[image: image3.png]4% Windows




Firmware Allocation of PCI Device Resources in Windows - 3

Firmware Allocation of PCI Device Resources in Windows 
October 25, 2006
Abstract

As the amount of system RAM, the number of PCI and PCIe devices in a system, and the size of memory resources that PCI devices require continue to increase, allocating sufficient memory resources below 4 GB becomes increasingly problematic. This paper describes how different versions of the Windows operating system handle PCI memory resource allocation, details the changes introduced with Windows Vista®, and suggests strategies and best practices for system firmware designers to ensure that their platforms perform optimally on Window Vista and earlier versions of Microsoft Windows®.
This information applies to the following operating systems:

Microsoft Windows Server® 2008

Windows Vista®

Microsoft Windows Server 2003

Microsoft Windows XP
The current version of this paper is maintained on the Web at: 
http://www.microsoft.com/whdc/system/bus/pci/resources.mspx  
References and resources discussed here are listed at the end of this paper.

Contents

3Introduction


3System Address Space and Resource Arbitration in Windows


4Constraints on System Address Space


4PCI Resource Arbitration in Windows


4Bridge Window Configuration in Windows XP and Windows Server™ 2003


4Multilevel Resource Rebalance in Windows Vista


4Boot Configuration of PCI Devices


4Devices above 4 GB in Windows XP and Windows Server 2003


5Devices above 4 GB in Windows Vista


5Describing Allocation of PCI Resources in Firmware


5Firmware Implementation Guidelines for PCI Device Boot Configuration


5Using _DSM to Enable Windows to Ignore PCI Device Boot Configuration


7Windows Vista _DSM Implementation Details


7_DSM Implementation Details


8Next Steps


9Resources




Disclaimer

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction
Microsoft® Windows Vista® provides advanced resource configuration support for PCI devices that allows for greater system configuration flexibility. Unlike earlier versions of the Microsoft Windows® operating systems, Windows Vista supports 64-bit memory base address registers (BARs) on PCI devices and configures them in the address space above the 4‑GB boundary. Windows Vista also supports multilevel rebalance, which allows PCI bridge windows to be dynamically sized based on the resource requirements of the devices behind them. 
These Windows Vista features necessitate new guidelines and recommendations for BIOS developers to ensure that system firmware can make optimal use of these enhancements, while still maintaining backward compatibility with earlier versions of the Windows operating system.

This paper describes the resource arbitration changes in Windows Vista and their impact on the firmware implementation choices. It provides recommendations to platform and firmware developers for boot configuration of PCI devices that will work most effectively both with Windows Vista and earlier versions of Windows.

System Address Space and Resource Arbitration in Windows
Platform firmware is responsible for configuring the system address space for the operating system. The firmware divides the system address space into a number of specialized regions, including those that are used for system memory, system I/O, PCI configuration space, resources that are required for PCI devices, and ACPI Operation Regions (OpRegions) that are used to access embedded controller, SMBus, and CMOS devices. 
The Windows operating system uses these regions as directed by the system firmware address map. On IA-PC systems, this is conveyed to the operating system through the INT15H E820H Query System Address Map interface, whereas EFI-enabled systems use the EFI GetMemoryMap boot services function.
The range of system address space that Windows operating systems can access is bounded by both the physical address capabilities of the processor on which Windows is running and the version of the Windows operating system that is being used. A 32‑bit processor that supports Intel physical address extensions (PAE) can provide between 36 and 40 bits of physical addressability. PAE is an Intel-provided memory address extension that enables support of greater than 4 GB of physical memory for most 32-bit (IA-32) Intel Pentium Pro and later processors.

By default, 32-bit versions of the Windows operating systems can address only up to 4 GB of address space. With PAE enabled on capable versions of Windows, the operating system can address up to 37 bits, or up to 128 GB. Therefore, a firmware developer must lay out the system address space while remembering the different versions of the Windows operating systems that can be installed on a system.

Note
For details about which versions of the Windows operating systems support addressing greater than 4 GB of address space, see “Operating Systems and PAE Support” listed in "Resources" at the end of this paper.

Constraints on System Address Space

The amount of system RAM, the number of PCI or PCI Express devices in a system, and the size of resources that each device consumes continue to rise. This constrains the possible distribution of system address space. In addition, system RAM below the 4GB boundary is a precious resource for DMA operations because of the existence of devices with DMA engines limited to 32-bit addressing. 
A reasonable division of address space for all resources below the 4GB line is also required to support 32-bit and 64-bit architectures of Windows. Therefore, it is not possible to have all PCI device resources in the address space below 4GB.
PCI Resource Arbitration in Windows

Windows operating systems configure all PCI bridges and devices in a single pass. This means that the operating system enumerates, configures, and starts a PCI bridge before scanning the secondary side of the bus for PCI devices behind the bridge. All PCI devices on the bridge are arbitrated with resources that fall inside the bridge resource windows. 
Bridge Window Configuration in Windows XP and Windows Server™ 2003

Microsoft Windows XP and Microsoft Windows Server™ 2003 do not reconfigure the bridge windows based on the requirements of a device behind the bridge. This leads to a classic problem where a PCI device cannot be started due to lack of resources on the bridge, even though enough device resources are available to the system. For reasons such as this, a platform configuration that configures PCI devices at boot time works best for Windows XP and Windows Server 2003 .

Multilevel Resource Rebalance in Windows Vista
Windows Vista implements a feature called multilevel rebalance. This resource assignment technique allows the operating system to dynamically reconfigure resource assignments across multiple hierarchical levels in a device tree. 
In Windows Vista, if a PCI device’s resource requirement cannot be arbitrated inside the current bridge resource window, the operating system reconfigures the PCI bridge with a new set of resources to accommodate the PCI device requirements. Because Windows Vista with multilevel rebalance is better at arbitrating PCI resources, a platform configuration that avoids boot configuration of PCI devices works best for Windows Vista.

Boot Configuration of PCI Devices
All recent versions of Windows operating systems, including Windows XP, Windows Server 2003, and Windows Vista, respect and attempt to preserve the boot configuration of PCI devices. If it is impossible to do so, the operating system chooses an acceptable location for the device.

Devices above 4 GB in Windows XP and Windows Server 2003
Devices that are configured to boot with a resource above the 4‑GB boundary are handled differently on different versions of the Windows operating system. On Windows XP and Windows Server 2003, the device is assigned a resource from a region below the 4‑GB boundary, effectively ignoring the boot configuration. If device resource cannot be allocated below the 4‑GB marker, then the device is assigned a range above 4 GB, irrespective of the processor’s addressing capability or the version of Windows that is running. This configuration leaves the device in an inoperable state on 32-bit versions of Windows XP and Windows Server 2003.
Devices above 4 GB in Windows Vista

Windows Vista always respects the boot configuration of devices above 4 GB, considering the processor’s addressing capability and the version of the Windows operating system that is running.

Describing Allocation of PCI Resources in Firmware
Different versions of Windows exhibit different behaviors in handling PCI resource allocations, which presents conflicting requirements to the platform. System designers and firmware developers must use a flexible approach when describing PCI resource allocation to optimize their platform’s support for all versions of the Windows operating systems that might run on the system.
Firmware Implementation Guidelines for PCI Device Boot Configuration
Microsoft recommends the following firmware implementation guidelines:

· Reserve nonconflicting resources above 4 GB in the _CRS method of a PCI root bus.
Use a QWORD memory descriptor in the _CRS method of a PCI root bus to define a memory range. This range is then available as a PCI device memory resource to the entire hierarchy that emanates from the root bus. 
Windows XP and Windows Server 2003 effectively ignore this range, whereas Windows Vista uses this range if the processor and operating system version allow it.

· Assign boot configurations for PCI devices below 4 GB to provide compatibility with Windows XP and Windows Server 2003.

· Implement the _DSM method to allow Windows Vista to ignore PCI device boot configurations, as described later in this paper. This ensures the most flexible resource allocation on Windows Vista.
Using _DSM to Enable Windows to Ignore PCI Device Boot Configuration
_DSM is an optional ACPI control method that enables devices to provide device-specific control functions. The _DSM function that is described in this paper allows the platform to indicate to the operating system that it can ignore the boot configuration for a device hierarchy. This allows platform firmware to heavily boot-configure devices for Windows XP and Server 2003, but still enables Windows Vista to ignore the boot-configured resources, allowing greater resource allocation flexibility.  In many cases, this can allow the operating system the freedom to relocate and/or expand PCI bridge resource windows to accommodate device requirements that would otherwise not be possible due to the restrictions imposed by having to respect boot device requirements.  This allows the multilevel rebalance code in Windows Vista to operate more efficiently, since it is no longer restricted by having to maintain the boot configured resources of the system.
To illustrate the flexibility offered by _DSM, consider the following example.  Referring to Figure 1, assume there are two PCI bridges present in the system.  PCI bridge A has boot configured resources which must be maintained.  If a new PCI device is added to the system behind bridge A, the new device’s resource requirements may be satisfied if these resources fall within the resources available to bridge A.  
However, if the device is added behind bridge B, the resource allocation will fail.  Windows Vista will be unable to rebalance the resources available to bridge B to accommodate the newly added device, since doing so would require bridge A’s resources to change.  This will leave the newly added device in an inoperable state.

[image: image1.emf]PCI Resource Map

PCI Bridge B

PCI Bridge A

(Boot Configured)

New Device Resources


Figure 1 – Resource Rebalance Without _DSM
Now consider the same example when _DSM is present and allows the operating system to ignore the boot configured resources on bridge A,  as illustrated in Figure 2. In this case, when the new PCI device is added to the system behind bridge B, the multilevel rebalance support in Windows may relocate the resources for bridge A, allowing the resource windows for bridge B to expand to accommodate the newly added device. 


[image: image2.emf]PCI Resource Map

PCI Bridge B

PCI Bridge A

(after resource rebalance)

New Device Resources


Figure 2 – Resource Rebalance With _DSM
Windows Vista _DSM Implementation Details

The Windows Vista operating system evaluates the _DSM method only if _DSM is defined in the scope of a PCI device or PCI bridge on a PCI root bus. After evaluating _DSM on the bridge or device, Vista ignores boot configuration for the device. 
If the device supports 64-bit prefetchable memory BARs, Windows Vista attempts to assign a region above 4 GB. In a PCI bridge, Windows Vista ignores boot configuration for an entire device path emanating from the bridge in whose scope this method is defined. For the bridge and devices below it to be assigned a region above 4 GB, all devices in the path must support 64-bit prefetchable BARs. If this is not true, the rebalance code runs and moves all resource assignments below 4 GB, because the goal is to start as many devices as possible.

The _DSM method for PCI devices is optional on Windows Vista and is ignored on Windows XP and Windows Server 2003.
_DSM Implementation Details

The _DSM method should be implemented as follows:

	UUID
	Revision
	Function
	Description

	E5C937D0-3553-4d7a-9117-EA4D19C3434D


	1
	1
	PCI Express slot information

	
	1
	2
	PCI Express slot number

	
	1
	3
	Vendor-specific token ID

	
	1
	4
	PCI bus capabilities

	
	1
	5
	Ignore PCI boot configuration


Arguments
Arg0: UUID: E5C937D0-3553-4d7a-9117-EA4D19C3434D
Arg1: Revision: 1
Arg2: Function: 5
Arg3: Empty Package

Return
An integer that specifies the status of operation, where:
0: The operating system may not ignore the boot configuration of PCI resources.
1: The operating system may ignore the boot configuration of PCI resources, and reconfigure or rebalance these resources in the hierarchy as required.
Figure 3 shows a sample ACPI namespace that uses the _DSM method to assign resources to a PCI Express root bridge.
Device(PCI0) // Root PCI bus

{

    Name(_HID,EISAID("PNP0A08")) // PCI Express Root Bridge

    Name(_CID,EISAID("PNP0A03")) // Compatible PCI Root Bridge


    Device(PCI1) // Device on a PCI Root bus

    {

         Function(_DSM,{IntObj},{BuffObj, IntObj, IntObj, PkgObj})

         {

             // Switch based on the unique function identifier 
             // that was passed in

             switch(Arg0)

             {

                 // First function identifier

                 case(ToUUID(“E5C937D0-3553-4d7a-9117-EA4D19C3434D”))

                 {

                     switch(Arg2)

                     {

                         // Function 0: Return supported functions

                         case(0)

                         {

                             return()

                         }

                         // Function 5:

                         case(5)

                         {

                             if (LEqual(Arg1, 1))
                                 return (0x01) // success

                         }

                         default {BreakPoint}

                     }

                 }

            }

        }

    } // PCI1

}

Figure 3. Example ACPI Namespace

Next Steps
System designers, firmware developers, and PCI device manufacturers are encouraged to:

· Carefully consider PCI resource allocation when designing firmware for platforms that are running Windows operating systems.
· Assign boot configurations below 4 GB to ensure compatibility with Windows XP and Windows Server 2003.
· Implement the _DSM method as described in this paper to allow for maximum flexibility in PCI resource allocation on Windows Vista.
· Implement 64-bit prefetchable BARs in PCI device designs.
Resources
PCI Firmware 3.0 Specification

http://www.pcisig.com/specifications/conventional/pci_firmware
PCI Multi-Level Rebalance in Windows Vista
http://www.microsoft.com/whdc/system/bus/PCI/multilevel-rebal.mspx
PCI and PCI Express - Architecture and Driver Support

http://www.microsoft.com/whdc/system/bus/pci/default.mspx
ACPI Specification – Revision 3.0a
http://www.acpi.info/
Operating Systems and PAE Support

http://www.microsoft.com/whdc/system/platform/server/PAE/pae_os.mspx
Windows SDK

http://msdn.microsoft.com/windowsvista/building/documentation/default.aspx
Windows Driver Kit
http://msdn.microsoft.com/library/en-us/Intro_g/hh/Intro_g/ddksplash_d0c992d8-3d64-44cc-ab2c-13bcfa0faffb.xml.asp?frame=true











































































October 25, 2006
© 2006 Microsoft Corporation. All rights reserved.


[image: image3.png]_1223126273.vsd
PCI Resource Map


PCI Bridge B


PCI Bridge A
(Boot Configured)


New Device Resources



_1223126312.vsd
PCI Resource Map


PCI Bridge B


PCI Bridge A
(after resource rebalance)


New Device Resources



