[image: image2.png]4% Windows

Extended PSS ACPI Method Specification - 6

Extended PSS ACPI Method Specification
April 2, 2007
Abstract

The Extended PSS (XPSS) method is an ACPI method that allows platform firmware to generically describe a Model Specific Register (MSR)-based interface for processor performance state controls. This enables the use of the generic processor driver included with Windows, without requiring a specific Windows processor driver developed by Microsoft and designed expressly for the target platform.
The information in this white paper applies to Windows Vista® and Windows Server® 2008 operating systems.

The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/system/pnppwr/powermgmt/XPSS_spec.mspx
Contents

4Introduction

4Background

4Processor Driver Support in Windows

5Rationale for Extending the _PSS

5Requirements for Using the XPSS

6The XPSS (Extended Performance States)

7_PCT (Performance Control)

7Implementing the XPSS Interface

7Getting Help

7Resources

 EXTENDEDD PSS METHOD SPECIFICATION LICENSE

IMPORTANT—READ CAREFULLY: This Microsoft License Agreement ("Agreement") is a legal agreement between you (either an individual or a single entity) and Microsoft Corporation for the version of the Microsoft document identified above which you are about to download ("Specification"). BY DOWNLOADING, COPYING OR OTHERWISE USING THE DOCUMENT, YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT DOWNLOAD, COPY, OR USE THE DOCUMENT.

The Document is owned by Microsoft or its suppliers and is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties. THE DOCUMENT IS LICENSED, NOT SOLD.
1. GRANT OF LICENSE.

(a) Provided that you comply with all terms and conditions of this Agreement, Microsoft grants to you the following non-exclusive, worldwide, royalty-free, perpetual, non-transferable, non-sublicensable, limited license under any copyrights or patents that cover the Extended PSS (XPSS) ACPI method described in the Specification and that are owned or licensable by Microsoft without payment of consideration to third parties,

(i) to reproduce copies of the Specification for you and your contractor’s internal use for the sole purpose of (1) modifying your firmware and/or BIOS for computing devices ("Firmware") so that it writes to memory the appropriate XPSS ACPI method in the Specification or (2) modifying your software so that it may read from memory the appropriate XPSS ACPI method (the "Purpose"),

(ii) to implement the XPSS ACPI method in your firmware and/or BIOS,

(iii) to license to third parties directly and indirectly the XPSS ACPI method as part of your Firmware (and any related documentation),

The foregoing license is granted only to the extent necessary to accomplish the Purpose and to license and/or distribute your Firmware containing the XPSS ACPI method to third parties. The foregoing license shall not extend to any features of your Firmware that (i) are not required to comply with the Specification or (ii) to which there was a practicable alternative to infringing a patent.

(b) Microsoft reserves all other rights it may have in the Specification, its implementation and any intellectual property therein. The furnishing of this Specification does not give you or any other entity any license to any other Microsoft patents, trademarks, copyrights or other intellectual property rights. Microsoft does not grant to you or any other entity any implied licenses or rights whatsoever under this Agreement. Specifically, this Agreement does not grant any express or implied licenses or rights to any enabling technologies that may be necessary to fully utilize the XPSS ACPI method described in the Specification.

2. ADDITIONAL LIMITATIONS AND OBLIGATIONS.

(a) You must implement XPSS Interface in its entirety (e.g., all fields) and without modification (e.g., parameter encoding and permissible values as described in the Specification).

(b) Your license rights to the Specification are conditioned upon you not creating, modify, or distributing your Firmware in a way that such creation, modification, or distribution may (a) create, or purport to create, obligations for Microsoft with respect to the Specification (or intellectual property therein) or (b) grant, or purport to grant, to any third party any rights or immunities to Microsoft’s intellectual property or proprietary rights in the Specification.

(c) The foregoing license is applicable only to the version of the Specification which you are about to download. It does not apply to any additional versions of or extensions to the Specification.

(d) Without prejudice to any other rights, Microsoft may terminate this Agreement if you fail to comply with the terms and conditions of this Agreement. In such event you must destroy all copies of the Specification and must not further distribute the table values.

3. INTELLECTUAL PROPERTY RIGHTS. All ownership, title and intellectual property rights in and to the Specification, and any copies you are permitted to make herein, are owned by Microsoft or its suppliers.

4. DISCLAIMER OF WARRANTIES. To the maximum extent permitted by applicable law, Microsoft and its suppliers provide the Specification (and all intellectual property therein) and any (if any) support services related to the Specification ("Support Services") AS IS AND WITH ALL FAULTS, and hereby disclaim all warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties or conditions of merchantability, of fitness for a particular purpose, of lack of viruses, of accuracy or completeness of responses, of results, and of lack of negligence or lack of workmanlike effort, all with regard to the Specification, any intellectual property therein and the provision of or failure to provide Support Services. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT, WITH REGARD TO THE SPECIFICATION AND ANY INTELLECTUAL PROPERTY THEREIN. THE ENTIRE RISK AS TO THE QUALITY OF OR ARISING OUT OF USE OR PERFORMANCE OF THE SPECIFICATION, ANY INTELLECTUAL PROPERTY THEREIN, AND SUPPORT SERVICES, IF ANY, REMAINS WITH YOU.
5. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES. To the maximum extent permitted by applicable law, in no event shall Microsoft or its suppliers be liable for any special, incidental, indirect, or consequential damages whatsoever (including, but not limited to, damages for loss of profits or confidential or other information, for business interruption, for personal injury, for loss of privacy, for failure to meet any duty including of good faith or of reasonable care, for negligence, and for any other pecuniary or other loss whatsoever) arising out of or in any way related to the use of or inability to use the SPECIFICATION, ANY INTELLECTUAL PROPERTY THEREIN, the provision of or failure to provide Support Services, or otherwise under or in connection with any provision of this AGREEMENT, even in the event of the fault, tort (including negligence), strict liability, breach of contract or breach of warranty of Microsoft or any supplier, and even if Microsoft or any supplier has been advised of the possibility of such damages.
6. LIMITATION OF LIABILITY AND REMEDIES. Notwithstanding any damages that you might incur for any reason whatsoever (including, without limitation, all damages referenced above and all direct or general damages), the entire liability of Microsoft and any of its suppliers under any provision of this Agreement and your exclusive remedy for all of the foregoing shall be limited to the greater of the amount actually paid by you for the Specification or U.S.$5.00. The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails its essential purpose.
7. APPLICABLE LAW. If you acquired this Specification in the United States, this Agreement is governed by the laws of the State of Washington. In respect of any dispute which may arise hereunder, you consent to the jurisdiction of the state and federal courts sitting in King County, Washington.

8. ENTIRE AGREEMENT. This Agreement is the entire agreement between you and Microsoft relating to the Specification supersedes all prior or contemporaneous oral or written communications, proposals and representations with respect to the Specification or any other subject matter covered by this Agreement. To the extent the terms of any Microsoft policies or programs for Support Services conflict with the terms of this Agreement, the terms of this Agreement shall control.
Introduction

The ACPI specification defines the _PSS (Processor Supported States) ACPI processor object that allows system firmware to describe the processor performance states that are supported by the platform to operating system software. However, as it is defined, the _PSS has limitations that preclude its use for fully describing processor performance state control interfaces implemented as Model Specific Registers (MSRs).
These limitations constrain the generic processor driver provided with the Windows family of operating systems to the use of I/O mapped control and status registers for processor performance state control. To enable the generic processor driver to utilize MSRs for these controls, Microsoft provided support for the Extended PSS (XPSS) in the Windows Vista and Windows Server 2008 operating systems.
This white paper explains the rationale and motivation for the XPSS interface, describes the platform requirements for using the XPSS with the Windows Vista and Windows Server 2008 operating systems, and provides implementation guidelines for system designers and firmware developers.

Background

Native operating system support for ACPI processor power performance states was first introduced with the release of Windows XP. Windows processor power management support consists of two main functional elements: the kernel power manager, and a processor driver.

Processor power policy is managed and directed by the Windows kernel power manager, while a processor driver serves as an abstraction layer between the kernel power manager and the specific power management control interfaces implemented by each processor vendor. Processor drivers in Windows exist solely to support processor power management interfaces.
Processors may implement the control and status registers for processor power management controls in MSRs. A description mechanism for this type of control is provided for in the ACPI specification through the use of the Generic Address Structure and the address space identifier type 0x7F, Functional Fixed Hardware (FFH). The use of FFH for processor power management controls implies that the operating system has specific knowledge and details of the interface defined by the CPU manufacturer. These details are not encoded in a system’s ACPI namespace, and are typically described in the CPU manufacturer’s proprietary documentation. In the Windows operating systems, support for these processor vendor-defined interfaces is contained in a processor driver specifically written by Microsoft to support one or more processors from a given CPU manufacturer.
Use of MSRs for processor performance state transition controls is preferred due to the performance advantage of using native instructions to access on-processor registers. Use of performance state transition controls implemented in I/O address space is less desirable due to the latency incurred by accessing registers that are not resident on the processor, requiring cycles to cross the chipset interconnects.
Processor Driver Support in Windows

Microsoft writes processor drivers for the majority of popular processors supporting processor power management that are available during the Windows development cycle, and provides these drivers with the operating system. Microsoft works in conjunction with the processor manufacturers to develop processor drivers to support model-specific requirements, such as access semantics for FFH control and status interfaces, processor feature detection and enablement, logic for proper transition sequencing, etc.
Microsoft also provides a generic processor driver that supports a simple, general purpose performance state control mechanism. This generic processor driver can be used to control operating system directed performance state transitions on processors from any CPU vendor, provided the processor can support this simplified interface, and does not need more advanced software support, such as a transition state machine, specific processor feature detection and enablement logic, etc.
Rationale for Extending the _PSS
While working with Microsoft to provide a model-specific processor driver allows the processor vendor to employ and leverage a richer set of processor controls, this has the disadvantage that it ties the processor vendor to Microsoft’s development and release schedules for Windows. Should the processor vendor develop a new processor design that changes the control interface, no Windows support for this new processor can be provided until an updated model-specific driver can be developed, validated, and made available to OEMs for inclusion on systems based on this new design. Due to development resource constraints and test requirements, this may not be possible until the next major release of a Windows operating system.
By leveraging the generic processor driver provided with the Windows operating systems, the CPU manufacturer is free to bring updated designs to market or change the CPUID of evolving processor designs without taking a dependency on updated processor driver support from Microsoft. However, the existing ACPI description mechanisms for processor performance states cannot convey enough information to the operating system to enable the use of MSR-based control interfaces with the generic processor driver. The following limitations exist:
· The _PSS object only allows 32 bits of data to describe the Control and Status values for each individual performance state defined. MSRs are typically 64-bits wide.
· The _PSS object cannot describe the access semantics of a processor’s Control or Status MSRs to the operating system (direct write vs. applying a bitmask through a read/modify/write sequence).
By extending the data provided through the normal _PSS object, Windows can obtain enough information from platform firmware to enable the use of control and status registers implemented using MSRs, and implement these controls in the generic processor driver.
Requirements for Using the XPSS
In order to make use of the XPSS method, the platform must meet the following requirements:
· The platform must not require the use of processor-specific mechanisms for detecting the presence of valid processor power management support interfaces. This implies that by presenting the XPSS in the ACPI namespace, platform firmware guarantees to the operating system that these processor power management capabilities are present in system hardware.

· The platform must not require the use of the optional _PDC or _OSC methods to coordinate between the operating system and firmware for the purposes of enabling specific processor power management features or implementations.
· The system must use a processor for which Windows will not load a model-specific processor driver. Only the generic processor driver processr.sys will evaluate and use the XPSS method; other Microsoft-provided model-specific processor drivers will ignore the XPSS.
· The controls for transitioning the processor to a new performance state must be implemented in a Model Specific Register (MSR) on the processor.
· The mechanism for transitioning the processor to a specific performance state must be architecturally guaranteed to succeed once a transition is initiated by the OS.
· The ACPI namespace must include the _PCT and _PPC processor objects in addition to the XPSS.
· The _PCT must describe the Performance Control Register (PERF_CTRL) and Performance Status Register (PERF_STATUS) implemented as Functional Fixed Hardware (FFH).
· The _PCT generic addresses must report a bit width of 64.
· The _PCT generic addresses must have a bit offset of 0.
· If the _PCT uses the ACPI 3.0 Generic Address Structure, the new and optional AccessSize argument must be 0 (legacy) or 4 (Qword access). Any other value will lead to incorrect behavior.

The XPSS (Extended Performance States)

This optional ACPI object is nearly identical in form and function to the _PSS object defined in the ACPI 2.0 specification. However, the XPSS allows the platform to provide 64 bits of data for the Control and Status values for each individual performance state defined, whereas the _PSS object only allows 32 bits of data. In addition, the XPSS allows for a 64‑bit mask to specify which control bits in the Performance Control Register should be updated, and which status bits should be compared after the control value is written. If the XPSS is present, the generic processor driver in Windows Vista and Windows Server 2008 will use this interface instead of the interface described by _PSS.

 Name (XPSS, Package()
{

 // Field Name Field Type
Package ()

// Performance State 0 Definition – P0
{
CoreFreq,

// DWordConst
Power,

// DWordConst
TransitionLatency,
// DWordConst
BusMasterLatency,
// DWordConst
Control,

// Buffer
Status,

// Buffer
ControlMask,

// Buffer
StatusMask

// Buffer
},

Package ()

// Performance State n Definition – Pn
{
CoreFreq,

// DWordConst
Power,

// DWordConst
TransitionLatency,
// DWordConst
BusMasterLatency,
// DWordConst
Control,

// Buffer
Status,

// Buffer
ControlMask,

// Buffer
StatusMask

// Buffer
}

}) // End of XPSS object

Each performance state entry contains six data fields as follows:

· CoreFreq. Indicates the core CPU operating frequency (in MHz).

· Power. Indicates the typical power dissipation (in milliWatts).

· TransitionLatency. Indicates the worst-case latency in microseconds that the CPU is unavailable during a transition from any performance state to this performance state.

· BusMasterLatency. Indicates the worst-case latency in microseconds that Bus Masters are prevented from accessing memory during a transition from any performance state to this performance state.

· Control. Indicates the 64‑bit value to be written to the MSR-based Performance Control Register (PERF_CTRL) in order to initiate a transition to the performance state.

· Status. Indicates the 64‑bit value that OSPM will compare to a value read from the MSR-based Performance Status Register (PERF_STATUS) to ensure that the transition to the performance state was successful. OSPM may always place the CPU in the lowest power state, but additional states are only available when indicated by the _PPC method.

· ControlMask. Indicates the 64‑bit binary mask that will be applied to the value read from the MSR-based Performance Control Register (PERF_CTRL) in the Read/Modify/Write scenario to transition to a performance state.

· StatusMask. Indicates the 64‑bit binary mask that will be applied to the value read from the MSR-based Performance Status Register (PERF_STS) in the Read/Modify/Write scenario to transition to a performance state.

 _PCT (Performance Control)

This optional object is fully described in the ACPI 2.0 Specification. The _PCT is required when the BIOS declares an XPSS object. When declaring a _PCT on a platform where an XPSS is also declared, the “Address” field of the Perf_Ctrl_Register and the Perf_Status_Register in the _PCT object must contain the MSR address used to initiate a performance state transition on the processor, and to validate the status after a performance state transition. The RegisterBitWidth field must be set to 64 to indicate 64‑bit access for MSR reads and writes.

Name(_PCT, Package() {

ResourceTemplate() {Register (FFixedHW, 64, 0, 0xFFF)} // PERF_CTRL
ResourceTemplate() {Register (FFixedHW, 64, 0, 0xFFF)} // PERF_STATUS

}) //End of _PCT Object
Implementing the XPSS Interface

When the XPSS method is present, the address size of the address declared in the _PCT object must be 64-bits in size. Windows will not use the XPSS interface if platform describes a _PCT FFH interface where AccessSize is not equal to 64. The presence of the XPSS object in the namespace implies that the _PCT is correct, and the interface is valid.

Windows will use the value of the ControlMask field in the XPSS to determine the correct behavior of the Read or Write MSR. If the ControlMask contains a value of 0, OSPM will simply perform a Write MSR using the ControlValue and the Address described in the _PCT to initiate the PState transition. If the “ControlMask” is non-zero, OSPM will perform a Read/Modify/Write MSR sequence as follows:

TargetMSRValue = ReadMSR(_PCT ControlAddress)

// read current MSR data

TargetMSRValue = (TargetMSRValue & XPSS ControlMask)

// mask unwanted data

TargetMSRValue = (TargetMSRValue | XPSS ControlValue)
// apply new state data

If the Perf_Status_Register address described in the _PCT object is non-zero, and the StatusValue is non-zero, then XPSS StatusValue and StatusMask will be used to determine if the corresponding P‑state transition was successful. OSPM will use the following sequence:

CurrentMSRValue = ReadMSR(_PCT StatusAddress)

// read current MSR data

CurrentMSRValue = (CurrentMSRValue & XPSS StatusMask)
// mask unwanted data

If (CurrentMSRValue equals XPSS StatusValue) then transition successful.

If (CurrentMSRValue not equal to XPSS StatusValue) then transition failed.

Getting Help

To contact Microsoft regarding processor drivers, implementing ACPI support for processor power management controls, or using the XPSS, send your questions to:

procpwr@microsoft.com
Resources

ACPI Specification – Revision 3.0b

http://www.acpi.info/
ACPI / Power Management - Architecture and Driver Support

http://www.microsoft.com/whdc/system/pnppwr/powermgmt/default.mspx
Processor Power Management in Windows Vista

http://www.microsoft.com/whdc
Windows Native Processor Performance Control

http://www.microsoft.com/whdc/system/pnppwr/powermgmt/ProcPerfCtrl.mspx
ACPI in Windows Vista (WinHEC 2006)

http://download.microsoft.com/download/5/b/9/5b97017b-e28a-4bae-ba48-174cf47d23cd/CPA002_WH06.ppt
Power Management in Windows Vista (WinHEC 2006)

http://download.microsoft.com/download/5/b/9/5b97017b-e28a-4bae-ba48-174cf47d23cd/CPA075_WH06.ppt
[image: image1.png]

© 2007 Microsoft Corporation. All rights reserved. By using or providing feedback on these materials, you agree to the attached license agreement.

[image: image2.png]