Smart Card Minidriver Certification Requirements for Windows Base CSP and Smart Card KSP 56

Smart Card Minidriver Certification Requirements for Windows Base Cryptographic Service Provider (Base CSP) and Smart Card Key Storage Provider (KSP)

Version 5.06a
April 11, 2007

Disclaimer

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place or event is intended or should be inferred.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

1-41
Overview & Scope

2-52
Test Criteria

2-52.1
Untested Criteria

2-52.2
Card Minidriver General Requirements

2-52.2.1
Card Minidriver Management and Installation

2-62.2.2
Card Minidriver General Conventions

2-72.2.3
Card Minidriver Memory Management

2-72.2.4
Optional General Requirements

2-82.3
Smart Card Minidriver Functional Exports

2-82.3.1
Card Minidriver Context

2-112.3.2
Authentication Operations

2-172.3.3
PIN Operations

2-222.3.4
Public Data Operations

2-342.4
Smart Card Minidriver Support Exports

2-342.4.1
Card Capabilities

2-352.4.2
Key Container

2-392.4.3
Cryptography Operations

2-492.5
Sequence Tests

2-492.5.1
Smartcard logon

2-502.5.2
PIN Change

2-502.5.3
Enrollment

2-512.5.4
Run As

2-522.5.5
Email signing

2-522.5.6
Email decryption

2-522.5.7
PIN Unblock

2-532.5.8
SSL Client Authentication

3-553
Related Documents

4-564
Change History

1 Overview & Scope

The Smart Card Base Cryptographic Service Provider (CSP) exposes the cryptographic capabilities of smart cards through the CAPI interface. The Smart Card Base CSP isolates all smart card specific cryptographic operations in the Smart Card Minidriver [CMSPEC]. Card Minidrivers execute in user-mode and are smart card specific.
The Card Minidriver can also be accessed by CNG Key Storage Providers (KSPs). This is the interface through which the ECC capabilities of the Card Minidrivers are exposed.

This document outlines the requirements that a Card Minidriver that conforms to [CMSPEC] must meet in order to be certified and qualify for a Windows Logo.
IHVs that want to receive the Designed for Windows Logo must adhere to the requirements specified in this document. The tests for these requirements are distributed in the WDK and can be executed in the DTM.
2 Test Criteria
The [CMSPEC] forms the basis of the requirements identified in this document. Where relevant, the requirements are linked back to [CMSPEC] using the following notation:
CMSpec-SECTION-[PARAGRAPH_NUMBER]
Example:

CMSpec-3.6-1
should be read as:
[CMSPEC], Section 3.6, paragraph 1.

2.1 Untested Criteria

Card Minidrivers must adhere to the following requirements. No tests are included in the certification kit to enforce these requirements. Failure to adhere to these requirements will result in the revocation of the Designed for Windows Logo and will result in the removal of the Card Minidriver from Windows Update.

	CMR.1.0.0
	If the device submitted for testing is a smart card and has a ISO 7816 ID-1 smart card form factor, it MUST be tested with a smart card reader that has passed the WHQL Certification Requirements for smart cards and has received the DFW Logo
	

	CMR.1.0.1
	The Card Minidriver MAY NOT implement additional functionality beyond that specified in the Card Minidriver specification
	

	CMR.1.0.2
	The Card Minidriver MAY NOT contain any Trojans or backdoors
	

	CMR.1.0.3
	The Card Minidriver MAY NOT present any UI to the end user
	

	CMR.1.0.4
	All cryptographic operations MUST take place on the device
	

	CMR.1.0.5
	All cryptographic keys MUST be stored on the device
	

	CMR.1.0.6
	Card Minidriver’s communication with a smart card should be done using the Smart Card Resource Manager

The Smart Card Resource Manager provides the preferred mechanism of communicating with smart cards. It provides for arbitration of access and other functions to manage the availability of smart cards to applications. Interface with the SCRM is accomplished by linking to “winscard.dll”.
	CMSpec-3.6-1

	CMR.1.0.7
	Card Minidriver’s API functions that receive a pointer to the CARD_DATA structure may not change the values of the structure’s fields other than pvVendorSpecific

The only API that may (and should) change other fields and their values is CardAcquireContext.
	

	CMR 1.08
	A Card Minidriver may support more than one card, but MUST meet the requirements in this document for all supported cards
	

2.2 Card Minidriver General Requirements

2.2.1 Card Minidriver Management and Installation

	CMR.1.1.1
	Card Minidriver should be distributed as a dynamic link library (DLL)

Each card-specific module should be distributed as a single DLL to minimize the number of components that must be managed to support a variety of smart cards.

Note: one DLL can implement several Card Minidrivers.
	CMSpec-3.2-1

	CMR.1.1.2
	Card Minidriver’s dynamic link library (DLL) file size cannot exceed 2 MB
	

	CMR.1.1.3
	Card Minidriver should not rely on any system-administrator role privileges

Card Minidriver will be loaded in user-mode and will operate with a regular user privileges.
	

	CMR.1.1.5
	Card Minidriver should not interfere with other Card Minidrivers present in the system
	

	CMR.1.1.6
	Card Minidriver should support multiple instances of its supported smart card type(s) on a system
	CMSpec-3.7.2.1-8

	CMR.1.1.7
	Card Minidriver should be capable of being used by multiple applications simultaneously
	CMSpec‑3.7.2.1-8

2.2.1.1 Card Minidriver Logical File System Requirements

	CMR.1.2.1
	File names and directory names are composed of 1 to 8 ANSI characters (8 bit each)

File names cannot contain characters that are invalid in Windows file systems: \ / : * ? “ < > |
and also character codes 1 through 31.

Minimum length of a file name is 1 character. Maximum is 8 characters, excluding the terminating null.
	CMSpec-3.7.5-2 CMSpec-3.10.1-1

	CMR.1.2.2
	The directory structure consists of two levels: the root directory, and directories used by applications
	CMSpec-3.10.1-1

	CMR.1.2.3
	File names and directory names are not case-sensitive

In order that file names and directory names be not case-sensitive, Card Minidriver implementations should convert strings received to lowercase.
	CMSpec-3.10.1-1

	CMR.1.2.4
	File system access conditions should be implemented by the Card Minidriver

Specific access conditions should be enforced on the card by the Card Minidriver. The principals, file access operations, and the access conditions are specified in the [CMSPEC] (see section 3.10).
	CMSpec‑3.10.4
CMSpec-3.10.5
CMSpec-3.10.6

2.2.2 Card Minidriver General Conventions

	CMR.1.3.1
	Card Minidriver string buffers in exported functions are expected to be single-byte ANSI

For details see section 3.3.1 of the [CMSPEC].
	CMSpec-3.3.1-3

	CMR.1.3.4
	Any allocation/freeing of memory performed by the Card Minidriver should be done using CSP functions

Card Minidriver should allocate its internal and external memory buffers by calling PFN_CSP_ALLOC/PFN_CSP_REALLOC functions provided by the Base CSP. If the buffer is to be freed by the Card Minidriver, it must be done by calling PFN_CSP_FREE. See section 3.5.1 of the [CMSPEC] for details.
	CMSpec-3.5.1

2.2.3 Card Minidriver Memory Management

The following functions should be used for memory management needs in the Card Minidriver, since they offer security enhancements provided by the Microsoft Smart Card Base CSP/CNG KSP.

	CMR.1.4.1
	When PFN_CSP_ALLOC returns NULL (out of memory condition), Card Minidriver should handle this event properly

A return of NULL implies an out of memory condition and should be treated as if a call to HeapAlloc failed.
	CMSpec-3.5.1.1-5

	CMR.1.4.2
	Reallocation of memory performed by the Card Minidriver should be done using CSP function PFN_CSP_REALLOC

The realloc function is called via a pointer in the CARD_DATA structure when the Card Minidriver wishes to change the size of a block of memory. The existing contents of the memory block are copied to the reallocated block to the extent that they fit.

The address being passed should point to existing memory block which was previously allocated using PFN_CSP_ALLOC function. Otherwise, NULL will be returned.
	CMSpec-3.5.1.2-1

	CMR.1.4.3
	When PFN_CSP_REALLOC returns NULL, Card Minidriver should handle this event properly

A return of NULL implies an error (out of memory condition or reallocating of non-existing memory) and should be handled by Card Minidriver as an error.
	CMSpec-3.5.1.2-4

	CMR.1.4.4
	Freeing of memory performed by the Card Minidriver should be done using CSP function PFN_CSP_FREE

The free function is called via a pointer in the CARD_DATA structure when the Card Minidriver wishes to free a block of memory, which was previously allocated using PFN_CSP_ALLOC function.
	CMSpec-3.5.1.3-1

2.2.4 Optional General Requirements

These requirements are valid only if a Card Minidriver implements the functionality in question.

	CMR.1.5.1
	Cache functionality should be provided by the Card Minidriver
To ensure cache consistency and good performance, some cache functionality should be provided by the Card Minidriver in the form of a cache file on the card. Card Minidriver should use cache functions provided by the Base CSP to enhance performance. For details see section 3.4 of the [CMSPEC].
	CMSpec-3.4-1

	CMR.1.5.2
	Cryptographic padding CSP function should be used by the Card Minidriver
The padding function can be optionally called by the card to perform cryptographic padding when the card cannot do that itself. For best security, padding should occur on the card, but it is recognized that not all cards will support that feature.
	CMSpec‑3.5.3.1-1

2.3 Smart Card Minidriver Functional Exports

These operations are the core of the Card Minidriver functionality. Any Card Minidriver should implement a standardized set of macro-level operations, as described in the [CMSPEC] and the “cardmod.h” header file.

These operations manipulate data of general interest to any application on the card, including personalization details, the PIN, and the card file system.
2.3.1 Card Minidriver Context

2.3.1.1 CardAcquireContext

2.3.1.1.1 General Functional Requirements

	CMR.3.1.1.1
	CardAcquireContext initializes communication with a given card through the Card Minidriver
	CMSpec-3.7.2.1-1

	CMR.3.1.1.2
	CardAcquireContext initializes pointers to functions supported by the Card Minidriver in the CARD_DATA structure

Card Minidriver should set function pointers in the pCardData structure to API functions provided.

Function pointers that are not mandatory and do not have to be initialized (if they are not implemented, function pointers should be set to NULL by the Card Minidriver):

· CardDeauthenticate

· CardRSADecrypt (for ECC-only cards)
· CardConstructDHAgreement (for RSA-only cards)
· CardDeriveKey (for RSA-only cards)
· CardDestroyDHAgreement (for RSA-only cards)
	CMSpec-3.7.2.1-11

	CMR.3.1.1.3
	CardAcquireContext should return 0 on success
	CMSpec-3.7.2.1-4

	CMR.3.1.1.4
	Card Minidriver should be able to handle multiple contexts with the same card
	CMSpec-3.7.2.1-8

	CMR.3.1.1.5
	Card Minidriver should be able to handle multiple contexts with different cards present in the system and supported by this Card Minidriver
	CMSpec-3.7.2.1-8

	CMR.3.1.1.6
	CardAcquireContext must set the dwVersion field to the version which is populated by the call

dwVersion is taken as an input when CardAcquireContext is called and it is the desired version structure to be returned. In order to support existing Card Minidrivers, older versions may need to be loaded and recognized as such. For details on CARD_DATA version negotiation see [CMSPEC] section 8.1.1.
	CMSpec-3.7.2.1-7 CMSpec-8.1.1

	CMR.3.1.1.7
	Card Minidriver that supports version 5 of CARD_DATA also needs to support version 4
	

	CMR.3.1.1.8
	CardAcquireContext should allow certain CSP callbacks to be NULL

Card Minidriver should successfully initialize communication even when the following CSP callbacks in the CARD_DATA structure are NULL at the time CardAcquireContext is called:

pfnCspCacheAddFile

pfnCspCacheLookupFile

pfnCspCacheDeleteFile

pfnCspPadData (for versions 4 and 5)

pfnCspGetDHAgreement (for version 5+)

Card Minidriver should assume that those will be set by the caller later.
	

2.3.1.1.2 Error Handling

Errors should be handled in the following order of their occurrence:

	CMR.3.1.1.E1
	CardAcquireContext should fail when an invalid (NULL) pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.2.1-3

CMSpec-3.3.2-2

	CMR.3.1.1.E2
	CardAcquireContext should fail when a non-zero dwFlags parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.2.1-3 CMSpec-3.3.2-2

	CMR.3.1.1.E3
	In case of receiving a CARD_DATA structure version not supported by the Card Minidriver, CardAcquireContext should fail

When the dwVersion passed in the CARD_DATA structure to the CardAcquireContext function is lower than that supported by the Card Minidriver, it is expected to fail with ERROR_REVISION_MISMATCH error.
	CMSpec-8.1.1

	CMR.3.1.1.E4
	CardAcquireContext should fail when a NULL pbAtr field is passed as part of the CARD_DATA structure

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.2.1-15

	CMR.3.1.1.E5
	CardAcquireContext should fail when an invalid cbAtr is passed as part of the CARD_DATA structure

It is expected to fail with either SCARD_E_INVALID_PARAMETER or SCARD_E_UNKNOWN_CARD error code.
	CMSpec-3.7.2.1-17

	CMR.3.1.1.E6
	CardAcquireContext should fail when a NULL pwszCardName is passed as part of the CARD_DATA structure

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.2.1-16

	CMR.3.1.1.E7
	CardAcquireContext should fail when an invalid non-NULL pbAtr field is passed as part of the CARD_DATA structure

When the pbAtr member of the CARD_DATA structure passed as the pCardData parameter does not refer to a valid smart card, or the Card Minidriver does not recognize the specified smart card, it is expected to fail with SCARD_E_UNKNOWN_CARD error.
	CMSpec-3.7.2.1-14 CMSpec-3.7.2.1-18

	CMR.3.1.1.E8
	CardAcquireContext should fail when a NULL is passed as a value for any PFN_... memory management function pointers in the CARD_DATA structure

When any of the following function pointers is null, CardAcquireContext should fail with SCARD_E_INVALID_PARAMETER error code:

· pfnCspAlloc

· pfnCspReAlloc

· pfnCspFree
	CMSpec-3.7.2.1-19

	CMR.3.1.1.E9
	CardAcquireContext should fail when an invalid value is passed for hSCardCtx parameter in the CARD_DATA structure

When hSCardCtx is set to zero, the Card Minidriver should not return an error.
	CMSpec-3.7.2.1-20

	CMR.3.1.1.E10
	CardAcquireContext should fail when an invalid value is passed for hSCard parameter in the CARD_DATA structure

When hSCard passed is zero, the Card Minidriver should return SCARD_E_INVALID_HANDLE error.
	CMSpec-3.7.2.1-20

2.3.1.2 CardDeleteContext

2.3.1.2.1 General Functional Requirements

	CMR.3.1.2.1
	CardDeleteContext should reverse the effect of CardAcquireContext, severing communication with a given card
	CMSpec-3.7.2.2-1

	CMR.3.1.2.2
	CardDeleteContext should free any memory buffers allocated by the CardAcquireContext

Card Minidriver should perform any needed de-allocations and cleanup.
	CMSpec-3.7.2.2-1

	CMR.3.1.2.3
	CardDeleteContext should return 0 on success
	CMSpec-3.7.2.2-4

2.3.1.2.2 Error Handling

Errors should be handled in the following order of their occurrence:

	CMR.3.1.2.E1
	CardDeleteContext should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

2.3.2 Authentication Operations

2.3.2.1 CardAuthenticatePin

2.3.2.1.1 General Functional Requirements

	CMR.3.2.1.1
	CardAuthenticatePin establishes user’s identity with a valid PIN submitted

Submits a PIN value as a string to the card to establish the user’s identity and satisfy access conditions for an operation to be undertaken on the behalf of the user. Submission of a PIN to the card may involve some processing by the Card Minidriver to render the PIN information to a card-specific form.
	CMSpec-3.7.3.1-1

	CMR.3.2.1.2
	CardAuthenticatePin should return 0 on success, when a valid PIN is submitted
	CMSpec-3.7.3.1-4

	CMR.3.2.1.4
	CardAuthenticatePin should check that pdwcAttemptsRemaining is not NULL before using it
	CMSpec-3.7.3.1-3

2.3.2.1.2 Performance Requirements

	CMR.3.2.1.X1
	Maximum allowed time for CardAuthenticatePin is 350 milliseconds
	

	CMR.3.2.1.X2
	Card Minidriver should authenticate user in no more than 240 milliseconds, measured as an average over 20 iterations
	

2.3.2.1.3 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.2.1.E1
	CardAuthenticatePin should fail when a NULL pCardData parameter is passed
It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.2.1.E2
	CardAuthenticatePin should fail when a NULL pwszUserId parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.2.1.E3
	CardAuthenticatePin should fail when a NULL pbPinData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

CMSpec-3.7.3.1-8

CMSpec-3.7.3.1-12

	CMR.3.2.1.E4
	CardAuthenticatePin should fail when an invalid pwszUserId parameter is passed

The allowed values for the pwszUserId are wszCARD_USER_USER and wszCARD_USER_ADMINISTRATOR as defined in cardmod.h. For any other pwszUserId value, CardAuthenticatePin is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.3.1-5 CMSpec‑3.7.3.1-6

	CMR.3.2.1.E5
	CardAuthenticatePin should fail when an invalid cbPinData value is passed

When inconsistencies are found, such as cbPinData does not match PIN length, cbPinData is 0xFFFFFFFF and so on, CardAuthenticatePin is expected to fail with SCARD_W_WRONG_CHV or SCARD_E_INVALID_PARAMETER.

Zero (0) is considered as invalid value for cbPinData only when the card does not support empty PINs.
	CMSpec-3.3.2-2
CMSpec-3.7.3.1-12

	CMR.3.2.1.E6
	CardAuthenticatePin should fail when an invalid PIN is presented

It is expected to fail with SCARD_W_WRONG_CHV error while the maximum allowed number of failures is not exceeded and it is expected to fail with SCARD_W_CHV_BLOCKED error when the maximum number of failures was exceeded (see CMR.3.2.1.E9).
The Card Minidriver may also fail with SCARD_E_INVALID_PARAMETER when the PIN is not presented to the card.
	CMSpec-3.7.3-12

	CMR.3.2.1.E7
	Failed authentication attempt (for any reason) should always leave the card in a de‑authenticated state
	CMSpec-3.7.3.3-9

	CMR.3.2.1.E8 optional
	CardAuthenticatePin should block the PIN when the maximum allowed number of failures was exceeded

Note: this requirement is valid only for cards that support blocking the PIN.
	CMSpec-3.7.3.3-8

	CMR.3.2.1.E9
	CardAuthenticatePin should return the number of remaining attempts when an incorrect PIN is presented and if the pdwcAttemptsRemaining parameter is non‑NULL

If an incorrect PIN is presented, this function returns SCARD_W_WRONG_CHV, and if the pdwcAttemptsRemaining parameter is non-NULL, it returns the number of remaining attempts. On the last allowed attempt, the function returns SCARD_W_WRONG_CHV, and the pdwcAttemptsRemaining parameter returns zero. For all attempts beyond the allowed number, the function returns SCARD_W_CHV_BLOCKED, and the pdwcAttemptsRemaining parameter returns zero.

Note: if the Card Minidriver does not support returning the count of remaining authentication attempts, it should return -1 for value if pdwcAttemptsRemaining is not NULL.
	CMSpec‑3.7.3.1-8

CMSpec‑3.7.3.1-9

2.3.2.2 CardGetChallenge

2.3.2.2.1 General Functional Requirements

	CMR.3.2.2.1
	CardGetChallenge generates a block of challenge data using its administrative key
	CMSpec-3.7.3.2-1

	CMR.3.2.2.2
	CardGetChallenge should return (ppbChallengeData) a byte pointer of the challenge buffer, allocated by the Card Minidriver using PFN_CSP_ALLOC
	CMSpec‑3.7.3.2‑3 CMSpec‑3.7.3.2‑7

	CMR.3.2.2.3
	CardGetChallenge should return (pcbChallengeData) a byte count of the challenge data
	CMSpec‑3.7.3.2‑3

	CMR.3.2.2.4
	CardGetChallenge should return 0 on success
	CMSpec‑3.7.3.2‑5

	CMR.3.2.2.5
	The generated challenge data is to be discarded if the next command to the card is not an authentication attempt
	CMSpec‑3.7.3.2‑6

	CMR.3.2.2.6
	The challenge data should be generated in a non-repeatable way

This authentication technique is normally used to establish the context for privileged operations such as unblocking a user’s PIN. For security reasons, implementers of Card Minidrivers are advised to produce a design in which the challenge and response values will not be invariant so that these values may not be replayed
	CMSpec‑3.7.3.2‑5

	CMR.3.2.2.7
optional
	Calls to the CardGetChallenge function do not decrement the count of remaining authentication attempts

Note: this requirement is valid only when the Card Minidriver supports returning of the pcAttemptsRemaining by CardAuthenticateChallenge function.
	CMSpec‑3.7.3.3‑7

	CMR.3.2.2.8
	The challenge data generated by the CardGetChallenge should not contain less than 8 bytes
	

2.3.2.2.2 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.2.2.E1
	CardGetChallenge should fail when a NULL value is passed as pCardData

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.3.2‑2

	CMR.3.2.2.E2
	CardGetChallenge should fail when a NULL value is passed as ppbChallengeData

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.3.2‑2

	CMR.3.2.2.E3
	CardGetChallenge should fail when a NULL value is passed as pcbChallengeData
It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.3.2‑2

2.3.2.3 CardAuthenticateChallenge

2.3.2.3.1 General Functional Requirements

	CMR.3.2.3.1
	CardAuthenticateChallenge should perform authentication for a valid response
Performs authentication of a card principal using a challenge/response protocol. The caller of this function must have previously called CardGetChallenge() to get challenge data from the card, and computed the correct response data to submit with this call.
	CMSpec‑3.7.3.3‑1

	CMR.3.2.3.2
	CardAuthenticateChallenge should return 0 on success
	CMSpec‑3.7.3.3‑4

2.3.2.3.2 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.2.3.E1
	CardAuthenticateChallenge should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.2.3.E2
	CardAuthenticateChallenge should fail when an NULL pbResponseData parameter is passed
It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.2.3.E3
	CardAuthenticateChallenge should fail when an invalid cbResponseData parameter is passed
For cbResponseData equal to zero, CardAuthenticateChallenge is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.2.3.E4
	CardAuthenticateChallenge should fail when previous command sent to card was different than CardGetChallenge
It is expected to fail with SCARD_W_WRONG_CHV error while the maximum allowed number of failures is not exceeded and it is expected to fail with SCARD_W_CHV_BLOCKED error when the maximum number of failures was exceeded.
	CMSpec‑3.7.3.3‑6 CMSpec-3.3.2-2
CMSpec‑3.7.3.2‑6

	CMR.3.2.3.E5
	CardAuthenticateChallenge should fail when an invalid response to previously obtained challenge data is presented

It is expected to fail with SCARD_W_WRONG_CHV error while the maximum allowed number of failures is not exceeded and it is expected to fail with SCARD_W_CHV_BLOCKED error when the maximum number of failures was exceeded.
	CMSpec‑3.7.3.3‑6 CMSpec-3.3.2-2

	CMR.3.2.3.E6
	Failed authentication attempt (for any reason) should always leave the card in a de‑authenticated state
	CMSpec-3.7.3.3-9

	CMR.3.2.3.E7 optional
	CardAuthenticateChallenge should block the admin key when the maximum allowed number of failures was exceeded

Note: this requirement is valid only for cards that support blocking the admin key.
	CMSpec‑3.7.3.3‑6

	CMR.3.2.3.E8
	CardAuthenticateChallenge should return the number of remaining attempts when an incorrect response is presented if the pdwcAttemptsRemaining parameter is non‑NULL

If an incorrect response is presented, this function returns SCARD_W_WRONG_CHV, and if the pdwcAttemptsRemaining parameter is non-NULL, it returns the number of remaining attempts. On the last allowed attempt, the function returns SCARD_W_WRONG_CHV, and the pdwcAttemptsRemaining parameter returns zero. For all attempts beyond the allowed number, the function returns SCARD_W_CHV_BLOCKED, and the pdwcAttemptsRemaining parameter returns zero.

Note: if the Card Minidriver does not support returning the count of remaining authentication attempts should return -1 for value if pdwcAttemptsRemaining is not NULL.
	CMSpec‑3.7.3.3‑6 CMSpec‑3.7.3.1‑8

2.3.2.4 CardDeauthenticate

CardDeauthenticate is an optional export that should be provided if it is possible within the Card Minidriver to efficiently reverse the effect of authenticating a user or administrator without resetting the card. If this function is not implemented, the Card Minidriver should place NULL in the CARD_DATA structure pointer for this function. > CMSpec‑3.7.3.4‑1
The CSP/KSP will test this pointer for NULL value before calling it. If it is found NULL, the CSP/KSP will de-authenticate a user by resetting the card. As a card reset is a time-consuming operation, the Card Minidriver should implement this function if it can be done.

2.3.2.4.1 General Functional Requirements

	CMR.3.2.4.1
	CardDeauthenticate should reverse the effect of user authentication

CardDeauthenticate performs user’s de-authentication, when pwszUserId equals wszCARD_USER_USER and the user was previously authenticated in the same context.
	CMSpec‑3.7.3.4‑1

	CMR.3.2.4.2
	CardDeauthenticate should reverse the effect of administrator authentication
CardDeauthenticate performs administrator’s de-authentication, when pwszUserId equals wszCARD_USER_ADMIN and the admin was previously authenticated in the same context.
	CMSpec‑3.7.3.4‑1

	CMR.3.2.4.3
	CardDeauthenticate should return 0 on success
	CMSpec‑3.7.3.4‑5

2.3.2.4.2 Performance Requirements

	CMR.3.2.4.X1
	Maximum allowed time for CardDeauthenticate is 200 milliseconds
	

	CMR.3.2.4.X2
	CardDeauthenticate should de-authenticate a user in no more than 150 milliseconds, measured as an average over 20 iterations
	

2.3.2.4.3 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.2.4.E1
	CardDeauthenticate should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.2.4.E4
	CardDeauthenticate should fail when a non-zero dwFlags parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.7.3.4‑4

2.3.3 PIN Operations

2.3.3.1 CardUnblockPin

2.3.3.1.1 General Functional Requirements

	CMR.3.3.1.1
	CardUnblockPin should unblock a PIN that became blocked by an excessive number of incorrect PIN entry attempts
	CMSpec‑3.7.4.1‑1

	CMR.3.3.1.2
	CardUnblockPin function should be a single and atomic transaction

The unblock function is atomic, in that authentication, the unblocking and de-authentication of the card must occur as a single operation. For this reason, authentication information as well as the new user PIN must be presented at the time the call is made.
	CMSpec‑3.7.4.1‑1

	CMR.3.3.1.3 optional
	CardUnblockPin should set the maximum allowed number of incorrect PIN entry attempts to the value of cRetryCount parameter
cRetryCount is a count of times that wrong PIN will not result in blocking the card. If 0 is passed for cRetryCount, the PIN retry maximum value will be unchanged.
Note: implementations that do not support setting the retry count should return an invalid parameter error if a retry value other than 0 is passed.
	CMSpec‑3.7.4.1‑8

	CMR.3.3.1.4
	CardUnblockPin should return 0 on success
	CMSpec‑3.7.4.1‑4

	CMR.3.3.1.5
	After calling CardUnblockPin the card should always be in a de-authenticated state
	

2.3.3.1.2 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.3.1.E1
	CardUnblockPin should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.3.1.E2
	CardUnblockPin should fail when a NULL pwszUserId parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.3.1.E3
	CardUnblockPin should fail when a NULL pbAuthenticationData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2, CMSpec‑3.7.4.1‑9

	CMR.3.3.1.E4
	CardUnblockPin should fail when a NULL pbNewPinData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.3.1.E5
	CardUnblockPin should fail when an invalid pwszUserId parameter is passed

The only allowed value for the pwszUserId are wszCARD_USER_ADMIN and wszCARD_USER_USER as defined in cardmod.h. For any other pwszUserId value, CardUnblockPin is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.7.4.1‑3

	CMR.3.3.1.E6
	CardUnblockPin should fail when an invalid cbAuthenticationData parameter is passed

When cbAuthenticationData equals 0 CardUnblockPin is expected to fail with either SCARD_E_INVALID_PARAMETER or SCARD_W_WRONG_CHV error.
	CMSpec-3.3.2-2

	CMR.3.3.1.E7
	CardUnblockPin should fail when an invalid cbNewPinData parameter is passed

For cards that do not support zero length PINs, passing cbNewPinData equal to 0 (zero) should result in SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.3.1.E8

	CardUnblockPin should fail when an invalid cRetryCount parameter is passed

Implementations that do not support setting the retry count should return SCARD_E_INVALID_PARAMETER error if a retry value other than 0 is passed.
	CMSpec‑3.7.4.1‑8

	CMR.3.3.1.E9
	CardUnblockPin should fail when an invalid dwFlags parameter is passed

dwFlags should be equal to CARD_AUTHENTICATE_PIN_CHALLENGE_RESPONSE as defined in cardmod.h. In other cases, CardUnblockPin is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.7.4.1‑3

	CMR.3.3.1.E10
	CardUnblockPin should fail when previous command sent to card was different than CardGetChallenge

It is expected to fail with SCARD_W_WRONG_CHV or SCARD_W_SECURITY_VIOLATION error.
	CMSpec‑3.7.3.2‑6

	CMR.3.3.1.E11
	CardUnblockPin should fail when an invalid response to previously obtained challenge data is presented
It is expected to fail with SCARD_W_WRONG_CHV error.
	CMSpec-3.3.2-2

	CMR.3.3.1.E12
	CardUnblockPin should fail when a correct response to a previous challenge is used a second time
It is expected to fail with either SCARD_W_WRONG_CHV or SCARD_W_SECURITY_VIOLATION error.
	CMSpec‑3.7.3.2‑6

	CMR.3.3.1.E13
	CardUnblockPin should fail when response data passed is too short

When the response data provided is too short, CardUnblockPin is expected to fail with one of the following error codes: SCARD_W_WRONG_CHV, SCARD_E_INVALID_PARAMETER or SCARD_W_SECURITY_VIOLATION.
	

2.3.3.2 CardChangeAuthenticator

Implementations that enforce policies regarding the authenticator (e.g. PIN policies) should return SCARD_E_INVALID_PARAMETER in the case where changing the authenticator or the form of the new authenticator are not compliant with policy.
2.3.3.2.1.1 General Functional Requirements

	CMR.3.3.2.1
	CardChangeAuthenticator should change the PIN for the card principal

CardChangeAuthenticator should change the authenticator (PIN) for the user when dwFlags parameter equals CARD_AUTHENTICATE_PIN_PIN.
	CMSpec‑3.7.4.2‑1
CMSpec‑3.7.4.2‑6

	CMR.3.3.2.2
	CardChangeAuthenticator should change the challenge/response key for the card principal

CardChangeAuthenticator should change the authenticator (challenge/response key) for the administrator when dwFlags parameter equals CARD_AUTHENTICATE_PIN_CHALLENGE_RESPONSE.
	CMSpec‑3.7.4.2‑1

CMSpec‑3.7.4.2‑6

	CMR.3.3.2.3
	CardChangeAuthenticator function should be a single and atomic transaction
The CardChangeAuthenticator function is atomic, in that authentication and changing of authenticator of the card must occur as a single operation. For this reason, authentication information as well as the new PIN/key data must be presented at the time the call is made.
	CMSpec-3.2

	CMR.3.3.2.4
	After calling CardChangeAuthenticator the card should always be in an authenticated state
	CMSpec-3.7.4.2-10

	CMR.3.3.2.5 optional
	CardChangeAuthenticator should set the maximum allowed number of incorrect PIN entry attempts to the value of cRetryCount parameter

cRetryCount is a count of times that wrong PIN will not result in blocking the card. If 0 is passed for cRetryCount, the PIN retry maximum value will be unchanged. Implementations that do not support setting the retry count should return an invalid parameter error if a retry value other than 0 is passed.
	CMSpec‑3.7.4.2‑8

	CMR.3.3.2.6
	CardChangeAuthenticator should return 0 on success
	CMSpec‑3.7.4.2‑4

2.3.3.2.1.2 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.3.2.E1
	CardChangeAuthenticator should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.3.2.E2
	CardChangeAuthenticator should fail when a NULL pwszUserId parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.3.2.E3
	CardChangeAuthenticator should fail when a NULL pbCurrentAuthenticator parameter is passed
It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.3.2.E4
	CardChangeAuthenticator should fail when a NULL pbNewAuthenticator parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.3.2.E5
	CardChangeAuthenticator should fail when an invalid pwszUserId parameter is passed

The allowed values for the pwszUserId are wszCARD_USER_USER and wszCARD_USER_ADMIN as defined in cardmod.h. For any other pwszUserId value, CardUnblockPin is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.7.4.2‑6

	CMR.3.3.2.E6
	CardChangeAuthenticator should fail when an invalid cbCurrentAuthenticator parameter is passed

When changing the PIN, when cbCurrentAuthenticator equals 0 for cards that do not support zero-length PIN, CardChangeAuthenticator is expected to fail with SCARD_E_INVALID_PARAMETER or SCARD_W_WRONG_CHV error.
	CMSpec-3.3.2-2

	CMR.3.3.2.E7
	CardChangeAuthenticator should fail when an invalid cbNewAuthenticator parameter is passed

When changing the PIN, when cbNewAuthenticator equals 0 for cards that do not support zero-length PIN, CardChangeAuthenticator is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.3.2.E8
optional
	CardChangeAuthenticator should fail when an invalid cRetryCount parameter is passed

Implementations that do not support setting the retry count should return SCARD_E_INVALID_PARAMETER error if a retry value other than 0 is passed.
	CMSpec‑3.7.4.2‑8

	CMR.3.3.2.E9
	CardChangeAuthenticator should fail when an invalid dwFlags parameter is passed

The only allowed values are CARD_AUTHENTICATE_PIN_PIN and CARD_AUTHENTICATE_PIN_CHALLENGE_RESPONSE. For any other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.4.2-6

	CMR.3.3.2.E11
	When authenticating with PIN, CardChangeAuthenticator should fail when an invalid PIN is presented

When dwFlags equals CARD_AUTHENTICATE_PIN_PIN and an invalid PIN is presented (pbCurrentAuthenticator), it is expected to fail with SCARD_W_WRONG_CHV error while the maximum allowed number of failures is not exceeded and it is expected to fail with SCARD_W_CHV_BLOCKED error when the maximum number of failures was exceeded (when the card supports blocking the PIN).
When the PIN is invalid and is not presented to the card, CardChangeAuthenticator may fail with SCARD_E_INVALID_PARAMETER error code.
	

	CMR.3.3.2.E12
	When authenticating with challenge/response, CardChangeAuthenticator should fail when previous command sent to card was different than CardGetChallenge
It is expected to fail with SCARD_W_WRONG_CHV error.
	CMSpec-3.3.2-2 CMSpec‑3.7.4.2-7

	CMR.3.3.2.E13
	When authenticating with challenge/response, CardChangeAuthenticator should fail when an invalid response to previously obtained challenge data is presented
It is expected to fail with SCARD_W_WRONG_CHV error when invalid response is presented.
When the response validation is performed without presenting it to the card (like invalid length) the Card Minidriver may fail with one of the following error codes: SCARD_W_WRONG_CHV, SCARD_E_INVALID_PARAMETER and SCARD_W_SECURITY_VIOLATION.
	CMSpec-3.3.2-2

	CMR.3.3.2.E14 optional
	CardChangeAuthenticator should block the PIN when the maximum allowed number of PIN failures was exceeded

The card may not support blocking the PIN.
	

	CMR.3.3.2.E15 optional
	CardChangeAuthenticator should block the admin key when the maximum allowed number of challenge/response failures was exceeded

The card may not support blocking the admin key.
	

	CMR.3.3.2.E16
	When authenticating with a PIN, CardChangeAuthenticator should return the number of remaining attempts when an incorrect PIN is presented and if the pdwcAttemptsRemaining parameter is non‑NULL

When dwFlags equals CARD_AUTHENTICATE_PIN_PIN and an invalid PIN is presented, this function returns SCARD_W_WRONG_CHV, and if the pdwcAttemptsRemaining parameter is non-NULL, it returns the number of remaining attempts. On the last allowed attempt, the function returns SCARD_W_WRONG_CHV, and the pdwcAttemptsRemaining parameter returns zero. For all attempts beyond the allowed number, the function returns SCARD_W_CHV_BLOCKED, and the pdwcAttemptsRemaining parameter returns zero.

Note: if the Card Minidriver does not support returning the count of remaining authentication attempts it should return -1 for value if pdwcAttemptsRemaining is not NULL.
	CMSpec‑3.7.4.2-8

CMSpec‑3.7.3.1-7

CMSpec‑3.7.4.2-8

	CMR.3.3.2.E17
	When authenticating with a challenge/response, CardChangeAuthenticator should return the number of remaining attempts when an incorrect response data is presented and if the pdwcAttemptsRemaining parameter is non‑NULL

When dwFlags equals CARD_AUTHENTICATE_PIN_CHALLENGE_RESPONSE and an invalid response data is presented, this function returns SCARD_W_WRONG_CHV, and if the pdwcAttemptsRemaining parameter is non-NULL, it returns the number of remaining attempts. On the last allowed attempt, the function returns SCARD_W_WRONG_CHV, and the pdwcAttemptsRemaining parameter returns zero. For all attempts beyond the allowed number, the function returns SCARD_W_CHV_BLOCKED, and the pdwcAttemptsRemaining parameter returns zero.

Note: if the Card Minidriver does not support returning the count of remaining authentication attempts it should return -1 for value if pdwcAttemptsRemaining is not NULL.
	

2.3.4 Public Data Operations

The “logical filesystem” layout is the data layout presented to the CSP. This layout uses more human-readable names, and the files may not correspond in a one-to-one manner with files in the physical layout employed by the card (if any is).
2.3.4.1 CardCreateDirectory

2.3.4.1.1 General Functional Requirements

	CMR.3.4.1.1
	CardCreateDirectory creates a subdirectory with a given name in the root file system
	CMSpec‑3.7.5.1-1

	CMR.3.4.1.2
	CardCreateDirectory applies the provided access condition to subdirectory that’s being created

The directory access condition does not rely on the card principal being authenticated, only on the value of the AccessCondition parameter.
	CMSpec‑3.7.5.1-3 CMSpec‑3.7.5.1-7
CMSpec-3.10.3

	CMR.3.4.1.3
	CardCreateDirectory should return 0 on success
	CMSpec‑3.7.5.1-4

2.3.4.1.2 Error Handling

Errors should be handled in the following order of their occurrence:

	CMR.3.4.1.E1
	CardCreateDirectory should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	 CMSpec-3.3.2-2

	CMR.3.4.1.E2
	CardCreateDirectory should fail when a NULL or empty pszDirectoryName parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.1-8

	CMR.3.4.1.E3
	CardCreateDirectory should fail when directory name provided is too long or too short

Directory names must be 1 to 8 ANSI characters long. If the directory name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.7.5.1-5
CMSpec‑3.7.5.1-12
CMSpec-3.7.5-2

	CMR.3.4.1.E4
	CardCreateDirectory should fail when directory name provided contains forbidden characters

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5-2

	CMR.3.4.1.E5
	CardCreateDirectory should fail when invalid access conditions are passed as an argument to the function

The allowed values for the AccessCondition parameter are defined in cardmod.h (CARD_DIRECTORY_ACCESS_CONDITION enumeration).

When the value is different than UserCreateDeleteDirAc and AdminCreateDeleteDirAc, the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.7.5.1-6

CMSpec‑3.10.3

	CMR.3.4.1.E7
	CardCreateDirectory fails if the given subdirectory already exists

It is expected to fail with ERROR_FILE_EXISTS error.
	CMSpec‑3.7.5.1-8

	CMR.3.4.1.E8
	CardCreateDirectory fails when it receives as a parameter the name of an existing file

It is expected to fail with ERROR_FILE_EXISTS error.
	CMSpec‑3.7.5.1-10

	CMR.3.4.1.E9
	CardCreateDirectory fails if there is not sufficient space to create the new directory on the card

It is expected to fail with SCARD_E_NO_MEMORY error.
	CMSpec‑3.7.5.1-8

2.3.4.2 CardDeleteDirectory

2.3.4.2.1 General Functional Requirements

	CMR.3.4.2.1
	CardDeleteDirectory deletes a directory with a given name from the root file system
	CMSpec‑3.7.5.2‑1

	CMR.3.4.2.2
	CardDeleteDirectory should return 0 on success
	CMSpec‑3.7.5.2‑4

2.3.4.2.2 Error Handling
Errors should be handled in the following order of their occurrence:
	CMR.3.4.2.E1
	CardDeleteDirectory should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.2.E2
	CardDeleteDirectory should fail when a NULL or empty pszDirectoryName parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.1-5

	CMR.3.4.2.E3
	CardDeleteDirectory should fail when directory name provided is too long or too short

Directory names must be 1 to 8 ANSI characters long. If the directory name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.7.5.1-9

	CMR.3.4.2.E4
	CardDeleteDirectory should fail when directory name provided contains forbidden characters

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5-2

	CMR.3.4.2.E5
	CardDeleteDirectory should fail when called without authenticating to the card first

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec‑3.7.5.2‑6

	CMR.3.4.2.E6
	CardDeleteDirectory should fail when the directory named pszDirectoryName does not exist on the card

It is expected to fail with SCARD_E_DIR_NOT_FOUND error.
	CMSpec-3.7.5.2-8

	CMR.3.4.2.E7
	CardDeleteDirectory should fail when the directory pszDirectoryName is not empty

It is expected to fail with ERROR_DIR_NOT_EMPTY error.
	CMSpec‑3.7.5.2‑7

	CMR.3.4.2.E8
	CardDeleteDirectory should fail when user tries to delete a directory created with ‘AdminCreateDeleteDirAc’ access condition

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec‑3.7.5.2‑1

CMSpec‑3.10.3

	CMR.3.4.2.E9
	CardDeleteDirectory should fail when admin tries to delete a directory created with ‘UserCreateDeleteDirAc’ access condition

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec‑3.7.5.2‑1
CMSpec‑3.10.3

2.3.4.3 CardReadFile

2.3.4.3.1 General Functional Requirements

	CMR.3.4.3.1
	CardReadFile reads the entire file specified by the pszFileName (located in the specified pszDirectoryName) into user-supplied buffer
	CMSpec‑3.7.5.3‑1

	CMR.3.4.3.2
	Card Minidriver should allocate memory for the buffer containing the returned data

The memory should be allocated using the provided pfnCspAlloc/ReAlloc callback. The buffer will be freed by the caller (CSP/KSP).
	CMSpec‑3.7.5.3‑5

	CMR.3.4.3.3
	CardReadFile should set the content of the pcbData pointer to the number of bytes read from the file

On input, the contents of the pointer’s destination should be ignored.
	CMSpec‑3.7.5.3‑3

	CMR.3.4.3.4
	CardReadFile should return 0 on success
	CMSpec‑3.7.5.3‑4

2.3.4.3.2 Performance Requirements

	CMR.3.4.3.X1
	Maximum allowed time for CardReadFile (file of size 2048 bytes) is 3.5 seconds
	

	CMR.3.4.3.X2
	CardReadFile should read the file of size 2048 bytes in no more than 3.2 seconds, measured as an average over 20 iterations
	

2.3.4.3.3 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.4.3.E1
	CardReadFile should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.3.E2
	CardReadFile should fail when a NULL or empty pszFileName parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.3.E3
	CardReadFile should fail when a NULL ppbData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.3.E4
	CardReadFile should fail when a NULL pcbData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.3.E5
	CardReadFile should fail when directory name provided is too long or too short (when not NULL)

Directory names must be 1 to 8 ANSI characters long. If the directory name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.3-8

	CMR.3.4.3.E6
	CardReadFile should fail when directory name provided contains forbidden characters (when not NULL)

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.10.3

	CMR.3.4.3.E7
	CardReadFile should fail when the directory named pszDirectoryName does not exist on the card (when not NULL)

It is expected to fail with SCARD_E_DIR_NOT_FOUND error.
	CMSpec‑3.7.5.3‑7

	CMR.3.4.3.E8
	CardReadFile should fail when file name provided is too long or too short

File names must be 1 to 8 ANSI characters long. If the file name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.3-8

	CMR.3.4.3.E9
	CardReadFile should fail when the file name provided contains forbidden characters

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.10.3

	CMR.3.4.3.E10
	CardReadFile should fail when the file named pszFileName does not exist on the card in the given directory

It is expected to fail with SCARD_E_FILE_NOT_FOUND error.
	CMSpec-3.7.5.3-6

	CMR.3.4.3.E11
	CardReadFile should fail when a non-zero dwFlags parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.3-3

	CMR.3.4.3.E12
	CardReadFile should fail when the card principal does not have the rights to read the given file

Access conditions control which principals may access a given file and what operations they may perform. Each file on the card has an access condition which can be described by a list of principals and their access privileges.

CardReadFile is expected to fail with SCARD_W_SECURITY_VIOLATION error when the card principal has no read access to the file.
	CMSpec-3.10.4

2.3.4.4 CardCreateFile

2.3.4.4.1 General Functional Requirements

	CMR.3.4.4.1
	CardCreateFile creates a file on the card in the given directory with a specified name
	CMSpec-3.7.5.4‑1

	CMR.3.4.4.2
	CardCreateFile applies the provided access condition to the file that’s being created
	CMSpec-3.7.5.4‑1

	CMR.3.4.4.3
	CardCreateFile reserves the given space (cbInitialCreationSize) on the card for the file being created
	CMSpec-3.7.5.4‑5

	CMR.3.4.4.4
	CardCreateFile should return 0 on success
	CMSpec-3.7.5.4‑4

2.3.4.4.2 Performance Requirements

	CMR.3.4.4.X1
	Maximum allowed time for CardCreateFile (file of size 128 Bytes) is 5 seconds
	

	CMR.3.4.4.X2
	CardCreateFile should create a file of size 128 Bytes in no more than 4 seconds, measured as an average over 20 iterations
	

2.3.4.4.3 Error Handling

Errors should be handled in the following order of their occurrence

	CMR.3.4.4.E1
	CardCreateFile should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.4.E2
	CardCreateFile should fail when a NULL or empty pszFileName parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

CMSpec-3.7.5.4‑5

	CMR.3.4.4.E3
	CardCreateFile should fail when directory name provided is too long or too short (when not NULL)

Directory names must be 1 to 8 ANSI characters long. If the directory name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.4-11

	CMR.3.4.4.E4
	CardCreateFile should fail when directory name provided contains forbidden characters (when not NULL)

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5-2

	CMR.3.4.4.E5
	CardCreateFile should fail when the directory named pszDirectoryName does not exist on the card (when not NULL)

It is expected to fail with SCARD_E_DIR_NOT_FOUND error.
	CMSpec-3.7.5.4-1

CMSpec-3.7.5.4-9

	CMR.3.4.4.E6
	CardCreateFile should fail when the card principal is not allowed to create a file in the given directory (directory access conditions)

When the directory was created with UserCreateDeleteDirAc access condition, only authenticated users and admins can create files in this directory. When the directory was created with AdminCreateDeleteDirAc access condition, only admins can create files in this directory.

Otherwise SCARD_W_SECURITY_VIOLATION error code should be returned.
	CMSpec-3.10.3
CMSpec-3.7.5.4-10

	CMR.3.4.4.E7
	CardCreateFile should fail when the file name provided is too long or too short

File names must be 1 to 8 ANSI characters long. If the file name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.4-11

	CMR.3.4.4.E8
	CardCreateFile should fail when file name provided contains forbidden characters

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5-2

	CMR.3.4.4.E9
	CardCreateFile fails when it receives as parameter the name of an existing file

It is expected to fail with ERROR_FILE_EXISTS error.
	CMSpec-3.7.5.4‑8

	CMR.3.4.4.E11
	CardCreateFile should fail when the requested initial file size is greater than the free space on the card

When there is not sufficient space on the card to create the file of size cbInitialCreationSize, CardCreateFile is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.4‑5

	CMR.3.4.4.E12
	CardCreateFile should fail when invalid access conditions are passed as an argument to the function

The allowed values for the AccessCondition parameter are defined in cardmod.h (CARD_FILE_ACCESS_CONDITION enumeration).

When the value is different than EveryoneReadUserWriteAc, UserWriteExecuteAc and EveryoneReadAdminWriteAc, the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.4‑6

2.3.4.5 CardGetFileInfo

2.3.4.5.1 General Functional Requirements

	CMR.3.4.5.1
	CardGetFileInfo retrieves information about the given file

The function fills the caller’s CARD_FILE_INFO structure with the file’s details.
	CMSpec‑3.7.5.5‑1

	CMR.3.4.5.2
	CardGetFileInfo should return 0 on success
	CMSpec‑3.7.5.5‑4

	CMR.3.4.5.3
	CardGetFileInfo should return the size of the data in its uncompressed form

When the card supports file compression, the file size returned by CardGetFileInfo should be in its uncompressed form.
	CMSpec‑3.7.5.5‑9

	CMR.3.4.5.4
	CardGetFileInfo should return 0 as a file size of a newly created file

The reported size of a newly created file (when no data has been written to it yet) should be 0, even if that file was created with a non-zero file size.
	CMSpec‑3.7.5.5‑9

	CMR.3.4.5.5
	CardGetFileInfo should treat version 0 of the CARD_FILE_INFO as version 1

If the API method is called with a structure containing a dwVersion of 0, then this must be treated as a dwVersion of 1.
	CMSpec‑8.1.2

2.3.4.5.2 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.4.5.E1
	CardGetFileInfo should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.5.E2
	CardGetFileInfo should fail when a NULL or empty pszFileName parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.5.E3
	CardGetFileInfo should fail when a NULL pCardFileInfo parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.3.2‑2

	CMR.3.4.5.E4
	CardGetFileInfo should fail when directory name provided is too long or too short (when not NULL)

Directory names must be 1 to 8 ANSI characters long. If the directory name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.5-12

	CMR.3.4.5.E5
	CardGetFileInfo should fail when directory name provided contains forbidden characters (when not NULL)

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5-2

	CMR.3.4.5.E6
	CardGetFileInfo should fail when the directory named pszDirectoryName does not exist on the card (when not NULL)

It is expected to fail with SCARD_E_DIR_NOT_FOUND error.
	CMSpec-3.7.5.5-10

	CMR.3.4.5.E7
	CardGetFileInfo should fail when the file name provided is too long or too short

File names must be 1 to 8 ANSI characters long. If the file name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.5-12

	CMR.3.4.5.E8
	CardGetFileInfo should fail when file name provided contains forbidden characters
	CMSpec-3.7.5-2

	CMR.3.4.5.E9
	CardGetFileInfo should fail when the file named pszFileName does not exist on the card in the given directory

It is expected to fail with SCARD_E_FILE_NOT_FOUND error.
	CMSpec-3.7.5.5-5

	CMR.3.4.5.E10
	CardGetFileInfo should fail when the version of the CARD_FILE_INFO structure is not supported by the Card Minidriver

It is expected to fail with ERROR_REVISION_MISMATCH error.
	CMSpec-8.1.2

	CMR.3.4.5.E11
	CardGetFileInfo should fail when the card principal does not have permissions to read the file

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec-3.7.5.5-11

2.3.4.6 CardWriteFile

2.3.4.6.1 General Functional Requirements

	CMR.3.4.6.1
	CardWriteFile writes the entire contents of a data buffer to an existing file
	CMSpec‑3.7.5.6‑1

	CMR.3.4.6.2
	CardWriteFile overwrites the contents of the existing file starting at the beginning of the file, changing its size accordingly
	CMSpec‑3.7.5.6‑1

	CMR.3.4.6.3
	CardWriteFile should dynamically grow a file when cbData is greater than the current file size

If the size (cbData) specified through CardWriteFile is larger than the current file size specified through CardCreateFile, it should succeed, unless the card is out-of-space. Card Minidriver-based cards need to be able to dynamically grow files.
	CMSpec‑3.7.5.6‑7

	CMR.3.4.6.4
	CardWriteFile should return 0 on success
	CMSpec‑3.7.5.6‑4

2.3.4.6.2 Performance Requirements

	CMR.3.4.6.X1
	Maximum allowed time for CardWriteFile (2048 bytes of data) is 7 seconds
	

	CMR.3.4.6.X2
	CardWriteFile should write 2048 bytes of data on the card in no more than 6 seconds, measured as an average over 20 iterations
	

2.3.4.6.3 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.4.6.E1
	CardWriteFile should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.6.E2
	CardWriteFile should fail when a NULL or empty pszFileName parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.6.E3
	CardWriteFile should fail when a NULL pbData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.3.2‑2

	CMR.3.4.6.E4
	CardWriteFile should fail when directory name provided is too long or too short (when not NULL)

Directory names must be 1 to 8 ANSI characters long. If the directory name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	 CMSpec-3.7.5.6-10

	CMR.3.4.6.E5
	CardWriteFile should fail when directory name provided contains forbidden characters (when not NULL)

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5-2

	CMR.3.4.6.E6
	CardWriteFile should fail when the directory named pszDirectoryName does not exist on the card (when not NULL)

It is expected to fail with SCARD_E_DIR_NOT_FOUND error.
	 CMSpec-3.7.5.6-9

	CMR.3.4.6.E7
	CardWriteFile should fail when the file name provided is too long or too short

File names must be 1 to 8 ANSI characters long. If the file name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	 CMSpec-3.7.5.6-10

	CMR.3.4.6.E8
	CardWriteFile should fail when file name provided contains forbidden characters

It is expected to fail with SCARD_E_FILE_NOT_FOUND error.
	CMSpec-3.7.5-2

	CMR.3.4.6.E9
	CardWriteFile should fail when the file named pszFileName does not exist on the card in the given directory

It is expected to fail with SCARD_E_FILE_NOT_FOUND error.
	 CMSpec-3.7.5.6-9

	CMR.3.4.6.E10
	CardWriteFile should fail when a non-zero dwFlags parameter is passed

It is expected to fail with SCARD_E_FILE_NOT_FOUND error.
	CMSpec‑3.7.5.6‑8

	CMR.3.4.6.E12
	CardWriteFile should fail when the card principal is not allowed to write to the file in the given directory (file access conditions)

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec-3.10.4

	CMR.3.4.6.E13
	CardWriteFile should fail when the size (cbData) is larger that the current file size and the card is out-of-space

It is expected to fail with SCARD_E_WRITE_TOO_MANY error.
	CMSpec‑3.7.5.6‑6

2.3.4.7 CardDeleteFile

2.3.4.7.1 General Functional Requirements

	CMR.3.4.7.1
	CardDeleteFile deletes the specified file
	CMSpec‑3.7.5.7‑1

	CMR.3.4.7.2
	CardDeleteFile should return 0 on success
	CMSpec‑3.7.5.7‑4

2.3.4.7.2 Performance Requirements

	CMR.3.4.7.X1
	Maximum allowed time for CardDeleteFile (file of size 128 bytes) is 5 seconds
	

	CMR.3.4.7.X2
	CardDeleteFile should delete a file of size 128 bytes in no more than 4 seconds, measured as an average over 20 iterations
	

2.3.4.7.3 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.3.4.7.E1
	CardDeleteFile should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.7.E2
	CardDeleteFile should fail when a NULL or empty pszFileName parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.7.E4
	CardDeleteFile should fail when directory name provided is too long or too short (when not NULL)

Directory names must be 1 to 8 ANSI characters long. If the directory name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.1-10

	CMR.3.4.7.E5
	CardDeleteFile should fail when directory name provided contains forbidden characters (when not NULL)

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5-2

	CMR.3.4.7.E6
	CardDeleteFile should fail when the directory named pszDirectoryName does not exist on the card (when not NULL)

It is expected to fail with SCARD_E_DIR_NOT_FOUND error.
	CMSpec-3.7.5.3-9

	CMR.3.4.7.E7
	CardDeleteFile should fail when the file name provided is too long or too short

File names must be 1 to 8 ANSI characters long. If the file name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.1-10

	CMR.3.4.7.E8
	CardDeleteFile should fail when file name provided contains forbidden characters
	CMSpec-3.7.5-2

	CMR.3.4.7.E9
	CardDeleteFile should fail when the file named pszFileName does not exist on the card in the given directory

It is expected to fail with SCARD_E_FILE_NOT_FOUND error.
	CMSpec‑3.7.5.7‑7

	CMR.3.4.7.E10
	CardDeleteFile should fail when a non-zero dwFlags parameter is passed
	CMSpec‑3.7.5.7‑5

	CMR.3.4.7.E11
	CardDeleteFile should fail when called without authenticating to the card first

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec‑3.7.5.7‑6

	CMR.3.4.7.E12
	CardDeleteFile should fail when the card principal is not allowed to delete the file from the given directory (directory access conditions)

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec-3.7.5.7-8

2.3.4.8 CardEnumFiles

2.3.4.8.1 General Functional Requirements

	CMR.3.4.8.1
	CardEnumFiles returns name information about available files in the directory as a multi-string list
	CMSpec‑3.7.5.8-1

	CMR.3.4.8.2
	The name information (pmszFileNames) should be returned as a contiguous block of data – a multi‑string

The format of this string is a multi-string. It is a contiguous block of data. Individual strings are separated by ‘\0’ characters. The block is terminated by two ‘\0’ characters in a row (one for the final string and another to indicate the multi-string is finished).
	CMSpec‑3.7.5.8-6

	CMR.3.4.8.3
	CardEnumFiles allocates the memory for the multi-string using PFN_CSP_ALLOC/REALLOC and returns its address as pmszFileNames pointer’s destination value

The memory will be freed by the caller.
	CMSpec‑3.7.5.8-6

	CMR.3.4.8.4
	CardEnumFiles returns the size of the allocated name information buffer as pdwcbFileName pointer’s destination value
	CMSpec‑3.7.5.8-3

	CMR.3.4.8.5
	CardEnumFiles should return 0 on success
	CMSpec‑3.7.5.8-4

2.3.4.8.2 Error Handling
Errors should be handled in the following order of their occurrence:
	CMR.3.4.8.E1
	CardEnumFiles should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.8.E2
	CardEnumFiles should fail when a NULL pmszFileNames parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.8.E3
	CardEnumFiles should fail when a NULL pdwcbFileName parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.8.E4
	CardEnumFiles should fail when directory name provided is too long or too short (when not NULL)

Directory names must be 1 to 8 ANSI characters long. If the directory name is too long or too short, the function should return SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5.8-8

	CMR.3.4.8.E5
	CardEnumFiles should fail when directory name provided contains forbidden characters (when not NULL)

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.7.5-2

	CMR.3.4.8.E6
	CardEnumFiles should fail when the directory named pszDirectoryName does not exist on the card (when not NULL)

It is expected to fail with SCARD_E_DIR_NOT_FOUND error.
	CMSpec-3.7.5.8-7

	CMR.3.4.8.E7
	CardEnumFiles should fail when a non-zero dwFlags parameter is passed
	CMSpec‑3.7.5.8-5

	CMR.3.4.8.E8
	CardEnumFiles should fail when the given directory is empty

It is expected to fail with SCARD_E_DIR_NOT_FOUND error.
	CMSpec‑3.7.5.8-4

2.3.4.9 CardQueryFreeSpace

2.3.4.9.1 General Functional Requirements

	CMR.3.4.9.1
	CardQueryFreeSpace returns the amount of available card storage space

The function fills the caller’s CARD_FREE_SPACE_INFO structure with the card’s free space details. These may be approximate values in some cases. Values that cannot be determined should be set to CARD_DATA_VALUE_UNKNOWN.
Caller sets the dwVersion.
	CMSpec‑3.7.5.9‑1

CMSpec‑3.7.5.9‑11

	CMR.3.4.9.2
	CardQueryFreeSpace should return 0 on success
	CMSpec‑3.7.5.9‑4

	CMR.3.4.9.3
	CardQueryFreeSpace should treat version 0 of the CARD_FREE_SPACE_INFO as version 1

If the API method is called with a structure containing a dwVersion of 0, then this must be treated as a dwVersion of 1.
	CMSpec‑8.1.2

2.3.4.9.2 Error Handling
Errors should be handled in the following order of their occurrence:
	CMR.3.4.9.E1
	CardQueryFreeSpace should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.9.E2
	CardQueryFreeSpace should fail when a NULL pCardFreeSpaceInfo parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.3.4.9.E3
	CardQueryFreeSpace should fail when a non-zero dwFlags parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.7.5.9‑8

	CMR.3.4.9.E4
	CardQueryFreeSpace should fail when the version of the CARD_FREE_SPACE_INFO structure is not supported by the Card Minidriver
It is expected to fail with ERROR_REVISION_MISMATCH error.
	CMSpec-8.1.2

2.4 Smart Card Minidriver Support Exports

These operations are called by the Microsoft Smart Card Base CSP application in support of CAPI cryptographic operations or by Microsoft Smart Card KSP based applications in support of CNG operations. It is not expected that these functions will be called except via the Microsoft Smart Card Base CSP or CNG KSP.

2.4.1 Card Capabilities

It will be necessary for the card CSP/KSP to support multiple variations of specific cards and Card Minidrivers. To best take advantage of the capabilities of a given card, the card-specific minidriver provides an API that the CSP/KSP can use to query the full set of functionality provided by the card. If any functionality provided by the CSP/KSP is provided by the card, such as compression, the CSP/KSP should always rely on the card implementation. Otherwise, the CSP/KSP will fall back to its own implementation of this functionality.

2.4.1.1 CardQueryCapabilities

2.4.1.1.1 Functional Requirements
	CMR.4.1.1.1
	CardQueryCapabilities returns the details about functionality provided by the card and the Card Minidriver
Caller should set the dwVersion.
	CMSpec‑3.8.1.1‑1

	CMR.4.1.1.2
	CardQueryCapabilities should return 0 on success
	CMSpec‑3.8.1.1‑3

	CMR.4.1.1.3
	CardQueryCapabilities should treat version 0 of the CARD_CAPABILITIES as version 1

If the API method is called with a structure containing a dwVersion of 0, then this must be treated as a dwVersion of 1.
	CMSpec‑8.1.2

2.4.1.1.2 Error Handling
Errors should be handled in the following order of their occurrence:
	CMR.4.1.1.E1
	CardQueryCapabilities should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.1.1.E2
	CardQueryCapabilities should fail when a NULL pCardCapabilities parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.1.1.E3
	CardQueryCapabilities should fail when the version of the CARD_CAPABILITIES structure is not supported by the Card Minidriver
It is expected to fail with ERROR_REVISION_MISMATCH error.
	CMSpec-8.1.2

2.4.2 Key Container

2.4.2.1 CardCreateContainer

2.4.2.1.1 Functional Requirements

	CMR.4.2.1.1 optional
	CardCreateContainer creates on the card a new key container named using a GUID generated by CAPI when dwFlags equals CARD_CREATE_CONTAINER_KEY_GEN

New container is created using random key generation.
	CMSpec‑3.8.2.1‑1

	CMR.4.2.1.2 optional
	CardCreateContainer imports the key material for the container when dwFlags equals CARD_CREATE_CONTAINER_KEY_IMPORT

New container is created via import of existing key data.
For applications where the card does not support on-card key generation, or if it is desired to archive the keys, the key material can be supplied with the call by specifying in flags that the card is to import the supplied key material (pbKeyData). Imported key material is passed in a “private key blob,” typically returned from CryptExportKey.

Note: if the card does not support key import of the type attempted, it may reject the operation by returning SCARD_E_INVALID_PARAMETER.
	CMSpec‑3.8.2.1‑1

	CMR.4.2.1.3
	CardCreateContainer should overwrite the target container if it already exists
	CMSpec‑3.8.2.1‑8

	CMR.4.2.1.4
	CardCreateContainer creates a key container for a given (dwKeySpec) type of key

The allowed values are: AT_ECDH_P256, AT_ECDH_P384, AT_ECDH_P521,
AT_ECDSA_P256, AT_ECDSA_P384, or AT_ECDSA_P521 specify ECC keys. AT_SIGNATURE or AT_KEYEXCHANGE specify RSA keys and are usable on dual mode cards.

Note: Card Minidriver may support only a subset of the key types.
	CMSpec‑3.8.2.1‑3

	CMR.4.2.1.5
	CardCreateContainer should return 0 on success
	CMSpec‑3.8.2.1‑4

	CMR.4.2.1.6
	Subsequent calls to CardCreateContainer should not result in the same key being generated
	

	CMR.4.2.1.7
	Card Minidriver should allow user to create the container, either by generating the key on the card or by importing the key

The Card Minidriver may support both the CARD_CREATE_CONTAINER_KEY_GEN and CARD_CREATE_CONTAINER_KEY_IMPORT parameters, but must support at least one of these parameters.
	CMSpec‑3.8.2.1‑6

	
	A container may contain both a signature key and an encryption key. If CardCreateContainer is invoked to create (or import) a key in an existing container, then it should add the new key material to the existing container, overwriting the existing signature or encryption key as necessary.
	

2.4.2.1.2 Performance Requirements

	CMR.4.2.1.X1
optional
	Maximum allowed time for CardCreateContainer (1024bit RSA key) is 20 seconds
	

	CMR.4.2.1.X2
optional
	CardCreateContainer should generate a 1024bit RSA key container in no more than 10 seconds, measured as an average over 20 retries
	

	CMR.4.2.1.X3
optional
	Maximum allowed time for CardCreateContainer (2048bit RSA key) is 150 seconds
	

	CMR.4.2.1.X4
optional
	CardCreateContainer should generate a 2048bit RSA key container in no more than 100 seconds, measured as an average over 20 retries
	

	CMR.4.2.1.X5
optional
	Maximum allowed time for CardCreateContainer (256bit ECC key) is 12 seconds
	

	CMR.4.2.1.X6
optional
	CardCreateContainer should generate a 256bit ECC key container in no more than 10 seconds, measured as an average over 20 retries
	

	CMR.4.2.1.X7
optional
	Maximum allowed time for CardCreateContainer (384bit ECC key) is 25 seconds
	

	CMR.4.2.1.X8
optional
	CardCreateContainer should generate a 384bit ECC key container in no more than 20 seconds, measured as an average over 20 retries
	

	CMR.4.2.1.X9
optional
	Maximum allowed time for CardCreateContainer (521bit ECC key) is 30 seconds
	

	CMR.4.2.1.X10
optional
	CardCreateContainer should generate a 521bit ECC key container in no more than 25 seconds, measured as an average over 20 retries
	

2.4.2.1.3 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.4.2.1.E1
	CardCreateContainer should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.2.1.E2
	When dwFlags is CARD_CREATE_CONTAINER_KEY_IMPORT, CardCreateContainer should fail when a NULL pbKeyData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.2.1.E4
	CardCreateContainer should fail when invalid dwFlags parameter is passed

The allowed values for dwFlags are: CARD_CREATE_CONTAINER_KEY_GEN and CARD_CREATE_CONTAINER_KEY_IMPORT.

For other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.2.1‑3

	CMR.4.2.1.E5
	CardCreateContainer should fail when an invalid dwKeySpec parameter is passed

The allowed values for dwKeySpec are: AT_ECDH_P256, AT_ECDH_P384, AT_ECDH_P521, AT_ECDSA_P256, AT_ECDSA_P384, AT_ECDSA_P521 for specify ECC keys and AT_SIGNATURE or AT_KEYEXCHANGE for RSA keys.

For other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.2.1‑10

	CMR.4.2.1.E6
	CardCreateContainer should fail when an invalid dwKeySize parameter is passed

For ECC keys dwKeySize should be zero. For RSA keys dwKeySize should be a valid (supported by the card) bit key length.

For other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error or SCARD_E_UNSUPPORTED_FEATURE.
	CMSpec‑3.8.2.1‑3

	CMR.4.2.1.E7
	CardCreateContainer should fail when the card does not support key import/generation of the type attempted

If the card does not support key import of the type attempted, it may reject the operation by returning SCARD_E_UNSUPPORTED_FEATURE.
	CMSpec‑3.8.2.1‑8
CMSpec‑3.8.2.1‑12

	CMR.4.2.1.E8
	CardCreateContainer should fail when called by card principal other than user
Containers may only be created by users. If an administrator or unauthenticated user tries to create a container, CardCreateContainer is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec-3.8.2.1-10

2.4.2.2 CardDeleteContainer

2.4.2.2.1 Functional Requirements

	CMR.4.2.2.1
	CardDeleteContainer deletes the key container specified by its index value

The function deletes the key material associated with the indexed container. It should delete all of the key material (both public and private) that is associated with that index value. Certificates are deleted separately by the CSP/KSP by means of calls to CardDeleteFile() for the files that contain the affected certificates. CardDeleteContainer removes key material that is not reachable via the file system. Note also that update of the ContainerMapFile is also solely the responsibility of the CSP/KSP, doing so via the file system calls.
	CMSpec‑3.8.2.2‑1

	CMR.4.2.2.2
	CardDeleteContainer should return 0 on success

Function should return 0 when the container existed and was successfully deleted. Also, it is expected to return 0 when the container did not exist.
	CMSpec‑3.8.2.2‑4

CMSpec‑3.8.2.2‑6

2.4.2.2.2 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.4.2.2.E1
	CardDeleteContainer should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.2.2.E3
	CardDeleteContainer should fail when a nonzero dwReserved parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.2.2‑3

	CMR.4.2.2.E4
	CardDeleteContainer should fail when called without authenticating to the card first

Only users and administrators can delete containers. For non-authenticated users the function is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec-3.8.2.1-11

2.4.2.3 CardGetContainerInfo

2.4.2.3.1 Functional Requirements

	CMR.4.2.3.1
	CardGetContainerInfo returns public information available about the named key container

The function fills the caller’s CONTAINER_INFO structure with the container’s public details.

In the CONTAINER_INFO structure, if cbSigPublicKey and pbSigPublicKey fields are not set it implies that the Signature key is not present. Same is true for the fields corresponding to the Encryption (Key Exchange) key.
	CMSpec‑3.8.2.3‑1

	CMR.4.2.3.2
	CardGetContainerInfo should allocate memory for buffers in CONTAINER_INFO structure using PFN_CSP_ALLOC/REALLOC

The memory needs to be freed by the caller.
	CMSpec‑3.8.2.3‑5

	CMR.4.2.3.3
	CardGetContainerInfo should return 0 on success
	CMSpec‑3.8.2.3‑4

	CMR.4.2.3.4
	CardGetContainerInfo should treat version 0 of the CONTAINER_INFO as version 1

If the API method is called with a structure containing a dwVersion of 0, then this must be treated as a dwVersion of 1.
	CMSpec‑8.1.2

2.4.2.3.2 Performance Requirements

	CMR.4.2.3.X1
	Maximum allowed time for CardGetContainerInfo (1024bit key container) is 5 seconds
	

	CMR.4.2.3.X2
	CardGetContainerInfo should return the 1024bit key container public information in no more than 5 seconds, measured as an average over 20 iterations
	

2.4.2.3.3 Error Handling

Errors should be handled in the following order of their occurrence:

	CMR.4.2.3.E1
	CardGetContainerInfo should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.2.3.E2
	CardGetContainerInfo should fail when a NULL pContainerInfo parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.2.3.E3
	CardGetContainerInfo should fail when an nonexistent or invalid bContainerIndex is passed

It is expected to fail with SCARD_E_NO_KEY_CONTAINER error.
	CMSpec‑3.8.2.3‑11

	CMR.4.2.3.E4
	CardGetContainerInfo should fail when a nonzero dwFlags parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.2.3‑3

	CMR.4.2.3.E5
	CardGetContainerInfo should fail when the version of the CONTAINER_INFO structure is not supported by the Card Minidriver
It is expected to fail with ERROR_REVISION_MISMATCH error.
	CMSpec-8.1.2

2.4.3 Cryptography Operations

2.4.3.1 CardRSADecrypt

2.4.3.1.1 Functional Requirements

	CMR.4.3.1.1 optional
	CardRSADecrypt performs an RSA decryption operation on the passed buffer using the private key referred to by a container index

This operation is restricted to a single buffer of a size equal to the key modulus – the input data should be padded by the caller to meet the requirements of the algorithm requested by the caller.

Data to be processed by the card is passed in and received back in the CARD_RSA_DECRYPT_INFO structure (see cardmod.h).
	CMSpec‑3.8.3.1‑1

	CMR.4.3.1.2
	CardRSADecrypt should return 0 on success
	CMSpec‑3.8.3.1‑4

	CMR.4.3.1.3
	CardRSADecrypt should treat version 0 of the CARD_RSA_DECRYPT_INFO as version 1

If the API method is called with a structure containing a dwVersion of 0, then this must be treated as a dwVersion of 1.
	CMSpec‑8.1.2

2.4.3.1.2 Performance Requirements

	CMR.4.3.1.X1
	Maximum allowed time for CardRSADecrypt (data buffer of size 32 bytes) is 1.5 seconds
	

	CMR.4.3.1.X2
	CardRSADecrypt should perform the RSA decryption on a data buffer of size 32 bytes in no more than 1 second, measured as an average over 20 iterations
	

2.4.3.1.3 Error Handling

Errors should be handled in the following order of their occurrence:

	CMR.4.3.1.E1
	CardRSADecrypt should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.1.E2
	CardRSADecrypt should fail when a NULL pInfo parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.1.E3
	CardRSADecrypt should fail when the version of the CARD_RSA_DECRYPT_INFO structure is not supported by the Card Minidriver
It is expected to fail with ERROR_REVISION_MISMATCH error.
	CMSpec-8.1.2

	CMR.4.3.1.E4
	CardRSADecrypt should fail when an nonexistent bContainerIndex is passed

It is expected to fail with SCARD_E_NO_KEY_CONTAINER error.
	CMSpec‑3.8.3.1‑10

	CMR.4.3.1.E5
	CardRSADecrypt should fail when an invalid value for dwKeySpec field is passed as part of the CARD_RSA_DECRYPT_INFO structure

The only allowed values for dwKeySpec are AT_SIGNATURE or AT_KEYEXCHANGE. For any other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error.

Also, when the dwKeySpec provided is not the same type as the container’s key type the SCARD_E_INVALID_PARAMETER error should be returned.
	

	CMR.4.3.1.E6
	CardRSADecrypt should fail when a NULL value for pbData field is passed as part of the CARD_RSA_DECRYPT_INFO structure

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.1‑6

	CMR.4.3.1.E7
	CardRSADecrypt should fail when an invalid value for cbData field is passed as part of the CARD_RSA_DECRYPT_INFO structure

For RSA decryption, the buffer size will always be equal in length to the public modulus. If the Card Minidriver finds that the buffer size is insufficient for the RSA algorithm, the function should fail with SCARD_E_INSUFFICIENT_BUFFER error.
	CMSpec‑3.8.3.1‑9

	CMR.4.3.1.E8
	CardRSADecrypt should fail when called without authenticating to the card first

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	

2.4.3.2 CardConstructDHAgreement

2.4.3.2.1 Functional Requirements

	CMR.4.3.2.1 optional
	CardConstructDHAgreement performs a secret agreement calculation for Diffie-Hellman key exchange using a private key referred to by a container index

Data to be processed by the card is passed in and received back in the CARD_DH_AGREEMENT_INFO structure (see cardmod.h).
	CMSpec‑3.8.3.2‑1

	CMR.4.3.2.2
	CardConstructDHAgreement should return the index to the DH agreement (bSecretAgreementIndex in the CARD_DH_AGREEMENT_INFO structure)

The Card Minidriver should index the DH agreement on the card by maintaining bSecretAgreementIndex BYTE in the CARD_DH_AGREEMENT_INFO -- a handle to the card side agreement.
	CMSpec‑3.8.3.2‑2

	CMR.4.3.2.3
	The DH agreement constructed using CardConstructDHAgreement function should be valid only in the given card context

The lifetime of the hAgreedSecret is limited by the length of time of the Card Minidriver context associated with the card or by a call to CardDestroyDHAgreement. All smart card DH agreements are ephemeral and are not retrievable after a card reset.

Card Minidrivers should not rely on calls to CardDestroyDHAgreement being called. They may keep them in volatile memory or clean them up during power up.
	CMSpec‑3.8.3.5‑9

	CMR.4.3.2.4
optional
	Card Minidriver should support multiple agreements in parallel for the same card

This requirement is only for cards that support more than one agreement.
	CMSpec‑3.8.3.2‑10

	CMR.4.3.2.5
	CardConstructDHAgreement should return 0 on success
	CMSpec‑3.8.3.2‑5

2.4.3.2.2 Performance Requirements

	CMR.4.3.2.X1
	Maximum time for CardConstructDHAgreement is 7 seconds
	

	CMR.4.3.2.X2
	CardConstructDHAgreement should perform a secret agreement calculation for Diffie-Hellman key exchange in no more than 6 second, measured as an average over 20 iterations
	

2.4.3.2.3 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.4.3.2.E1
	CardConstructDHAgreement should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.2.E2
	CardConstructDHAgreement should fail when a NULL pSecretInfo parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.2.E3
	CardConstructDHAgreement should fail when the version of the CARD_DH_AGREEMENT_INFO structure is not supported by the Card Minidriver
Version 1 of the structure will not be supported on any Card Minidriver which is intended to be FIPS 140‑2 certified. If dwVersion passed is different than 2, the card should return the ERROR_REVISION_MISMATCH error.
	CMSpec‑3.8.3.2‑9

	CMR.4.3.2.E4
	CardConstructDHAgreement should fail when a NULL value for pbPublicKey field is passed as part of the CARD_DH_AGREEMENT_INFO structure
	CMSpec‑3.8.3.2‑8

	CMR.4.3.2.E5
	CardConstructDHAgreement should fail when an nonexistent or invalid bContainerIndex is passed

When the container does not exist, the function is expected to fail with SCARD_E_NO_KEY_CONTAINER error.

When the container exists, but contains forbidden key types (other that AT_ECDHE_*), it should fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.2‑1

	CMR.4.3.2.E6
	CardConstructDHAgreement should fail when an invalid value for dwFlags field is passed as part of the CARD_DH_AGREEMENT_INFO structure

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	

	CMR.4.3.2.E7
	CardConstructDHAgreement should fail when called for a card principal other than user
Only users are allowed to construct DH agreements. For non-authenticated users and admins, the function is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	

	CMR.4.3.2.E8
	CardConstructDHAgreement should fail when there is no space to store an agreement

It is expected to fail with SCARD_E_NO_MEMORY error.
	CMSpec‑3.8.3.2-10

2.4.3.3 CardDeriveKey

2.4.3.3.1 Functional Requirements

	CMR.4.3.3.1 optional
	CardDeriveKey generates a derived session key using a generated agreed secret

Data to be processed by the card is passed in and received back in the CARD_DERIVE_KEY structure (see cardmod.h).
	CMSpec‑3.8.3.3‑1

	CMR.4.3.3.2
	CardDeriveKey should be able to handle optional list of parameters for the key derivation algorithm

Note: for the KDFs (HASH, HMAC, TLS_PRF) supported, the list of parameters is mandatory.
	CMSpec‑3.8.3.3‑4

	CMR.4.3.3.3
	CardDeriveKey should return (pbDerivedKey) a byte pointer to the derived key buffer, allocated by the Card Minidriver using PFN_CSP_ALLOC/REALLOC
The memory needs to be freed by the caller.
	CMSpec‑3.8.3.3‑5

	CMR.4.3.3.4
	CardDeriveKey should return (cbDerivedKey) a valid length of the allocated derived key buffer
	 CMSpec‑3.8.3.3‑5

	CMR.4.3.3.5
	CardDeriveKey should return 0 on success
	

2.4.3.3.2 Error Handling

Errors should be handled in the following order of their occurrence:

	CMR.4.3.3.E1
	CardDeriveKey should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.3.E2
	CardDeriveKey should fail when a NULL pAgreementInfo parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.3.E3
	CardDeriveKey should fail when the version of the CARD_DERIVE_KEY structure is not supported by the Card Minidriver
It is expected to fail with ERROR_REVISION_MISMATCH error.
	CMSpec‑3.8.3.3‑4

	CMR.4.3.3.E4
	CardDeriveKey should fail when a NULL value for pwszKDF field is passed as part of the CARD_DERIVE_KEY structure

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.3‑4

	CMR.4.3.3.E5
	CardDeriveKey should fail when an invalid value for dwFlags field is passed as part of the CARD_DERIVE_KEY structure

dwFlags may be:

· 0 (zero).
· KDF_USE_SECRET_AS_HMAC_KEY_FLAG – for BCRYPT_KDF_HMAC when the caller wants to use the secret as the HMAC key. Handling of this flag is mandatory for cards that support this KDF.

· CARD_BUFFER_SIZE_ONLY – when the caller wants to get the size of the buffer required to store the derived secret key. The Card Minidriver should not perform any card operations and only return the size of the resulting key. This is optional but recommended as it will help to reduce the amount of traffic to the card.
or the combination of the above.

For other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.3‑4 CMSpec‑3.8.3.3‑6

	CMR.4.3.3.E6
	CardDeriveKey should fail when an invalid value for pwszKDF field is passed as part of the CARD_DERIVE_KEY structure

Allowed values for pwszKDF are defined in bcrypt.h. A list of possible KDFs is as follows: BCRYPT_KDF_HASH, BCRYPT_KDF_HMAC, BCRYPT_KDF_TLS_PRF.

For all other values or for values unsupported by the Card Minidriver, the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.3‑4

	CMR.4.3.3.E7
	CardDeriveKey should fail when an invalid value for bSecretAgreementIndex field is passed as part of the CARD_DERIVE_KEY structure

bSecretAgreementIndex should be a valid DH agreement index obtained by the CardCreateDHAgreement function in current card context. When the index provided is not a valid card side DH agreement the function is expected to fail with SCARD_E_INVALID_PARAMETER error.

Note: this should never happen, as CardConstructDHAgreement should never success for non-valid keys (only AT_ECDHE_* keys are allowed).
	

	CMR.4.3.3.E8
	CardDeriveKey should fail when an invalid value for pParameterList field is passed as part of the CARD_DERIVE_KEY structure (when not NULL)

Type and number of parameters must be compatible with the key derivation function selected by the pwszKDF parameter. If the Card Minidriver does not recognize one of the parameters or that parameter is invalid for the KDF specified, SCARD_E_INVALID_PARAMETER should be returned.
	CMSpec‑3.8.3.3‑4

	CMR.4.3.3.E9
	CardDeriveKey should fail when called without authenticating to the card first

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	

2.4.3.4 CardDestroyDHAgreement

2.4.3.4.1 Functional Requirements

	CMR.4.3.4.1 optional
	CardDestroyDHAgreement removes an agreed secret from the card

The lifetime of the hAgreedSecret is limited by the length of time of the Card Minidriver context associated with the card or by a call to CardDestroyDHAgreement. All smart card DH agreements are ephemeral and are not retrievable after a card reset.

Card Minidrivers should not rely on calls to CardDestroyDHAgreement being called. They may keep them in volatile memory or clean them up during power up.
	CMSpec‑3.8.3.4‑1

	CMR.4.3.4.2
	CardDestroyDHAgreement should return 0 on success
	

2.4.3.4.2 Performance Requirements

	CMR.4.3.4.X1
	Maximum allowed time for CardDestroyDHAgreement is 600 milliseconds
	

	CMR.4.3.4.X2
	CardDestroyDHAgreement should remove an agreed secret from the card in no more than 500 milliseconds, measured as an average over 20 iterations
	

2.4.3.4.3 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.4.3.4.E1
	CardDestroyDHAgreement should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.4.E2
	CardDestroyDHAgreement should fail when an invalid bSecretAgreementIndex is passed

bSecretAgreementIndex should be a valid DH agreement index obtained by the CardCreateDHAgreement function. When the index provided is not a valid card side DH agreement the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.8.3.4-5

	CMR.4.3.4.E3
	CardDestroyDHAgreement should fail when a non-zero value for dwFlags field is passed as part of the CARD_DERIVE_KEY structure

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.8.3.4-6

	CMR.4.3.4.E4
	CardDestroyDHAgreement should fail when called without authenticating to the card first

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	CMSpec-3.8.3.4-7

2.4.3.5 CardSignData

2.4.3.5.1 Functional Requirements

	CMR.4.3.5.1
	CardSignData signs a block of unpadded data

Data to be processed by the card is passed in and received back in the CARD_SIGNING_INFO structure (see cardmod.h).

Note: if the CARD_BUFFER_SIZE_ONLY flag is set in the dwSigningFlags parameter, then the Card Minidriver should not perform any signing operations and only return the size of the resulting key (cbSignedData). This is optional but recommended as it will help to reduce the amount of traffic to the card.
	CMSpec‑3.8.3.5‑1

	CMR.4.3.5.2
	CardSignData should perform padding of the data

The padding may be performed on the card or using the PFN_CSP_PAD_DATA function when on‑card padding is not supported.

For version 2 of the CARD_SIGNING_INFO structure, if the card does not support on-card padding, the Card Minidrivers should not have to inspect the new padding parameters. In that case it is expected that the Card Minidriver will call padding callback PFN_CSP_PAD_DATA function.

If CARD_PADDING_INFO_PRESENT flag is set in the dwSigningFlags parameter, then pPaddingInfo will point to the BCRYPT_PADDING_INFO structure defined by dwPaddingType.
	CMSpec‑3.8.3.5‑1

CMSpec‑3.8.3.5‑8

	CMR.4.3.5.3
	CardSignData should return (pbSignedData) a byte pointer to the signed data buffer, allocated by the Card Minidriver using PFN_CSP_ALLOC/REALLOC

The memory needs to be freed by the caller.

Note: if the CARD_BUFFER_SIZE_ONLY flag is set in the dwSigningFlags parameter, then the Card Minidriver should not perform any signing operations and only return the size of the resulting key (cbSignedData). In this case the pbSignedData pointer should be NULL. This is optional but recommended as it will help to reduce the amount of traffic to the card.
	CMSpec‑3.8.3.5‑8

	CMR.4.3.5.4
	CardSignData should return (cbSignedData) a valid length of the allocated signed data buffer
	CMSpec‑3.8.3.5‑8

	CMR.4.3.5.5 mandatory for v5
	CardSignData should support passing in the pPaddingInfo structure

For version 2 of CARD_SIGNING_INFO structure, Card Minidriver should support passing in the pPaddingInfo structure. For version 1 (CARD_SIGNING_INFO_BASIC_VERSION) pPaddingInfo may not be supported by the Card Minidriver.
	CMSpec‑3.8.3.5‑8

	CMR.4.3.5.6
	CardSignData should return 0 on success
	CMSpec‑3.8.3.5‑4

	CMR.4.3.5.7
	CardSignData should treat version 0 of the CARD_SIGNING_INFO as version 1

If the API method is called with a structure containing a dwVersion of 0, then this must be treated as a dwVersion of 1.
	CMSpec‑8.1.2

2.4.3.5.2 Performance Requirements

	CMR.4.3.5.X1
	Maximum allowed time for CardSignData is 1.5 seconds
	

	CMR.4.3.5.X2
	CardSignData should sign a block of data in no more than 1 second, measured as an average over 20 iterations
	

2.4.3.5.3 Error Handling

Errors should be handled in the following order of their occurrence:

	CMR.4.3.5.E1
	CardSignData should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.5.E2
	CardSignData should fail when a NULL pInfo parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.3.2-2

	CMR.4.3.5.E3
	CardSignData should fail when the version of the CARD_SIGNING_INFO structure is not supported by the Card Minidriver
Caller sets the version in the CARD_SIGNING_INFO structure.

For version 2, if the card does not support on-card padding, the Card Minidrivers should not have to inspect the new parameters. In that case it is expected that the Card Minidriver will call padding callback PFN_CSP_PAD_DATA function.

The ERROR_REVISION_MISMATCH error should be returned when other non-supported version number is passed.
	CMSpec-3.8.3.5-13

	CMR.4.3.5.E4
	CardSignData should fail when a NULL pbData field is passed as part of the CARD_SIGNING_INFO structure

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.5.E5
	CardSignData should fail when nonexistent or invalid bContainerIndex is passed as part of the CARD_SIGNING_INFO structure

It is expected to fail with SCARD_E_NO_KEY_CONTAINER error.
	CMSpec‑3.8.3.5‑10

	CMR.4.3.5.E6
	CardSignData should fail when an invalid value for dwKeySpec field is passed as part of the CARD_SIGNING_INFO structure

The allowed values for dwKeySpec are: AT_ECDH_P256, AT_ECDH_P384, AT_ECDH_P521, AT_ECDSA_P256, AT_ECDSA_P384, AT_ECDSA_P521 for specify ECC keys and AT_SIGNATURE or AT_KEYEXCHANGE for RSA keys.

For other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.5‑11

	CMR.4.3.5E7
	CardSignData should fail when an invalid dwSigningFlags field is passed as part of the CARD_SIGNING_INFO structure

dwSigningFlags takes the same flag values as CryptSignHash, e.g. CRYPT_NOHASHOID.

For other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.5‑7

	CMR.4.3.5.E8
	CardSignData should fail when an invalid aiHashAlg algorithm field is passed as part of the CARD_SIGNING_INFO structure

The allowed values for aiHashAlg are defined by enumeration ALG_ID.

For other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.5‑8

	CMR.4.3.5.E9

optional
	CardSignData should fail when an unsupported aiHashAlg algorithm field is passed as part of the CARD_SIGNING_INFO structure

For aiHashAlg values unsupported by the Card Minidriver the function is expected to fail with SCARD_E_UNSUPPORTED_FEATURE error.
Note: this requirement is mandatory if on-card padding is supported. Otherwise this parameter can be ignored.
	CMSpec‑3.8.3.5‑9

	CMR.4.3.5.E10
	CardSignData should fail when called without authenticating to the card first

It is expected to fail with SCARD_W_SECURITY_VIOLATION error.
	

2.4.3.6 CardQueryKeySizes

2.4.3.6.1 Functional Requirements

	CMR.4.3.6.1
	CardQueryKeySizes returns the public key sizes supported by the card in use for the given algorithm

Key size data is received in the CARD_KEY_SIZES structure (see cardmod.h).
	CMSpec‑3.8.3.6‑1

	CMR.4.3.6.2 optional
	CardQueryKeySizes for ECC key types should return specific values for minimum, default, and maximum key sizes
	CMSpec‑3.8.3.6‑5

	CMR.4.3.6.3 optional
	CardQueryKeySizes for ECC key types should return 1 as increment length
	CMSpec‑3.8.3.6‑5

	CMR.4.3.6.4
	CardQueryKeySizes should return 0 on success
	CMSpec‑3.8.3.6‑4

	CMR.4.3.6.5
	CardQueryKeySizes should treat version 0 of the CARD_KEY_SIZES as version 1

If the API method is called with a structure containing a dwVersion of 0, then this must be treated as a dwVersion of 1.
	CMSpec‑8.1.2

2.4.3.6.2 Error Handling

Errors should be handled in the following order of their occurrence:
	CMR.4.3.6.E1
	CardQueryKeySizes should fail when a NULL pCardData parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.6.E2
	CardQueryKeySizes should fail when a NULL pKeySizes parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec-3.3.2-2

	CMR.4.3.6.E3
	CardQueryKeySizes should fail when an invalid dwKeySpec is passed

The allowed values for dwKeySpec are: AT_ECDH_P256, AT_ECDH_P384, AT_ECDH_P521,
AT_ECDSA_P256, AT_ECDSA_P384, or AT_ECDSA_P521 for ECC keys and AT_SIGNATURE or AT_KEYEXCHANGE for RSA keys.

For other values the function is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.6‑7

	CMR.3.1.1.E4
	CardQueryKeySizes should fail when a non-zero dwFlags parameter is passed

It is expected to fail with SCARD_E_INVALID_PARAMETER error.
	CMSpec‑3.8.3.6‑3

	CMR.4.3.6.E5
	CardQueryKeySizes should fail when the version of the CARD_KEY_SIZES structure is not supported by the Card Minidriver

It is expected to fail with ERROR_REVISION_MISMATCH error.
	CMSpec-8.1.2

	CMR.4.3.6.E6
	CardQueryKeySizes should fail when an unsupported dwKeySpec is passed

For valid dwKeySpec values not supported by the card, Card Minidriver should return SCARD_E_UNSUPPORTED_FEATURE error.
	CMSpec‑3.8.3.6‑8

2.5 Sequence Tests

A portion of the testing will be to model typical use-case scenarios at the Card Minidriver level by emulating the sequence in which Card Minidriver functions are invoked. The scenarios to be covered are:

· Smartcard logon,
· PIN Change,
· Enrollment,
· Run As,
· Email signing,
· Email decryption,
· PIN Unblock,
· SSL Client Authentication.
2.5.1 Smartcard logon

Sequence of CAPI function calls made during Smartcard Logon. There are differences between Vista and downlevel platforms.

	CSP Sequence (Vista)
	Parameters

	CryptAcquireContext
	MS_SCARD_PROV, PROV_RSA_FULL,
CRYPT_SILENT | CRYPT_MACHINE_KEYSET

	CryptGetUserKey
	AT_KEYEXCHANGE

	CryptGetKeyParam
	KP_CERTIFICATE

	CryptCreateHash
	CALG_SHA

	CryptHashData
	the certificate data

	CryptSetProvParam
	PP_KEYEXCHANGE_PIN

	CryptSignHash
	hash of the certificate

	CryptExportKey
	PUBLICKEYBLOB

	CryptAcquireContext
	MS_STRONG_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT

	CryptImportKey
	public key exported from the card

	CryptCreateHash
	CALG_SHA

	CryptHashData
	hash of the certificate

	CryptVerifySignature
	signed hash of the certificate

	CryptDeriveKey
	CALG_3DES for the session key

	CryptEncrypt
	certificate data

	CryptExportKey
	SIMPLEBLOB for the session key key (encrypting with card’s public key)

	CryptImportKey
	session key onto the card (decrypting with card’s private key)

	CryptDecrypt
	certificate data on the card

2.5.2 PIN Change

Sequence of Card Minidriver function calls made to execute a PIN Change.

	CM API Sequence (Vista)
	Parameters

	CardAcquireContext
	

	CardChangeAuthenticator
	user

	CardReadFile
	cardcf

	CardWriteFile
	cardcf

	CardDeauthenticate
	user

	CardDeleteContext
	

2.5.3 Enrollment

Sequence of CAPI calls made during a typical RSA enrollment.

	CAPI Sequence (Vista)
	Parameters

	CryptAcquireContext
	CRYPT_NEWKEYSET | CRYPT_SILENT

	CryptGetProvParam
	PP_CONTAINER

	CryptGenKey
	key type

	CryptExportPublicKeyInfo
	Key type, X509_ASN_ENCODING

	CryptAcquireContext
	PROV_RSA_FULL, CRYPT_VERIFYCONTEXT

	CryptCreateHash
	supported hash alg

	CryptHashData
	sample certificate request data

	CryptGetHashParam
	HP_HASHVAL

	CryptDestroyHash
	

	CryptReleaseContext
	

	CryptCreateHash
	supported hash alg

	CryptSetHashParam
	HP_HASHVAL

	CryptSignHash
	key type, hashed request data

	CryptVerifySignature
	signed hash

	CryptSignAndEncodeCertificate
	AT_SIGNATURE, X509_ASN_ENCODING, X509_CERT_TO_BE_SIGNED

	CryptSetKeyParam
	KP_CERTIFICATE

Sequence of CNG function calls made during a typical ECC enrollment.

	CNG Sequence (Vista)
	Parameters

	NCryptOpenStorageProvider
	MS_SMART_CARD_KEY_STORAGE_PROVIDER

	NCryptCreatePersistedKey
	NCRYPT_ECDH_P256_ALGORITHM, container name

	NCryptSetProperty
	NCRYPT_LENGTH_PROPERTY, 256

	NCryptFinalizeKey
	

	CryptExportPublicKeyInfo
	X509_ASN_ENCODING

	CryptAcquireContext
	PROV_RSA_FULL, CRYPT_VERIFYCONTEXT

	CryptCreateHash
	supported hash alg

	CryptHashData
	sample certificate request data

	CryptGetHashParam
	HP_HASHVAL

	CryptDestroyHash
	

	CryptReleaseContext
	

	NCryptSignHash
	hashed request data

	NCryptVerifySignature
	signed hash

	CryptSignAndEncodeCertificate
	AT_SIGNATURE, X509_ASN_ENCODING, X509_CERT_TO_BE_SIGNED

	NCryptSetProperty
	NCRYPT_CERTIFICATE_PROPERTY, signed cert data

2.5.4 Run As

Sequence of CAPI function calls made when running as another user. Calls in italic are Microsoft Enhanced Cryptographic Provider calls.
	CAPI Sequence (Vista)
	Parameters

	CryptAcquireContext
	MS_SCARD_PROV, PROV_RSA_FULL, CRYPT_SILENT

	CryptGetUserKey
	AT_KEYEXCHANGE

	CryptExportKey
	PUBLICKEYBLOB

	CryptGetKeyParam
	KP_CERTIFICATE

	CryptAcquireContext
	MS_SCARD_PROV, PROV_RSA_FULL, CRYPT_SILENT

	CryptSetProvParam
	PP_KEYEXCHANGE_PIN, pin data

	CryptGetProvParam
	PP_ENUMALGS

	CryptAcquireContext
	MS_ENHANCED_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT

	CryptAcquireContext
	MS_SCARD_PROV, PROV_RSA_FULL, CRYPT_SILENT

	CryptSetProvParam
	PP_KEYEXCHANGE_PIN, pin data

	CryptCreateHash
	CALG_SHA

	CryptCreateHash
	CALG_SHA

	CryptSetHashParam
	HP_HASHVAL, random hash value

	CryptSetHashParam
	HP_HASHVAL, random hash value

	CryptSignHash
	AT_KEYEXCHANGE

	CryptImportKey
	User AT_KEYEXCHANGE public key

	CryptVerifySignature
	Card’s signature of the random hash

	CryptAcquireContext
	MS_ENHANCED_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT

	CryptAcquireContext
	MS_SCARD_PROV, PROV_RSA_FULL, CRYPT_SILENT

	CryptGetUserKey
	AT_KEYEXCHANGE

	CryptCreateHash
	CALG_SHA

	CryptHashData
	Random data

	CryptDeriveKey
	CALG_3DES (session key)

	CryptImportKey
	The user AT_KEYEXCHANGE public key

	CryptExportKey
	SIMPLEBLOB ecrypted with the user public key

	CryptSetKeyParam
	KP_IV (session key)

	CryptEncrypt
	User cert with the session key

	CryptImportKey
	Session key decrypted with the user private key

	CryptSetKeyParam
	KP_IV (session key)

	CryptDecrypt
	Session key

2.5.5 Email signing

1. Locate container with AT_KEYEXCHANGE key on the card

2. Acquire crypto context for this container using MS Base Smart Card Crypto Provider

3. Determine which signing hash algorithm the card supports (config file) – SHA or MD5 is required

4. Create the hash and set the hash param HP_HASHVAL to the hashed data buffer (this means that the hash is performed outside of the CAPI)

5. Silently submit the default PIN to the card

6. Sign the hash data

7. Clean-up (destroy the hash, release the crypto context)

2.5.6 Email decryption

1. Locate container with AT_KEYEXCHANGE key on the card

2. Acquire crypto context for this container using MS Base Smart Card Crypto Provider

3. Get the user AT_KEYEXCHANGE key pair handle

4. Perform additional steps required to perform and validate the scenario

a. Generate RC2 session key

b. Set the required params for the key (keylen and IV)

c. Encrypt and export the session key data

d. Encrypt simple email with the session key

e. Clean-up: destroy the session key

5. Decrypt and import the session key (get the session key’s handle)

6. Set the required params for the key (keylen and IV)

7. Destroy user key pair handle

8. Get the block size

9. Decrypt the data using exported session key

10. Compare the decrypted data to the data encrypted in step 4d.

11. Clean-up: destroy the session key handle

2.5.7 PIN Unblock

Sequence of Card Minidriver function calls made to execute a PIN Change.
	CM API Sequence (Vista)
	Parameters

	CardAcquireContext
	

	CardGetChallenge
	

	CardUnblockPin
	User

	CardAuthenticatePin
	User

	CardReadFile
	cardcf

	CardWriteFile
	cardcf

	CardDeauthenticate
	User

	CardDeleteContext
	

2.5.8 SSL Client Authentication

2.5.8.1 SSL Client Authentication - RSA

The sequences are different for Vista (KSP) and downlevel (CAPI) and are as follows:

VISTA (KSP):

1. Open the MS Smart Card KSP storage provider (NCryptOpenStorageProvider)

2. Get the handle to the AT_KEYEXCHANGE key container on the card

3. Simulate the PIN cache by quietly submitting the PIN to the KSP

4. Sign the hash data (NCryptSignHash) using PKCS1 padding

5. Clean up by releasing the crypto objects

The above steps are performed under LOW INTEGRITY process level.

Downlevel (CAPI):

1. Acquire crypto context to the MS Smart Card Base CSP provider (CryptAcquireContext) for the AT_KEYEXCHANGE key container

2. Create the CALG_SSL3_SHAMD5 hash (CryptCreateHash, CryptSetHashParam)

3. Simulate the PIN cache by quietly submitting the PIN to the Base CSP

4. Sign the hash data (CryptSignHash)

5. Clean up by releasing the crypto objects

2.5.8.2 SSL Client Authentication – ECC

The test is valid only on Vista, as it requires KSP. The sequence is as follows:

1. [CLIENT] Open MS SCHANNEL SSL provider (SslOpenProvider)

2. [CLIENT] Create the handshake hash (SslCreateHandshakeHash)

3. [CLIENT] Build the “client hello” message (SslHashHandshake)

4. [CLIENT] Parse the “server hello” message

5. [SERVER] Build the “server key exchange” message

a. Create the ephemeral TLS_ECC_P256 key (SslCreateEphemeralKey)

b. Export public part of the key (SslExportKey)

c. Put the public key data into the message

d. Compute the server exchange hashes (using BCrypt* API for MD5 and SHA1)

e. Sign the hash data using server’s private key

6. [CLIENT] Parse the “server key exchange” message and build “client key exchange” message

a. Open the MS Smart Card KSP

b. Decode the server’s certificate

c. Import the server’s public key into the protocol provider

d. Open the user’s key on the card (AT_ECDHE_P256 created during the Enrollment scenario)

e. Simulate the KSP pin cache by submitting quietly the PIN data

f. Create secret agreement on the card (NCryptSecretAgreement)

g. Derive the master secret key using TLS_PRF (NCryptDeriveKey)

h. Add the client key exchange message to the handshake hash (SslHashHandshake)

i. Generate the session keys using the master secret (SslGenerateSessionKeys)

j. Compute client authorization hash (SslComputeEapKeyBlock, SslComputeClientAuthHash)

k. Finish the handshake hash (SslComputeFinishedHash, SslHashHandshake)

l. Encrypt the finished message (SslEncryptPacket)

7. [SERVER] Parse “client key exchange” message

a. Import the client’s public ECDH key into the protocol provider (SslImportKey)

b. Perform the ECDH key exchange and compute the master secret using server’s private and client’s public key (SslGenerateMasterKey)

c. Generate the session keys (SslGenerateSessionKeys)

d. Decrypt the finished message (SslDecryptPacket)

e. Compute client authorization hash (SslComputeEapKeyBlock, SslComputeClientAuthHash)

f. Finish the handshake hash (SslComputeFinishedHash, SslHashHandshake)

8. [CLIENT] Request a file from the server

a. [CLIENT] Call SslLookupCipherSuite to make sure it works

b. [CLIENT] Compose a http packet

c. [CLIENT] Encrypt the packet using agreed secret key (SslEncryptPacket)

9. [SERVER] Decrypt received packet using agreed secret key (SslDecryptPacket)

10. Compare the decrypted message with the original one to make sure it worked

3 Related Documents

[CMSPEC] Smart Card Minidriver Specification for Windows Base Cryptographic Service Provider (Base CSP) and Smart Card Key Storage Provider (KSP), Version 5.06
http://www.microsoft.com/whdc/device/input/smartcard/sc-minidriver.mspx
4 Change History
	Date
	Change Description

	April 11, 2007
	Updated requirements CMR.3.4.6.X1, CMR.3.4.6.X2, CMR.4.2.1.7, CMR.4.3.2.X1 and CMR.4.3.2.X2

[image: image1.png]

© 2007 Microsoft Corporation. All rights reserved.

