[image: image1.png]4% Windows

Testing and Troubleshooting the Print Subsystem - 10

Testing and Troubleshooting the Print Subsystem
February 7, 2006
Abstract

This paper provides information about resources and best practices for testing the components of the print system in the Windows Vista™ operating system. It provides prescriptive information on testing, debugging, and troubleshooting printer driver and print spooler installations for IT administrators and support staff.

This information applies for the following operating systems:

Windows Vista™

Microsoft® Windows Server® 2003 SP1
The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/device/print/PrtTrblSh.mspx
References and resources discussed here are listed at the end of this paper.

Contents

3Introduction

3Install and Configure the Debugging Tools

3Windows Debuggers

3Debugger Overview

4Debugger Configuration

5Application Verifier

5AppVerifier Configuration

6Spooler Configuration

7Regedit script

7AppVerifier Output

8System Modules Reported by Application Verifier

8Run the Tests and Analyze the Results

8Print Verifier Messages

10Collecting Data from Print Verifier Stops

10Determine the Reason for the Stop

11Create a dump file

11Debugging Print Verifier Stops

12Create a Log File

12Display the operating system version

12Display the current process

13Display the event that caused the stop

13Enable source code lines

13Examine the Context Record

13Examine the stack trace

14Next Steps

14Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, Win32, Windows, Windows Server, Windows Vista, and WinFX are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

The Microsoft Windows print subsystem supports a wide-variety of printer drivers. While this flexibility provides customers with a wide range of product options, the complexity and diversity of these options makes it a challenge for system administrators and IT Professionals to debug a problematic configuration or identify the components that might be responsible for system instability.
This whitepaper describes the test and troubleshooting tools that can be used to test the Windows print system and that are available from Microsoft to system administrators and IT support staff. It also describes the procedures for testing and analyzing the information that these tools produce. You can use these tools and procedures to troubleshoot problems in deployed servers as well as to test printer and print server configurations before they are deployed.
The general steps to test and troubleshoot the print subsystem are:

· Download and install the tools
Download and install Debugging Tools for Windows and Application Verifier on the computer that you want to test. The "References" section at the end of this paper has links to these downloads.
· Configure the Debugger
Configure the debugger and, if necessary, a remote debugging console to examine the problem and record information for later analysis by the Microsoft Product Support engineers.

· Configure AppVerifier
Configure AppVerifier and the Print Verifier for the type of test or tests that you want to perform.

· Run the Tests
Print the documents that cause the error or test the component or configuration.
· Record and Analyze the Results
Record the results that AppVerifier produces. At this point, you can send this information to the Microsoft Product Support engineers or analyze the information and continue troubleshooting.

· Correct the Problem and Repeat the Tests
After you have found and corrected the problem, repeat the tests to make sure that those problems were not masking another problem.
Install and Configure the Debugging Tools
The debugging tools that are available from Microsoft can help you analyze a problem and they can collect information that is sufficiently detailed for a Microsoft Product Support engineer to troubleshoot the problem. These tools include Windows debuggers and Application Verifier (AppVerifier). AppVerifier manages the tests that can help you locate and identify problems in applications and system components such as the print spooler, printer queues, and printer drivers.
Windows Debuggers

The Windows debuggers give you the ability to see inside applications and drivers and allow you to collect more detailed information about the application.
Debugger Overview

Debugging Tools for Windows includes several source-level debuggers: NTSD, CDB, WinDbg, and KD.

· CDB and NTSD
Microsoft Console Debugger (CDB) is a character-based console program that enables low-level analysis of the user-mode memory and program code in Windows applications. Microsoft NT Symbolic Debugger (NTSD) is a variation of CDB that is identical to CDB in every way except that NTSD spawns a new text window when it is started while CDB inherits the command window from which it was invoked. Both CDB and NTSD are console applications that can debug user-mode programs.
NTSD is available in Debugging Tools for Windows and it can also be found in the system32 directory of Windows. Because the version of NTSD that is found in system32 is more limited than the version that is available in Debugging Tools for Windows, you should use only the version of NTSD or CDB that was installed by Debugging Tools for Windows. The version of NTSD in the system32 directory has the following limitations:
It cannot be used for remote debugging through the debugger.

It might not match the information found in this paper.

· WinDbg
Microsoft Windows Debugger (WinDbg) is a Windows-based debugging tool that is capable of both user-mode and kernel-mode debugging. WinDbg provides source-level debugging for the Windows kernel, kernel-mode drivers, system services, user-mode applications and user-mode drivers. WinDbg could be used to debug the print subsystem, however the NTSD commands that are described in this paper might not work the same in WinDbg.

· KD
Microsoft Kernel Debugger (KD) is a character-based console program that enables in-depth analysis of kernel-mode activity on all NT-based operating systems. KD supports multiprocessor debugging and can be used to debug kernel-mode programs and drivers as well as to monitor the behavior of the operating system. This debugger is not necessary for debugging the print subsystem because the print subsystem components run in user-mode.

Debugger Configuration

The section titled "Debugger Operation" in debugger.chm, the help file for Debugging Tools for Windows, contains detailed information about how to configure and start the NTSD debugger. This section describes only the general guidelines for debugger installation and configuration.
· Locate the symbol files
Locate the symbol files and configure or load the symbol file paths as described in debugger.chm under the section titled "Setting Paths and Loading Files."
The debugger uses the symbol files to resolve program addresses and function and variable names.

· Start the remote or local debugger console
Start the debugger console. Because printer components are user-mode programs, you can start the debugger on the same computer that you are testing. Open the debugger in a console window as described in the section titled "Starting the Debugger" in debugger.chm.
If you want to make your debugging session available to others, you can open the debugger in a remote console window. Starting the debugger in a remote console window is described in the section titled "Remote Debugging Through Remote.exe" in debugger.chm.

· Attach the debugger to the print subsystem processes
Finally, you will need to attach it to the processes that make up the print subsystem interactively or have the print spooler service start in the debugger. The section titled "Attaching to a Running Process (User Mode)" in debugger.chm describes several ways to do this. Refer to the instructions for the "Debugger Command Window" if you have already started your debugger.

Attach the debugger interactively
Attach the debugger to the print subsystem by attaching to these processes:
· Spoolsv.exe
· Printfilterpipelinesvc.exe
Use the Global Flags to Start the Print Spooler in the Debugger
You can also start the print spooler in the debugger console by using the Global Flags tool (gflags.exe) that is part of the Debugging Tools for Windows. To use gflags to configure the print spooler to start in the debugger:

· Start gflags.exe

· In Global Flags, select the Image tab

· In the Image edit box, type spoolsv.exe (the print spooler executable image file) and press the Tab key to refresh the property page.

· Check Debugger and in the edit box, enter the debugger command shown here:
<debugging tools for windows>\ntsd.exe -G -g
Note that you should use the ntsd.exe that was installed with the Debugging Tools for Windows. The -G and -g options tell the debugger to not stop when the image is loaded or when the image terminates. These options allow the print spooler service to start and stop normally while presenting the debugger command window for debugging.

· Click Apply and restart the system. The system will restart with the print spooler running in the debugger.

Application Verifier

Application Verifier (AppVerifier) is a run-time verification and test tool that monitors programs for compatibility, stability and security issues. If you suspect that the print subsystem has a problem, you can also use the Print Verifier feature of AppVerifier to examine the print subsystem in greater detail. The Print Verifier feature is described later in this paper. Analyzing Your Applications with Microsoft Application Verifier contains additional information on configuring and using AppVerifier is listed in the "Resources" section of this paper.
AppVerifier Configuration

For Windows Server 2003 SP1 and later versions of Windows, AppVerifier can be configured to help monitor and catch problems in the print spooler. Print Verifier is a feature of AppVerifier that provides additional monitoring of the print subsystem. By enabling the Print tests in AppVerifier, you can test how applications are calling the print APIs and catch problems in applications and printer drivers. Configure AppVerifier and the Print Verifier feature to monitor the print subsystem by entering the following command in a command window:
appverif -enable heaps exceptions locks handles PrintAPI PrintDriver -for spoolsv.exe printfilterpipelinesvc.exe

After configuring the AppVerifier, you might need to restart the computer for the settings to take effect. At the very least, you will need to restart the print spooler service.
Spooler Configuration

The spooler includes additional debugging features that you can configure in the system registry. Use regedit.exe to make these changes manually, or use the regedit scripts that are found later in this paper.
Warning: Use extreme caution when modifying the registry directly. Modifying some areas of the system registry can cause serious problems with the operating system. Make sure that you back up the registry and know how to restore it before you make any edits. The knowledge base article titled "Description of the Microsoft Windows Registry" contains detailed information about how to backup, restore, and edit the registry.
Enable Log Files
Enable the spooler to create log files by creating a subkey named VEHEnabled under the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print key in the registry. You do not need to create any values under the VEHEnabled subkey.
Enable Debug Break

Enable the system to break into the debugger when AppVerifier encounters an error in the spooler by creating a subkey named VEHDbgBreakOnFatalVEHCode under the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print key in the registry. You do not need to create any values under the VEHDbgBreakOnFatalVEHCode subkey.

To use the debugger to investigate an error in the spooler, you must also define the VEHEnabled key described above. Note that the spooler service terminates when you exit the debugger.
Enable Debug Break Reporting
Enable the AppVerifier to create a fault report when it encounters a debug break by creating a subkey named VEHReportFaultOnFatalVEHCode under the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print key in the registry. You do not need to create any values under the VEHReportFaultOnFatalVEHCode subkey.

When this feature is enabled and AppVerifier detects a fault:

· AppVerifier attempts to identify the DLL module that caused the fault and determine the file name of that module. AppVerifier writes the file name of the module to %systemdrive%\spoolerlogs\splcrash.log.

· AppVerifier collects internal state information of the print subsystem, including recent spooler-related log entries from the EventLog, information about all of the print queues, and the names of all installed printer drivers. This information is written to %systemdrive%\spoolerlogs\spooler.xml.

The spooler process terminates after this information is written because, after a fault has occurred, the integrity of the spooler's memory can no longer be trusted. The cause of this fault must be found and corrected before further testing can be performed.
This registry key and the VEHEnabled key described above must also exist to enable this reporting function. The type and value of this key are not defined.
Regedit script

Instead of manually creating the registry keys described above, the following text can be saved as a text file and loaded into the registry by using regedit.exe. To create this file, run Notepad and copy the following text into Notepad. The first line in the Notepad document must be the line that contains REGEDIT4. In the File menu, select Save As… and, in the Save As dialog box, save the document by selecting All Files in the Save as type combo box and enter EnablePrintVer.reg in the File name box. The .reg file extension is required to associate this file with regedit.exe. In the Windows explorer, run EnablePrintVer.reg to add the values to the registry and configure the spooler for AppVerifier troubleshooting.
REGEDIT4

;;

;;
Regedit script to enable Print Verifier debugging in
;;
the print spooler.

;;

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHEnabled]

@="Enable Print Verifier Log Files"

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHDbgBreakOnFatalVEHCode]

@="Enable Print Verifier Debug Break"

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHReportFaultOnFatalVEHCode]

@="Enable Print Verifier Debug Break Reporting"

To disable these settings after you are finished troubleshooting the system, the following text can be saved as a text file and used by Regedit to clear the registry entries. To create this file, run Notepad and copy the following text into Notepad. The first line in the Notepad document must be the line that contains REGEDIT4. In the File menu, select Save As… and, in the Save As dialog box, save the document by selecting All Files in the Save as type combo box and enter DisablePrintVer.reg in the File name box. As with the previous file, the .reg file extension is required. In the Windows explorer, run DisablePrintVer.reg to remove the values from the registry and return the spooler to normal operation.

REGEDIT4

;;

;;
Regedit script to disable Print Verifier debugging in the
;;
print spooler.

;;

[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHEnabled]

[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHDbgBreakOnFatalVEHCode]

[-HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Print\VEHReportFaultOnFatalVEHCode]

AppVerifier Output
If the spooler fails while AppVerifier is running, AppVerifier will create two log files: splcrash.log and spooler.xml. Splcrash.log is a text file that contains the name of the DLL that caused the failure. An example of a splcrash.log file is shown below. In this example, the system determined that “drvrabout.dll” module caused a fault and wrote the path in splcrash.log.

Splcrash.log example:

E:\WINDOWS\system32\spool\DRIVERS\IA64\3\drvrabout.dll

Spooler.xml is an XML file that contains a description of the print spooler at the time of the crash. This file should be saved so that it can be analyzed later.
System Modules Reported by Application Verifier

If splcrash.log contains a system module such as NTDLL.dll, MSVCRT.dll, RPCRT4.dll, or KERNEL32.dll, this generally means that the function that called into the system module was the cause of the fault. It is extremely rare for a system module to cause a fault in the spooler. If splcrash.log contains a system module, the only way to determine the cause of the problem is to debug the application and find the function that called into the system module.
You can get a clearer indication of the module that has the error if you enable the heap tests in AppVerifier for the spooler process. The best results are obtained when you:

Enable the heap tests for the spooler and printfilterpipelinesvc applications. This will minimize false failure indications.
Define the VEHEnabled and VEHReportFaultOnFatalVEHCode registry keys as described earlier in this paper.
Run the Tests and Analyze the Results

After you have configured the software, run the test or print the document that is causing the error or that tests the new configuration. When AppVerifier detects an error, it breaks into the debugger and displays a stop code with a message that indicates the nature of problem.
Print Verifier Messages

The Print Verifier tests many different aspects of the components in the print subsystem such as how those components are used by the spooler and applications and how those components use system resources. Print Verifier tests both the Print APIs that an application uses as well as the resources that Print Drivers use.
The following tables list the error messages that can be returned by the Print Verifier. The more common error messages are shown in bold. AppVerifier help contains more detailed information about these messages.

	Print API Error Message

	Leaked printer handle detected

	Leaked printer change notification handle detected

	Leaked PRINTER_NOTIFY_INFO detected

	Race condition detected while using a printer handle

	Potential multi-threaded access to a printer handle detected

	Attempt to use a closed printer handle

	Attempt to use an unknown printer handle

	Attempt to use a closed printer change notification handle

	Attempt to use an invalid printer change notification handle

	Attempt to use a freed PRINTER_NOTIFY_INFO object

	Attempt to use an invalid PRINTER_NOTIFY_INFO object

	Too many open printer handles

	OpenPrinter2W seems to be exported from winspool.drv of an earlier version of Windows

	Too many open PrintTicket provider handles (HPTPROVIDER)

	Attempt to use a closed PrintTicket provider handle (HPTPROVIDER)

	Attempt to use an unknown PrintTicket provider handle (HPTPROVIDER)

	Race condition detected while using a PrintTicket provider handle

	Potential multi-threaded access to a PrintTicket provider handle detected

	Leaked PrintTicket provider handle detected

	Too many open printer change notification handles

	Too many open PRINTER_NOTIFY_INFO objects

	Attempt to use an invalid PrintTicket

	Attempt to use an invalid PrintCapabilities document

	An invalid NULL argument was passed to a PrintTicket method

	PTConform encountered an unexpected error

	Illegal print API called from DllMain

	Print Driver Error Message

	First chance access violation detected

	The thread tried to divide an integer value by an integer divisor of zero

	The thread tried to read or write misaligned data on hardware that does not provide alignment

	Invalid handle exception for current stack trace

	Core driver is sending a closed printer handle to the plug-in

	Core driver is sending an unknown printer handle to the plug-in

	The plug-in closed the printer handle

	Invalid number of supported Print Schema major versions

	Missing supported Print Schema versions

	Invalid Print Schema major version

	Invalid OEMPTOPTS value

	Missing Print Schema private namespace

	Incorrect reference counting detected in the plug-in

	pptl is NULL in OEMNextBand

	The plug-in returned a NULL PDEV after returning S_OK from the EnablePDEV method

	The plug-in returned a private DEVMODE that is smaller than the minimum size allowed

	The plug-in returned a private DEVMODE with a different size than the size returned by the DevMode(OEMDM_SIZE) call

	The plug-in returned an invalid signature from the GetInfo(OEMGI_GETSIGNATURE) call

	The plug-in returned a different signature in the private DEVMODE than it returned from the GetInfo call

	The EnableDriver method in the plug-in failed.

	The EnableDriver method in the plug-in failed without setting the last error code

	The core driver called SetBandSize although the plug-in returned S_OK from DriverDMS

	The core driver made the WritePrinter initialization call with invalid parameters

	The WritePrinter method in the plug-in failed

	Core driver sent an invalid PrintTicket to the plug-in

	The plug-in returned an invalid PrintTicket to the core driver

	Core driver sent an invalid PrintCapabilities document to the plug-in

	The plug-in returned an invalid PrintCapabilities document to the core driver

	PTConform encountered an unexpected error

	Print filter calls pipeline manager interface with invalid argument value

	Print filter call to IPrintPipelinePropertyBag overwrites or removes common property

	Print filter calls pipeline manager interface out of order

	Print filter has mismatch of AddRef/Release calls to pipeline manager interface

	Print filter call to pipeline manager interface method is not expected

	Pipeline manager calls print filter interface methods out of order

	Pipeline manager calls print filter interface method with invalid argument value

	Pipeline manager returns invalid value to print filter

Collecting Data from Print Verifier Stops

When AppVerifier breaks into the debugger, you should first determine why the program stopped and then use the debugger to create a dump file. The dump file records the state of the system and the application at the time of the error.

If you want to continue to investigate the problem further by using the debugger, you should create a log file and keep detailed notes of your investigation. The log file will serve as a convenient reference when reviewing your investigation and can also provide valuable information to the Microsoft Product Support engineers.
Determine the Reason for the Stop

Before debugging the program, you must first determine whether AppVerifier or another program caused the program to stop in the debugger. Check the following conditions to make sure that you are investigating a problem in the print subsystem that was detected by AppVerifier.
· Has the program stopped at a user-mode breakpoint?
When a program stops at a user-mode breakpoint in the debugger, the console screen should display a command prompt that should look something like:
0:000>
The actual numbers that precede the greater-than sign might be different because they indicate the process thread ID that is being debugged.
If the command prompt looks something like:
0:kd>
then the break is from the kernel debugger and the problem is outside of the scope of this document.

· Was AppVerifier configured to test for heap errors in Spoolsv.exe?
Make sure that AppVerifier has the Heaps test enabled under the Basics test category in the Tests window for the spoolsv.exe application.

· Were all other programs under test configured test for heap errors?
Make sure that, at a minimum, the Heaps test enabled under the Basics test category in the Tests window of AppVerifier for all applications that are being tested. You can also enable the Exceptions, Locks, Handles, PrintDriver, and PrintAPI tests for more thorough testing. When testing XPSDrv printer drivers, include printfilterpipelinesvc.exe in the Applications list.
· Was there an AppVerifier message in the debugger?
AppVerifier writes information to the debugger console after it detects an error but before it stops the program in the debugger. If no AppVerifier information is displayed in the debugger, there is still a problem to investigate; it just is not a problem that was found by AppVerifier.
The following example shows an AppVerifier stop. The content of this message is determined by the nature of the problem detected by AppVerifier. AppVerifier help contains more detailed information about the Verifier Stop codes.

===
VERIFIER STOP 0000060F: pid 0xA20: unexpected exception raised while probing memory

C0000005 : Exception code.
0013E868 : Exception record. Use .exr to display it.
0013E884 : Context record. Use .cxr to display it.
134AB000 : Memory address
===
This verifier stop is continuable.
After debugging it use `go' to continue.
===

Break instruction exception - code 80000003 (first chance)
ntdll!DbgBreakPoint:
77eaf2bc cc int 3

Create a dump file

The first step in the debugging session is to preserve the context of the system and the program at the time it broke into the debugger. A mini user-dump file contains the memory address space available and records this information so that another person can analyze the problem after the system has been restarted. The dump file allows the problem to be researched further at a later time and on a different machine, if necessary.

Saving the dump file by using the .dump command and select a descriptive file name for the dump file. Using the /ma option in the dump command line creates a minidump that contains memory data, handle data, unloaded module information, basic memory information, and thread time information. The following example illustrates a dump command that will create an output file named c:\03_24_2004_11h_am.DMP. The file name in this example was chosen to indicate the date and time the dump file was created. .
0:001> .dump /ma c:\03_24_2004_11h_am.DMP

Creating c:\03_24_2004_11h_am.DMP - mini user dump

Dump successfully written

0:001>

This log file contains the minimum information that you need to collect in order for a Microsoft Product Support engineer to analyze the problem. In some cases, you might also want to add the /ba option to the dump command in order to save the symbols and the image files along with the dump file in a .CAB file. This creates a larger and more complete file that contains all the information that is necessary to analyze the problem on a machine that does not have access to the symbols. The following example illustrates this option added to the command used in the previous example.
0:001> .dump /ma /ba c:\03_24_2004_11h_am.DMP
Creating c:\03_24_2004_11h_am.CAB - mini user dump

Dump successfully written

0:001>

If you want to continue debugging and collecting more data, you can continue and follow the steps listed in the next section.

Debugging Print Verifier Stops

To perform a more detailed analysis of an error that Print Verifier detected, you can start debugging the application. The procedures in this section use debugging commands for NTSD. See debugger.chm in Debugging Tools for Windows for more information on these as well as all of the other commands that are supported by NTSD.

Create a Log File

Before you start debugging, you should open a log file to record your actions. The debugger records your commands and the information displayed by those commands in the log file which simplifies your record-keeping task.
Open the log file and start logging by entering the .logopen command in the debugger command window. Select a filename for the log file that is similar to the filename of dump file in order to make it easy to match them. The following example creates a log file that corresponds to the dump file created above.
0:001> .logopen c:\03_24_2004_11h_am.LOG
During your debugging session, you can include comments in the log file by starting a command with an asterisk (*) character. The debugger does not execute any text after the asterisk in a command line. The additional text is only written to the log file. The following example shows two comments that were entered during a debugging session.

0:001>* This is a comment for the log file describing what I found
0:001>* and what I plan to do next
Display the operating system version
In an environment that might have many different versions or builds of Windows, application programs, or printer driver files, it is important to identify the version and build of these components before continuing. Vertarget displays this information to the debugging console. The following example illustrates how this command might look when executed during a debugging session.
0:001> vertarget
Windows Server 2003 Version 3790 (Service Pack 1, v.1168) MP (2 procs) Free x86 compatible

Product: Server, suite: Enterprise TerminalServer SingleUserTS

kernel32.dll version: 5.2.3790.1168 (dnsrv.040303-1612)

Debug session time: Fri Mar 12 15:29:01 2004

System Uptime: 1 days 0:51:46.937

Process Uptime: 0 days 0:39:38.000

 Kernel time: 0 days 0:00:52.000

 User time: 0 days 0:01:49.000

0:001>

In this example, the program that is being debugged is running on build 1168 of Microsoft Windows Server™ 2003. The operating system is a free, multiprocessor build for the x86 processor architecture and is running on a two-CPU machine.

Display the current process

Enter | (the vertical bar character) command in the debugger to show the current process. The following example illustrates this command.
0:001> |

. 0 id: 53d create name: spoolsv.exe

0:001>

In the preceding example, the debugger stopped in the spoolsv.exe process, process ID: 53d (hex). Note that simply breaking into the Windows print spooler process (spoolsv.exe) does not necessarily mean that the print spooler is the cause of the break. The spoolsv process hosts user-mode printer drivers so an error in a printer driver will appear as an error in the spoolsv process.

Display the event that caused the stop
Display the event that caused the program to break into the debugger by entering the .lastevent command in the debugger.

0:001> .lastevent
Last event: (538.2774): Access violation - code c0000005 (!!! second chance !!!)

In this example, an access violation (AV) caused this program to break into the debugger. This information can provide additional insight into the nature of the problem.
Enable source code lines

It is much easier to continue debugging if the information is displayed with source code references. Enter the .lines command in the debugger to enable the debugger to display the source code lines that correspond to the program instructions.
0:001> .lines
Line number information will be loaded

Examine the Context Record

In some cases, AppVerifier output includes the virtual address of the context record. You can display the contents of the context record by entering the .cxr command followed by the virtual address of the record that is listed in the AppVerifier output. The following example shows the .cxr command used to display the context record that was listed in the verifier stop message above.
0:001>.cxr 0013e884
Examine the stack trace

Listing the stack trace shows all the functions that were being executed in the current thread when the program stopped in the debugger. Enter the k command to display these functions by name. The k command lists the function name and offset into the function where the function on the line above will return. The functions are listed with the most recently called function at the top of the list. To read the list, the function on the top line was called by the function on the line below it, which was called by the function below it, and so on down the list.
The following example shows the output from the k command. The information that is displayed by this command will vary depending on where the program stops.

0:001> k 100

ChildEBP RetAddr

05f2f674 65bd24f0 msvcrt!wcscpy+0x9 [d:\main\base\crts\crtw32\string\wcscat. c @92]

05f2f684 65bd2a95 BadDriverUI!BConvertPrivateDevmode+0x48

05f2f6b0 65bd2d7b BadDriverUI!OEMDevMode+0x125

05f2f6c0 59d82878 BadDriverUI!CCobraUICB::DevMode+0x22

05f2f6e0 59d97b25 PS5UI!HComOEMDevMode+0x3b [d:\driverui\intfui.cxx @ 1357]

05f2f724 59d97f3c PS5UI!BCallOEMDevMode+0x6a [d:\lib\oemutil\oemut il.c @94 1]

05f2f764 59d98606 PS5UI!BConvertOemPluginDevmode+0xf1 [d:\lib\oemutil\oemut il.c@ 1355]

05f2f7a4 59d9864f PS5UI!PConvertToCurrentVersionDevmodeWithOemPlugins+0x2ac [d:\lib\oe mutil\oemutil.c @ 1964]

05f2f7cc 59d7aa71 PS5UI!BValidateAndMergeDevmodeWithOemPlugins+0x29 [d:\lib\ oemutil\oemutil.c @ 2034]

05f2f7f8 59d7d3a4 PS5UI!BFillCommonInfoDevmode+0x9c [d:\driverui\dri verui.c @ 410]

05f2f81c 73543215 PS5UI!DrvQueryJobAttributes+0x8e [d:\ driverui\doc prop.c @ 2626]

05f2f88c 73546092 localspl!UpdateJobAttributes+0xe5

05f2f8a4 734df2fd localspl!SplStartPagePrinter+0x59

05f2f8b0 01008e15 SPOOLSS!StartPagePrinter+0x1b

05f2f8c0 01007080 spoolsv!YGetPrinterDriverDirectory+0x47b

05f2f8d0 77d1fe74 spoolsv+0x708

05f2f8e8 77d4bf90 RPCRT4!Invoke+0x30

05f2fca4 77d4c212 RPCRT4!NdrStubCall2+0x209

05f2fcc0 77cea9de RPCRT4!NdrServerCall2+0x17

05f2fcf4 77ceaa3c RPCRT4!DispatchToStubInCNoAvrf+0x17

05f2fd0c 77cd62c9 RPCRT4!DispatchToStubInCAvrf+0x12

05f2fd60 77cd731b RPCRT4!RPC_INTERFACE::DispatchToStubWorker+0x138

05f2fd84 77ccf504 RPCRT4!RPC_INTERFACE::DispatchToStub+0x8f

05f2fdbc 77cd1765 RPCRT4!LRPC_SCALL::DealWithRequestMessage+0x305

05f2fde0 77cd1f91 RPCRT4!LRPC_ADDRESS::DealWithLRPCRequest+0x196

05f2ff48 77cd227b RPCRT4!LRPC_ADDRESS::ReceiveLotsaCalls+0x556

05f2ff50 77cd5aec RPCRT4!RecvLotsaCallsWrapper+0xb

05f2ff6c 77cd3322 RPCRT4!BaseCachedThreadRoutine+0xd4

05f2ff78 556b54de RPCRT4!ThreadStartRoutine+0x19

05f2ffb8 77ec4d2f verifier!AVrfpStandardThreadFunction+0x5e

05f2ffec 00000000 kernel32!BaseThreadStart+0x16

The 100 that follows the k command in the previous example instructs the debugger to limit the list to 100 (hex) stack frames or less. Each function call creates one stack frame that contains such information as the return address and base pointer for the function.

Reading the stack trace provides valuable information about the path that the program took to get to the point where the error occurred. In this example, the fault occurred in the wcscpy function after the BConvertPrivateDevmode function in the BadDriverUI module called it.

This information is extremely valuable to the developers responsible for correcting the error and should always be included in a problem report.

Additional debugging steps are beyond the scope of this paper. The paper titled Debugging Printer Drivers, describes additional debugging steps that might help you locate the source of a printing problem.

Next Steps

IT administrators and support staff for Windows and the Windows print system are encouraged to use these tools to help identify and resolve printing issues. The following recommendations provide the most benefit when using these tools.
· Run the tools on test print servers before you deploy new printing applications, print drivers, or printers. This can help you identify issues before you put a new component in a production machine.
· Run the tools and capture log files of the issue before you contact Microsoft Product Support. The information from the log files can help Microsoft Product Support engineers identify the problem more quickly.

· If you identify the cause of the error to be a specific driver, you can contact the manufacturer to see if they have an updated driver.
· Even if you cannot identify the cause of a problem, the data collected from these steps will make it easier for the Microsoft Product Support engineers to find the problem. This information also makes it easier for the development engineers to fix the problem.

Resources

· Microsoft Application Verifier at http://go.microsoft.com/fwlink/?LinkId=80220
· Microsoft Debugging Tools for Windows at http://go.microsoft.com/fwlink/?LinkId=80221
· Description of the Microsoft Windows registry at http://go.microsoft.com/fwlink/?LinkId=80225
· Using Application Verifier Within Your Software Development Lifecycle at
http://go.microsoft.com/fwlink/?LinkId=80226
· Analyzing Your Applications with Microsoft Application Verifier at http://go.microsoft.com/fwlink/?LinkId=80227
· Debugging Printer Drivers whitepaper at http://go.microsoft.com/fwlink/?LinkId=80230
· Windows Driver Testing Best Practices at http://go.microsoft.com/fwlink/?LinkId=80231
· Windows Driver Kit (WDK) at http://go.microsoft.com/fwlink/?LinkId=80232
· If you have questions about XPS or this whitepaper, send mail to:
prninfo@microsoft.com
February 7, 2006
© 2007 Microsoft Corporation. All rights reserved.

[image: image1.png]