages here so that they don’t roam with the user. However, the smaller cookie and history lists are stored in CSIDL_APPDATA so that they do roam.

CSIDL_COMMON_APPDATA.

This folder should be used for application data that is not user specific. Note that a limited user will only have read privilege for files in this folder, except for the files that user created. If users need to have write access to the common files, then during installation the application must create a sub-folder of CSIDL_COMMON_APPDATA with “Modify” privilege for all users.
EXAMPLE An application may store a spell-check dictionary, a database of clip art or a log file in the CSIDL_COMMON_APPDATA folder. This information will not roam and is available to anyone using the computer.

Additional Considerations

· Files may be shared in the User Profile\Application Data folder. Multiple computers may use them simultaneously with different instances of the application. The data may also be used by multiple applications, for example, applications in a productivity suite.

Applications should get a write exclusive on the file only when absolutely necessary. For example, applications using CreateFile should only specify GENERIC_WRITE when a write is required, but they should always set FILE_SHARE_READ.

· Paths returned by SHGetFolderPath are valid Win32 file system names that may contain spaces and may be in the universal naming convention (UNC) format.

· PathAppend() and PathCombine() APIs can be used to concatenate the relative path information onto the paths returned by SHGetFolderPath. For example:

PathAppend(szAppData, "Company\Product\File.txt")

· Any user can write into the All Users\Documents location. However, by default, only the creator of the document (and administrators) will be able to subsequently modify the document. All other (non-administrator) users will have read-only access to the document by default.

If an application requires all regular users to have write access to a given application-specific subdirectory of CSIDL_COMMON_DOCUMENTS, the application must explicitly modify the security on that subdirectory during application setup. The modified security must be documented.

Test Cases – 3.2

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC3.2.1
Does application store less than 128K of application data in the registry for User1?
TC3.2.2
Does application store configuration data for User1 only in acceptable folders?
3.3
Deal gracefully with access-denied scenarios

By default on Windows XP x64, restricted user accounts (for example, Limited Users on Home Edition) cannot write to per-computer locations such as HKLM and the Windows directory. Only applications that classify and store data correctly, as described earlier, will be able to avoid access-denied errors and run successfully in this secure environment.

There are, however, legitimate scenarios in which access-denied errors are encountered by applications that classify and store data correctly.

EXAMPLE Appropriate cases for access-denied scenarios:

· An unprivileged user may attempt to run an administrative application designed to modify system-wide settings. In this case, the user is allowed to run the application, but cannot carry out any system-wide modifications.

· An unprivileged user may run an application that allows users to modify objects based on permissions. In this case, a user is allowed to modify objects that he or she owns, but not objects owned by the administrator or other users.

· An unprivileged user may direct an application to save per-user data in a per-computer location, for example, by choosing the System directory as the destination for a File\Save operation.

· An unprivileged user may attempt to install the application. If a limited user cannot install the application, the installation must degrade gracefully.

In these cases, the application must degrade gracefully when the access-denied error is encountered. Graceful handling can be accomplished by:

· Disabling the operation. This is the approach taken by System Settings in Control Panel. Users cannot set system-wide environment variables, but they can set their own environment variables. Thus, when a user launches this applet, the system-wide environment variable option is disabled. When an administrator launches the applet, the system-wide environment variables can be modified.

· Displaying an appropriate error message. For example:

“You must be an administrator to perform this operation.”

“You only have permissions to view the properties of this object.”

“You must have X privilege to perform this operation.”

“You must have write access to (file name) to perform this operation.”

Test Cases – 3.3

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC3.3.1
Does application prevent User1 from saving to the Windows system folder, E:\Windows?
TC3.3.2
Does application prevent User1 from modifying documents owned by User2?
TC3.3.3
Does application prevent User1 from modifying system-wide settings?
TC3.3.4
Does application’s installer either allow User1 to install application or degrade gracefully if the installation fails?

3.4
Support running as a Limited User

Applications must not require users to have unrestricted access (for example, Administrator privileges) to make changes to system or other files and settings. In other words, the application must function properly in a secure Windows environment. Complying with the previous requirements in this section will help to ensure that the application meets this requirement.

An application that does not install (executes without installing any components) must still support use by a Limited User.

A secure Windows environment is defined as the environment exposed to a Limited (non-Administrator) user by default on a clean-installed NTFS system. In this environment, users can only write to these specific locations on a local computer:
[Note 1]
· Their own portions of the registry (HKEY_CURRENT_USER)
[Note 2]
· Their own user profile directories (CSIDL_PROFILE)

· A Shared Documents location (CSIDL_COMMON_DOCUMENTS) [Note 3]
· A folder that the user creates from the system drive root

However, applications defaulting to use of these folders do not comply with the other requirements of this section.

Users can also write to subkeys and subdirectories of these locations. For example, users can write to CSIDL_PERSONAL (My Documents) because it is a subdirectory of CSIDL_PROFILE. Users have read-only access to the rest of the system.

NOTES

[1] Applications can modify the default security for an application-specific subdirectory of CSIDL_COMMON_APPDATA. This may provide an additional location to which users can write for a given application.

Any modification of the default security for an application-specific subdirectory of CSIDL_COMMON_APPDATA must be documented when submitting your application.

[2] Users cannot write to the following subsections of HKCU:

\Software\Policies

\Software\Microsoft\Windows\CurrentVersion\Policies

[3] By default, users cannot write to other users’ shared documents; they can only read other users’ shared documents. Applications can modify this default security on an application-specific subdirectory of CSIDL_COMMON_DOCUMENTS.

Any modification of the default security on an application-specific subdirectory of CSIDL_COMMON_DOCUMENTS must be documented when submitting your application.

This requirement does not apply to all features.

WHEN DOES THIS APPLY?
When the major features of the application can be successfully run by a non-privileged user, minor features are allowed to fail gracefully. These minor features must not be installed by any default mechanism (for example, a minimal or typical install) other than a complete install and must not be considered important for the operation of the program. Examples of such minor features include components necessary to support legacy file formats.

Limited Users cannot perform several system administration functions such as disk defragmentation, backup/restore, changing system time, and so on. When most of the primary functionality of an application is system administration, the application must still run from a Limited User account and inform the user why none of the features can be used.

For any feature that a limited user cannot use, when submitting your application you must document what objects need to be opened for that feature to work, such as file system, registry keys, and so on.

When a limited user can’t use a feature, the application must degrade gracefully.

Test Cases – 3.4

As defined in “Designed for Microsoft Windows XP x64” Application Test Framework:

TC3.4
Does application support running as User1, a Limited User?
Glossary

Assembly – Fundamental unit for naming, binding, versioning, deploying, or configuring a block of programming code. These code assemblies may be placed in DLLs or COM assemblies. Applications with common functionality may run shared blocks of programming code which are referred to as modules or code assemblies. Windows XP x64 has an infrastructure for the safe sharing of assemblies, referred to as side-by-side assembly sharing.

Application Manifest – File describing an isolated application. It specifies the information required to run the application, including dependencies on private assemblies, specific versions of shared assemblies and metadata for private assemblies. The name of an application manifest file is the name of the application executable followed by the extension .manifest. For example, for MySampleApp.exe, the manifest file would be MySampleApp.exe.manifest.

Certification Authority (CA) – An entity entrusted to issue certificates asserting that the recipient individual, computer or organization requesting the certificate fulfills the conditions of an established policy

Crash – In the context of this document means that the application stops responding and/or loses data. A failure within the application that does not cause loss of data, displays information that would allow a typical user to understand what went wrong and how to avoid the problem in the future, and allows the user to continue running the application or close it, is not considered a “crash.”

CSIDL –These constants provide a unique system-independent way to identify special folders. Used in conjunction with SHGetFolderPath and other APIs.
Degrade gracefully – Does not crash the application or the operating system (GPF or blue screen), and does not lose user data. Also, a dialog box or other visual and audio cue appears informing the user of the issue. For example, when a feature requires that users have access rights that they do not have, users should be informed of this when they attempt to use the feature.

DLL Registration – Some DLLs need to have information in the registry in order for the DLL to be used or function fully. Placing this information into the registry is DLL registration.
High Contrast support – An option set by the user indicating that they require a high degree of contrast to improve screen legibility. Some application features may be exempted, such as when the use of color is intrinsic and indispensable to the goal of the feature.
Isolated Application – Application using side-by-side assemblies, but not sharing its assemblies. An isolated application is always accompanied by an application manifest file. The manifest specifies the versions of the shared side-by-side assemblies that the application binds to at run time and may contain some metadata for private side-by-side assemblies. The manifest contains information traditionally stored in the registry; a fully isolated application may be independent of the registry.

HKCU – Abbreviated form of HKEY_CURRENT_USER
HKLM – Abbreviated form of HKEY_LOCAL_MACHINE

Long file name (LFN) – Any filename that exceeds 8.3 characters in length or contains any character that is not valid in the 8.3 namespace.

Side-by-side sharing – A form of sharing in Windows XP x64, Windows 2000, Windows Me and Windows 98 Second Edition that enables multiple versions of the same DLL to run at the same time.

Universal naming convention (UNC) – The system for indicating names of servers and computers, such as \\Servername\Sharename. UNC paths can indicate deeper paths to individual files located in a shared network resource, with the additional path continuing with additional backslashes. For example: \\Servername\Sharename\Folder1\Folder2\Filename.txt.
User profile – A computer-based record maintained for an authorized user of a multi-user computer system. A user profile is needed for security and other reasons; it can contain such information as the user’s access restrictions, mailbox location, type of terminal, and so on.

Visual Style – User selectable visual configurations provided in Windows XP x64 x64 that include color scheme, fonts, font sizes, and wallpaper settings, as well as the way controls, window borders, and menus are drawn

Windows Installer service – Provides end users with a way to install and remove applications, or components of software as needed. System administrators can more easily manage applications and support roaming users.

