[image: image5.png]4% Windows

XPSDrv Configuration Module Implementation - 17

XPSDrv Configuration Module Implementation
February 1, 2006

Abstract

This paper provides information about XPSDrv print drivers that are part of the new print architecture for the Microsoft® Windows® family of operating systems. It provides print driver developers with guidelines for the implementation of the configuration interfaces of XPSDrv print drivers. It also provides information about the installation procedures for XPSDrv print drivers.
Independent hardware vendors (IHVs) and independent software vendors (ISVs) can also use this information to help plan their strategy for migrating existing print drivers to the new print architecture.

This information applies for the following operating systems:

Microsoft Windows Vista™

Microsoft Windows XP

Microsoft Windows Server™ 2003

Future versions of this preview information will be provided in the Windows Driver Kit (WDK).

The current version of this paper is maintained on the Web at:

http://www/microsoft.com/whdc/device/print/XPSDrv_Config.mspx
References and resources discussed here are listed at the end of this paper

Contents

4Introduction

4XPSDrv Printer Driver Architecture Overview

4Applications

5Version‑3 Driver

5Filter Pipeline

5XPS Spool File

6XPSDrv Configuration Module Overview

6XPSDrv Configuration Module Implementation Options

7XPSDrv Configuration Module Requirements

7XPSDrv Configuration Module Recommendations

7XPSDrv Configuration Module Implementation

7Configuration Modules Based on GPD or PPD Files

7XPSDrv-Specific GPD and PPD Entries

8Print Schema Mapping

8Sample GPD File

9Unidrv/PScript5 Plug-in Configuration Modules

9PrintTicket and PrintCapabilites Interface Support

9IPrintCoreHelper Interface

11XPSDrv DrvDocumentEvents

11DrvDocumentEvent Event Handler Overview

12DrvDocumentEvent Event Handler Description

16Print Driver Filter Communication

16Private Keywords

16Filter Pipeline Property Bag

17Installing XPSDrv Drivers

18Next Steps

18Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Win32, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

Microsoft® Windows Vista™ introduces the XPS print path as part of a new print architecture that is designed to improve support for printers and document processing. The modular, filter-based XPSDrv print driver is an important part of this new architecture. It provides a more flexible print path than is possible with a print driver that is based on the Microsoft Windows® graphics device interface (GDI).

This paper describes the implementation details of the XPSDrv print driver configuration module. Print driver developers and decision-makers can use this information to help plan their strategy for XPSDrv print driver implementation, migration, and porting. The white paper titled XPSDrv Filter Pipeline contains additional details about the filter pipeline. Together, these papers provide the basic information that print driver developers need to begin development of an XPSDrv print driver. For a higher-level overview of the features and benefits of the XPS print path, read the white paper titled XPS and Color Printing Enhancements in Windows Vista.
XPSDrv Printer Driver Architecture Overview
The XPSDrv print driver is the component of the XPS print path that consumes an XPS Spool File and emits page description language (PDL) or raster data that is suitable for consumption by the printer. The two main components of an XPSDrv print driver are the Version‑3 driver module and the print filter pipeline. Figure 1 shows how these components are accessed by Microsoft Win32® and Windows Presentation Foundation (WPF) applications.

[image: image1.emf]Windows Presentation

Foundation Application

XPS

Spool

File

WPF

Print API

Print Filter

Pipeline

Filter

Pipeline

Manager

Filter 1

Filter n

Filter

Configuration

File

Win32 Application

Version 3 Driver

GDI

Print API

Conversion

Render Module

Configuration

Module/Plug-in

Printer

Configuration

Provided by Microsoft

Provided by ISV

Provided by IHV

Figure 1. XPSDrv Print Driver Architecture
Applications
Both Win32 applications and WPF applications can print to XPSDrv print drivers. Win32 applications continue to use the existing GDI printing application programming interface (API), and the Microsoft-supplied conversion render module creates an XPS Spool File for printing to the print filter pipeline. WPF applications use the WPF printing API to create the XPS Spool File directly from the application.

Version‑3 Driver

The Version‑3 driver component of the XPSDrv print driver includes the configuration and conversion modules.
· Configuration module
The configuration module of an XPSDrv print driver is based on the same architecture as earlier Version‑3 print drivers. Universal print drivers (Unidrv) and PostScript (PScript5) print drivers that are based on generic printer definition (GPD) files, and PostScript printer definition (PPD) files continue to be supported. Unidrv and PScript5 print driver configuration plug-ins and monolithic print driver configuration modules also continue to be supported.

· Conversion rendering module
Win32 applications print to XPSDrv print drivers by using the GDI print support. Microsoft provides a conversion rendering module for independent hardware vendors (IHVs) to include with their XPSDrv print driver, This module creates an XPS Spool File from the incoming device driver interface (DDI) calls that GDI emits.
Filter Pipeline

The filter pipeline in an XPSDrv print driver processes the XPS Spool File and includes the processing filters and the filter pipeline configuration file.

· Filters
The filters that make up the filter pipeline consume the XPS Spool File, process the document, and emit PDL data for the printer to consume. Filters can perform a variety of print processing functions such as document pre-processing, rendering, and post-processing of the PDL.

· Filter pipeline configuration file
The filter pipeline configuration file is an extensible markup language (XML) file that describes the filter pipeline. The file includes information such as the filter order, the filter interfaces, and the input and output formats of each filter. The filter pipeline manager uses this information to create the filter pipeline for the print driver. The white paper titled XPSDrv Filter Pipeline contains additional information on XPSDrv print driver filters and the filter pipeline configuration file.

XPS Spool File

The input to the filter pipeline is an XPS Spool File. The XPS Spool File format is the same format as the XPS Document format, but it has a different name that indicates that the file is spooled for printing instead of saved as a document. The XPS Spool File is a key improvement of the XPS print path because it allows a document to stay in the same format from the application to the printer. For information on the XPS print path, see the white paper titled XPS and Color Printing Enhancements in Windows Vista.

XPSDrv Configuration Module Overview
XPSDrv print drivers use the same configuration architecture as earlier, Version‑3 print drivers. Figure 2 illustrates the different parts of the XPSDrv configuration module and how both Win32 and WPF applications access them.

[image: image2.emf]Windows Presentation

Foundation Application

XPS

Spool

File

WPF

Print API

Win32 Application

Version 3 Driver

GDI

Print API

Conversion

Render Module

Configuration Module

Printer

Configuration

Provided by Microsoft

Provided by ISV

Provided by IHV

Unidrv Config

Module

Pscript5 Config

Module

Unidrv

Plug-in

PScript5

Plug-in

GPD

Monolithic

Config Module

PPD

Print Filter

Pipeline

Filter

Pipeline

Manager

Filter 1

Filter n

Filter

Config-

uration

File

Figure 2. XPSDrv configuration architecture
XPSDrv Configuration Module Implementation Options

The configuration module may be implemented by using one of the following methods:

· Text file only
The configuration module is defined by a GPD or PPD file and uses the Undriv or PScript5 configuration module to implement all of the configuration functions. This option offers the fastest development time and the lowest development cost, but it has limited support for customization. It is best suited for XPSDrv passthrough or basic print drivers.
· Plug-in
The configuration module is defined by a GPD or PPD file and one or more Unidrv or PScript5 print driver configuration plug-ins. This option gives the print driver developer the flexibility to customize certain aspects of the configuration behavior and user experience while relying on the Unidrv or PScript5 configuration module for all other aspects. The required development investment for this option depends on the degree of customization that is required for the print driver. This option is suitable for all types of print drivers.
· Monolithic
By using this option, the IHV completely defines and implements the configuration module. This is generally the most costly method because the IHV must perform all print driver development and testing, but it also offers the most opportunity for customization.

XPSDrv Configuration Module Requirements
For the in-box and the Windows Vista Logo Program for Hardware, the XPSDrv configuration module must meet the following requirements:
· Version‑3 configuration module
The XPSDrv printer driver must implement a Version‑3 print driver configuration module.
· PrintTicket and PrintCapabilities support
The configuration module must support all PrintTicket and PrintCapabilities functionality.
The Windows Vista Logo Program for Hardware information contains the complete list of configuration module requirements. For more detailed information on the PrintTicket and PrintCapabilities features, see the white paper titled PrintTicket and PrintCapabilities Support in Windows Print Drivers and the Windows Driver Kit (WDK).
XPSDrv Configuration Module Recommendations
In addition to the requirements listed in the previous section, Microsoft also recommends the following best practices:

· Use modular GPD or PPD files
For Unidrv- or PScript5-based configuration modules, the print driver should provide a separate GPD or PPD file for each filter. All per-filter GPD or PPD files should then be referenced by a single master print driver GPD or PPD file. Organizing the GPD and PPD files in a modular fashion by filter helps maintain the modularity and reuse of filters in the filter pipeline.
· Map to public Print Schema keywords
Whenever possible, all print driver PrintTicket and PrintCapabilities keywords should be mapped to their equivalent keywords in the public Print Schema. Mapping print driver settings to public Print Schema keywords makes it easier for applications to adopt new features. It also provides better synchronization of printer settings between print drivers and applications.
XPSDrv Configuration Module Implementation
This section describes the technical details of implementing an XPSDrv print driver configuration module. It covers print drivers with configuration modules that are based on GPD or PPD files and those based on Unidrv or PScript5 print driver plug-ins. Monolithic print driver configuration modules are not covered in this paper.
Configuration Modules Based on GPD or PPD Files
Print Schema mapping and new entries specific to XPSDrv print drivers have been added to the Microsoft-supplied GPD and PPD files for Windows Vista. These changes apply to the GPD and PPD files that were used to create GPD- or PPD-only configuration modules and configuration modules for Unidrv or Pscript5 print driver plug-ins.

XPSDrv-Specific GPD and PPD Entries

Use the following steps to create a Version‑3 print driver configuration module for an XPSDrv print driver by using a GPD or a PPD file:
1. Create or edit the GPD or PPD file.
Include the configuration keywords that describe the features that the printer supports. Standard GPD or PPD keywords are automatically mapped to public Print Schema keywords, whereas nonstandard keywords are mapped to a private namespace by default. For more information, see "Print Schema Mapping."
2. Include the msxpsinc.gpd or msxpsinc.ppd file
Include the msxpsinc.gpd if you are creating a GPD file or the msxpsinc.ppd file if you are creating a PPD file. These files include the following keywords, which indicate that the resulting configuration file will be part of an XPSDrv print driver.

IsXPSDriver?: TRUE

(GPD)

*MSIsXPSDriver: True
(PPD)

Including the msxpsinc.gpd or the msxpsinc.ppd file is the preferred approach rather than adding these keywords to the file. If any keywords for XPSDrv drivers are added in the future, these new keywords can be added to the include files, which eliminates the need for any subsequent editing of the print driver’s GPD or PPD file.

Print Schema Mapping

Print Schema mapping is a feature of the Unidrv and PScript5 configuration modules that translates GPD and PPD keywords to their equivalent public Print Schema keywords. By default, all standard GPD and PPD keywords are mapped to their equivalent public Print Schema keywords. Nonstandard keywords in a GPD or PPD file, however, are mapped to a private, device-specific namespace by default. IHVs can improve this mapping by using either one or both of the following methods.
· Specifying the private namespace for nonstandard keywords.
· Associating nonstandard Feature and Option keywords in the GPD or PPD file with their equivalent keywords from the public Print Schema in the GPD or PPD file and the Unidrv or PScript5 configuration module. This enables the configuration module to generate the PrintTicket and PrintCapabilities data as public Print Schema features.

Sample GPD File

The following example shows a GPD file that illustrates the entries and keywords to create a Version‑3 configuration module for an XPSDrv print driver.
*%

*% Copyright (c) 2004 - 2006 Microsoft Corporation

*% All Rights Reserved.

*%

*GPDFileVersion: "1.0"

*GPDSpecVersion: "1.0"

*GPDFileName: "plugfest.gpd"

*Include: "StdNames.gpd“

*%

*% Include XPSDrv include file

*%

*Include: “MSXpsInc.gpd“

*ModelName: "Microsoft XPS Passthrough Driver Sample"

*MasterUnits: PAIR(1200, 1200)

*ResourceDLL: "unires.dll"

*PrinterType: PAGE

*MaxCopies: 1

*%

*% IHV Private Namespace

*%

*PrintSchemaPrivateNamespaceURI:“http://www.ihv.com/schema/2006”

*%

*% IHV Private Feature

*%

*Feature: IHVStapling {

*PrintSchemaKeywordMap: “JobStaple"

*Option: Enabled {

 *PrintSchemaKeywordMap: “StapleTopLeft" }

*Option: Disabled {

 *PrintSchemaKeywordMap: “None“ }

}

Unidrv and PScript5 Plug-in Configuration Modules

XPSDrv print driver configuration modules that use Unidrv or PScript5 configuration plug-ins in Windows Vista support the following new features:
· The PrintTicket and PrintCapabilities feature.
· The IPrintCoreHelper interface for manipulating Unidrv and PScript5 settings.
· XPSDrv DocumentEvents.
· Communication with print driver filters in the filter pipeline.
PrintTicket and PrintCapabilites Interface Support

Unidrv and PScript5 print driver plug-ins implement IPrintOemPrintTicketProvider to customize the PrintTicket and PrintCapabilites data. The methods in this interface allow a plug-in to customize PrintTicket and PrintCapabilities processing for the custom features that the plug-in provides.
The Unidrv and PScript5 print drivers implement the IPrintTicketProvider interface and generate the initial version of the PrintTicket and PrintCapabilities data that are based on the GPD or PPD file. After the initial processing, the Unidrv or PScript5 print driver then calls the plug-in’s IPrintOemPrintTicketProvider interface so that the plug-in can modify to this data before the print driver returns it to the calling application.
For more detailed information on this interface, see the white paper titled PrintTicket and Print Capabilities Support in Windows Print Drivers and the WDK.

IPrintCoreHelper Interface
The IPrintCoreHelper interface enables the print driver configuration plug-in to:
· Get and set values in the private portion of the DEVMODE structure that Unidrv and PScript5 print drivers use.

· Enumerate print driver features, options, and constraints.
· Access the complete GPD or PPD file content.
The only way for a plug-in to properly set the Unidrv or PScript5 configuration and enable full user interface (UI) replacement functionality is by using the following IPrintCoreHelper interface.
DECLARE_INTERFACE_(IPrintCoreHelper, IUnknown)

{

// IUnknown methods skipped

STDMETHOD(CreateInstanceOfMSXMLObject)(...)

STDMETHOD(EnumConstrainedOptions)(...)

STDMETHOD(EnumFeatures)(...)

STDMETHOD(EnumOptions)(...)

STDMETHOD(GetOption)(...)

STDMETHOD(SetOptions)(...)

STDMETHOD(WhyConstrained)(...)

};

The following are the two additional interfaces that are derived from the IPrintCoreHelper interface. They are the IPrintCoreHelperUni and IPrintCoreHelperPS interfaces that are specific to Unidrv and PScript5 print drivers, respectively. These interfaces include additional methods that are unique to each driver.
DECLARE_INTERFACE_(IPrintCoreHelperUni, IUnknown)

{

// IUnknown methods skipped

// IPrintCoreHelper methods skipped

STDMETHOD(CreateDefaultGDLSnapshot)(...)

STDMETHOD(CreateGDLSnapshot)(...)

};

DECLARE_INTERFACE_(IPrintCoreHelperPS, IUnknown)

{

// IUnknown methods skipped

// IPrintCoreHelper methods skipped

STDMETHOD(GetFeatureAttribute)(...)

STDMETHOD(GetGlobalAttribute)(...)

STDMETHOD(GetOptionAttribute)(...)

};

The following code sample illustrates how the IPrintCoreHelper interface can be used to query information from the DEVMODE structure. This example is part of the XPSDrv print driver sample code in the WDK.

HRESULT

CBookletDMPTConv::GetDrvSettingsFromDM(

 __in PDEVMODE pDevmode,

 ULONG cbDevmode,

 __out GPD::Binding::DrvSettings* pDrvSettings

)

{

HRESULT hr = S_OK;

for (
GPD::Binding::EGPDSettings setting =

GPD::Binding::EGPDSettingsMin;

setting < GPD::Binding::EGPDSettingsMax && SUCCEEDED(hr);

setting++)

{

PCSTR pszOption;

hr = m_pCoreHelper->GetOption(

pDevmode,

cbDevmode,

m_featureNames[setting],

&pszOption)

if (SUCCEEDED(hr))

{

hr = GPDSettingFromOptionString(

pszOption,

setting,

pDrvSettings);

}

}

return hr;

}

XPSDrv DrvDocumentEvents

WPF print support sends XPSDrv print drivers notification events during document spooling similarly to how GDI print support sends notifications to GDI print drivers. The WPF print support also uses the same DrvDocumentEvent DDI function as GDI print support, but new events have been defined to support XPS Document processing events. The GDI print support will continue to issue DrvDocumentEvents to GDI-based print drivers and XPSDrv print drivers for Win32 application printing.
DrvDocumentEvent Event Handler Overview

If necessary, XPSDrv print drivers can export the DrvDocumentEvent event handler from the configuration module to intercept document processing functions. The new XPS Document-related events are identified by a symbolic name that starts with DOCUMENTEVENT_XPS_. This paper describes only the new XPS Document–related events. The WDK contains the descriptions of the DrvDocumentEvent event handler and the events that the GDI print support produces.
The WPF print support calls the DrvDocumentEvent function of the XPSDrv print driver while it spools the document for printing. Each call occurs at a different step in the process. The processing step of each call is identified by the value of the iEsc argument. The contents of the buffers that are referenced by the pvIn and pvOut arguments vary, depending on the processing step.
The following text describes only the XPS Document processing events that are produced by the WPF print support. The WDK describes the values of iEsc and the contents of the buffers for events that are supported by the GDI print support.
DrvDocumentEvent Event Handler Description
The DrvDocumentEvent event handler has the following calling format. The program code and argument definitions in this section are only for information. For the most up-to-date information about this function, refer to the WDK.
INT
 DrvDocumentEvent(
 HANDLE hPrinter,
 HDC hdc,
 int iEsc,
 ULONG cbIn,
 PVOID pvIn,
 ULONG cbOut,
 PVOID pvOut
);

Arguments

hPrinter
hPrinter is the printer handle that the WPF print support provides.
hdc
hdc is the device context handle that the GDI print support provides. WPF does not use this argument, and it will always be null for all XPS Document–related events.

iEsc
WPF print support calls this function with an escape code in this argument to identify the print processing event. For XPS Documents, this argument is one of the following integer constants.
DOCUMENTEVENT_XPS_QUERYFILTER
WPF print support sends this event to query the print driver for a list of XPS Document processing events to which the driver will respond. This event is issued before any other XPS Document–related events.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPRE
WPF print support sends this event before it adds a FixedDocumentSequence to the XPS Spool File.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPOST
WPF print support sends this event after it adds a FixedDocumentSequence to the XPS Spool File.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPRE
WPF print support sends this event before it adds a FixedDocument to the XPS Spool File.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPOST
WPF print support sends this event after it adds FixedDocument to the XPS Spool File.
DOCUMENTEVENT_XPS_ADDFIXEDPAGEEPRE
WPF print support sends this event before it adds a FixedPage to the XPS Spool File.
DOCUMENTEVENT_XPS_ADDFIXEDPAGEPOST
WPF print support sends this event after it adds a FixedPage to the XPS Spool File.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPRINTTICKETPRE
WPF print support sends this event before it adds a job-level PrintTicket to the FixedDocumentSequence. This event is called for all print jobs.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPRINTTICKETPRE
WPF print support sends this event before it adds a document-level PrintTicket to the FixedDocument. This event is called for all documents in the print job.

DOCUMENTEVENT_XPS_ADDFIXEDPAGEPRINTTICKETPRE
WPF print support sends this event before it adds a page-level PrintTicket to the FixedPage. This event is called only if a PrintTicket is associated with the page.
DOCUMENTEVENT_XPS_CANCELJOB
WPF print support sends this event before it invokes a cancel job action.

cbIn
cbIn contains the size, in bytes, of the buffer that pvln references. This value is provided by WPF print support and read by the event handler.
pvIn
The pointer to a buffer. The contents of the buffer depend on the value of the iEsc argument and are described below.
DOCUMENTEVENT_XPS_QUERYFILTER

pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_INFO_1 structure that is described in winddiui.h.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPRE
pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_INFO_1 structure that is described in winddiui.h.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPOST

pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_INFO_1 structure that is described in winddiui.h.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPRE
pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDDOCUMENT_INFO_1 that is described in winddiui.h.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPOST
pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDDOCUMENT_INFO_1 structure that is described in winddiui.h.
DOCUMENTEVENT_XPS_ADDFIXEDPAGEEPRE
pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDPAGE_INFO_1 structure that is described in winddiui.h.
DOCUMENTEVENT_XPS_ADDFIXEDPAGEPOST
pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDPAGE_INFO_1 structure that is described in winddiui.h.
DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPRINTTICKETPRE
pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_PRINTTICKET_INFO_1 structure that is described in winddiui.h.

DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPRINTTICKETPRE
pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDDOCUMENT_PRINTTICKET_INFO_1 structure that is described in winddiui.h.
DOCUMENTEVENT_XPS_ADDFIXEDPAGEPRINTTICKETPRE
pvIn contains the pointer to a buffer that contains a XPSDOCEVENT_FIXEDPAGE_PRINTTICKET_INFO_1 structure that is described in winddiui.h.
DOCUMENTEVENT_XPS_CANCELJOB

pvIn is not used.
cbOut
If the iEsc argument contains the value of DOCUMENTEVENT_XPS_QUERYFILTER, WPF print support provides the size of the buffer that the pvOut argument in the cbOut argument references. For all other values of iEsc, cbOut is not used.
pvOut
pvOut is the pointer to a buffer that the WPF print support provides. The buffer size and contents depend on the value of the iEsc argument and are described below.
DOCUMENTEVENT_XPS_QUERYFILTER
pvOut contains the pointer to a buffer that the WPF print support provides, which contains a DOCEVENT_FILTER structure.

DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPRE

pvOut is not used.

DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPOST

pvOut is not used.

DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPRE

pvOut is not used.

DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPOST

pvOut is not used.

DOCUMENTEVENT_XPS_ADDFIXEDPAGEEPRE

pvOut is not used.

DOCUMENTEVENT_XPS_ADDFIXEDPAGEPOST

pvOut is not used.

DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPRINTTICKETPRE
pvOut contains the pointer to a driver-supplied IStream pointer that contains an XML PrintTicket. WPF uses the PrintTicket from this stream instead of the one that the WPF print support provided. If pvOut is null, WPF uses the PrintTicket that the calling function provided. After this event is processed, WPF calls IStream::Release to release the stream object.

DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPRINTTICKETPRE
pvOut contains the pointer to a driver-supplied IStream pointer that contains an XML PrintTicket. WPF uses the PrintTicket from this stream instead of the one that the WPF print support provided. If pvOut is null, WPF uses the PrintTicket that the calling function provided. After this event is processed, WPF calls IStream::Release to release the stream object.

DOCUMENTEVENT_XPS_ADDFIXEDPAGEPRINTTICKETPRE
pvOut contains the pointer to a driver-supplied IStream pointer that contains an XML PrintTicket. WPF uses the PrintTicket from this stream instead of the one that the WPF print support provided. If pvOut is null, WPF uses the PrintTicket that the calling function provided. After this event is processed, WPF calls IStream::Release to release the stream object.

DOCUMENTEVENT_XPS_CANCELJOB
pvOut is not used.

Return Value

The DrvDocumentEvent function of an XPSDrv print driver must return one of the following return values:
DOCUMENTEVENT_SUCCESS

The driver successfully handled the escape code that iEsc identified.

DOCUMENTEVENT_FAILURE
The driver supports the escape code that iEsc identified, but a failure occurred.

DOCUMENTEVENT_UNSUPPORTED
The driver does not support the escape code that iEsc identified.

XPS Document Event Structures and Event Code Values
The following illustrates the structures and constants that the new XPS Document events use. The program code in this section is only for information. For the most up-to-date information about this function, refer to the WDK.

//

// structures used in XPS Document events

//

typedef struct _XPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_INFO_1 {

 DWORD cbSize;

 DWORD JobID;

 PCTSTR pszJobName;

} XPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_INFO_1, *PXPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_INFO_1;

typedef struct _XPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_PRINTTICKET_INFO_1 {

 DWORD cbSize;

 DWORD JobID;

 PCTSTR pszJobName;

 IStream *pPrintTicket; // null if not caller supplied PrintTicket

} XPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_PRINTTICKET_INFO_1, *PXPSDOCEVENT_FIXEDDOCUMENTSEQUENCE_PRINTTICKET_INFO_1;

typedef struct _XPSDOCEVENT_FIXEDDOCUMENT_INFO_1 {

 DWORD cbSize;

 DWORD DocumentNumber; // index starts at 1

 PCTSTR pszDocumentName;

} XPSDOCEVENT_FIXEDDOCUMENT_INFO_1, *PXPSDOCEVENT_FIXEDDOCUMENT_INFO_1;

typedef struct _XPSDOCEVENT_FIXEDDOCUMENT_PRINTTICKET_INFO_1 {

 DWORD cbSize;

 DWORD DocumentNumber; // index starts at 1

 PCTSTR pszDocumentName;

 IStream *pPrintTicket; // null if not caller supplied PrintTicket

} XPSDOCEVENT_FIXEDDOCUMENT_PRINTTICKET_INFO_1, *PXPSDOCEVENT_FIXEDDOCUMENT_PRINTTICKET_INFO_1;

typedef struct _XPSDOCEVENT_FIXEDPAGE_INFO_1 {

 DWORD cbSize;

 DWORD DocumentNumber; // index starts at 1

 DWORD PageNumber; // index starts at 1

} XPSDOCEVENT_FIXEDPAGE_INFO_1, *PXPSDOCEVENT_FIXEDPAGE_INFO_1;

typedef struct _XPSDOCEVENT_FIXEDPAGE_PRINTTICKET_INFO_1 {

 DWORD cbSize;

 DWORD DocumentNumber; // index starts at 1

 DWORD PageNumber; // index starts at 1

 IStream *pPrintTicket;

} XPSDOCEVENT_FIXEDPAGE_PRINTTICKET_INFO_1, *PXPSDOCEVENT_FIXEDPAGE_PRINTTICKET_INFO_1;

//

// Escape code for XPS Document events

//

#define DOCUMENTEVENT_XPS_QUERYFILTER 15

#define DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPRE 16

#define DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPOST 17

#define DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPRE 18

#define DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPOST 19

#define DOCUMENTEVENT_XPS_ADDFIXEDPAGEEPRE 20

#define DOCUMENTEVENT_XPS_ADDFIXEDPAGEPOST 21

#define DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTSEQUENCEPRINTTICKETPRE 22

#define DOCUMENTEVENT_XPS_ADDFIXEDDOCUMENTPRINTTICKETPRE 23

#define DOCUMENTEVENT_XPS_ADDFIXEDPAGEPRINTTICKETPRE 24

#define DOCUMENTEVENT_XPS_CANCELJOB 25

Print Driver Filter Communication
A configuration module can use the following methods to communicate with a filter in the filter pipeline.

Private Keywords
A configuration module can put private keywords in the PrintTicket when handling one of the XPS Document processing events. These PrintTicket entries are then read by the processing filters in the print filter pipeline while the filters are reading the PrintTicket. For more information on using this method, see "XPSDrv DrvDocumentEvents," earlier in this paper.
Filter Pipeline Property Bag

A configuration module can also use the Filter Pipeline property bag to store data or to pass information to the filter pipeline. To expose configuration services by using the property bag, the configuration module must export the DrvPopulateFilterServices method. In addition, the Filter Pipeline Configuration file must include the <FilterServiceProvider> element for each service.

The following is the DrvPopulateFilterServices method.
HRESULT

DrvPopulateFilterServices(

 __in IPrintPipelinePropertyBag *pPropertyBag

);

The following is the XML syntax for the <FilterServiceProvider> element in the filter pipeline configuration file.
<Filters>

<Filter …. />

<FilterServiceProvider dll = “providerA.dll”/>

<FilterServiceProvider dll = “providerB.dll”/>

</Filters>

Installing XPSDrv Drivers
To be properly registered by the spooler, XPSDrv drivers must make the following changes.
· The “CopyFiles” section must reference the filter pipeline configuration file.
· The “Needs” section must reference XPSDRV.OEM.
· If the configuration module is based on Unidrv, then UNIDRV.OEM and XPSGPD.OEM must be referenced in the “Needs” section. Likewise, if the configuration module is based on PScript5, PSCRIPT.OEM and XPSPPD.OEM must be referenced in the “Needs” section.
The following sample illustrates an INF file with these changes.
[Version]

Signature="$Windows NT$"

Provider=%MS%

ClassGUID={4D36E979-E325-11CE-BFC1-08002BE10318}

Class=Printer

CatalogFile=ntprint.cat

DriverVer=10/11/2005,6.0.5242.0

[Manufacturer]

Microsoft

[Microsoft]

"XPSDrv Sample Driver" = INSTALL_XDSMPL_FILTERS

[INSTALL_XDSMPL_FILTERS]

CopyFiles=XPSDrvSample,ConfigPlugin,COLORPROFILES

DriverFile=mxdwdrv.dll

ConfigFile=unidrvui.dll

HelpFile=unidrv.HLP

DataFile=XDSmpl.GPD

Include=NTPRINT.INF

Needs=UNIDRV.OEM, XPSGPD.OEM, XPSDRV.OEM

ICMProfiles=xdwscRGB.cdmp

[XPSDrvSample]

xdsmpl-pipelineconfig.xml

...

Next Steps

Developers and vendors of printer and document processing products are encouraged to review the advantages and requirements of supporting the XPS print path and how applying this technology best fits with their immediate and strategic product plans.

Microsoft encourages vendors to pursue these advances by taking the following steps.

· Read XPS: XML Paper Specification to understand the XPS Document format.

· Review all technical documentation about the XPS print path to better understand printer consumption challenges and opportunities.

· Consider providing updated drivers for the installed base to take advantage of improved printing capabilities that are enabled through XPSDrv drivers.

· Become familiar with areas of extensibility to host value-added functions.

Resources

Information about XPS, including XPS: XML Paper Specification:
http://www.microsoft.com/whdc/xps
Print Schema (Windows SDK):
http://winfx.msdn.microsoft.com/library/en-us/printschema/html/d746bdd1-96c2-41f5-ad99-0b51c8ee8731.asp
[Navigate to Graphics and Multimedia and then to Print Schema.]
White Papers:
XPS and Color Printing Enhancements in Windows Vista
 http://www.microsoft.com/whdc/xps/vista_print.mspx
XPSDrv Filter Pipeline
 http://www.microsoft.com/whdc/device/print/XPSDrv_FilterPipe.mspx
PrintTicket and PrintCapabilities Support in Windows Print Drivers
 http://www.microsoft.com/whdc/device/print/XPSDrv_PrintTicket.mspx

Windows Driver Kit (WDK):
http://www.microsoft.com/whdc/driver/WDK/aboutWDK.mspx
Windows Vista Logo Program for Hardware:
http://www.microsoft.com/whdc/winlogo/default.mspx
For additional information:
Send an e-mail to: xpsinfo@microsoft.com[image: image3.png]&

[image: image4.png]

February 1, 2006

© 2006 Microsoft Corporation. All rights reserved.

[image: image5.png]_1200224214.vsd
Configuration Module/Plug-in

Windows Presentation Foundation Application

XPS Spool File

Printer Configuration

WPF  Print API

_1200291201.vsd
Windows Presentation Foundation Application

XPS Spool File

WPF  Print API

