[image: image3.png]4% Windows

Custom Bootstrap Actions in Windows Vista - 2

Custom Bootstrap Actions in Windows Vista
Published September 22, 2006 Reviewed: July 8, 2008
Abstract

Manufacturers can integrate value-added functionality with the boot and recovery process by adding custom actions to the Microsoft® Windows® boot manager on systems running the Microsoft Windows Vista™ operating system. This method is recommended instead of installing an OEM-specific master boot record (MBR), which can interfere with successful system boot and cannot be cleanly integrated with system recovery.
This information applies for the Microsoft Windows Vista operating system.
The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/OEMBoot_Vista.mspx
Contents

3Introduction

3Windows Vista and the MBR

4The Windows Vista Boot Process

5Custom Bootstrap Actions in Windows Vista

5Defining a Custom Bootstrap Action

6Integrating an OEM-specific Recovery Sequence with Windows Vista

8Resources

 Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2006 Microsoft Corporation. All rights reserved.

Microsoft, BitLocker, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Document History

	Date
	Change
	
	
	

	July 8, 2008
	Reviewed

	Sept 22, 2006
	First publication

Introduction
Manufacturers can integrate value-added functionality with the bootstrap process on systems that are running the Microsoft® Windows Vista™ operating system by adding custom actions to the Windows Vista boot manager. Modifying the boot manager object is strongly recommended instead of installing an OEM-specific master boot record (MBR), which can interfere with important security features and cannot be cleanly integrated with system recovery.

This paper describes how manufacturers can integrate value-added functionality with the boot and recovery process by adding custom actions to the boot sequence of the Windows Vista boot manager.

Windows Vista and the MBR

On systems that have BIOS firmware, Windows Vista and earlier versions of the Microsoft Windows® operating system install an MBR during setup of the operating system. For earlier versions of Windows, some system manufacturers provide additional tools and experiences by installing an OEM-specific MBR to "hook" the boot process. For example, an OEM-specific MBR might jump to an OEM-specific hidden partition that contains the manufacturer's boot applications when the user presses a particular key during the BIOS phase of boot.

Microsoft has historically updated the existing MBR logic as part of the Windows installation process for the following reasons:

· Windows has limited capability to evaluate existing MBR logic on the disk. For example, the disk might have been repurposed from a non-Windows computing platform whose MBR format is incompatible with Windows.

· A reliable and robust boot experience depends on a correct handoff from the MBR logic to the partition boot code. Some legacy MBR logic simply fails to boot Windows.

· Platform features can require the transfer of information between the firmware logic and the Microsoft operating environment. This is achieved through specified boot code logic that might not exist in legacy or custom MBR logic.

For example, Windows Vista supports a mechanism referred to as measured boot that is used to ensure the integrity of the boot process. During measured boot on systems that have a Trusted Computing Group (TCG)-compliant BIOS and Trusted Platform Module (TPM) hardware, each bootstrap component hashes and measures the next component in the process. Ultimately, this mechanism is used to seal and unseal secrets that are used by technologies such as Microsoft BitLocker™ Drive Encryption. Each bootstrap component, including the MBR, must be TCG compliant; otherwise, measured boot fails and the system's security is compromised. All Windows Vista bootstrap components, including the Windows Vista MBR, are designed to be TCG compliant.

· An OEM-specific MBR cannot be cleanly integrated with system recovery in Windows Vista, which can cause problems for users. For example, manufacturers can choose to deploy the Windows Recovery Environment (Windows RE) on their systems. Windows RE is integrated with the Windows platform and can be used by administrators to troubleshoot and recover from boot failures. As did earlier Windows recovery environments, Windows RE recovers an MBR by restoring the Windows MBR. In this scenario, the OEM-specific MBR is overwritten and the user loses the value-added functionality that the manufacturer provided.

Another possible side effect of recovery on a system that uses an OEM-specific MBR occurs when a user recovers a system by using the manufacturer's recovery disk. In this scenario, the Windows MBR might be overwritten by the OEM-specific MBR from the recovery disk. This action would break the transaction chain that is required for measured boot and might prevent the system from booting at all (for example, if the user enabled BitLocker to encrypt the partition that contains the operating system).

System robustness and reliability are top priorities for Microsoft. At the same time, it is clear that manufacturers are making use of custom MBRs to deliver value-added experiences to their customers. As a result, Microsoft has developed a feature in Windows Vista that enables OEMs to customize their platforms without having to introduce custom logic in the MBR header. An end user should not be able to detect any difference between functionality that was added by using a custom MBR and functionality that was added by using the mechanism described in this paper. However, this mechanism is extremely flexible, robust, and supportable by both manufacturers and by Microsoft and should enable manufacturers to provide value-added resources and experiences to their customers while avoiding the potential disadvantages of using a custom MBR.

The Windows Vista Boot Process

Figure 1 shows the boot process flow in Windows Vista, starting with core system BIOS.

[image: image1.emf]MBR

Active System Partition

Windows Partition

NTFS Boot Code

Windows Boot

Manager (bootmgr)

System BCD

Store

Windows RE

Windows Boot

Loader

Windows Boot

Loader

TCG-compliant

BIOS

Figure 1. Windows Boot Process Flow

The boot process begins with the TCG-compliant BIOS, which contains code to measure both itself and the MBR. Control passes from the BIOS to the MBR, the NTFS boot code, and the Windows boot manager; each of these components measures the next component in the chain. During normal boot, the boot manager then passes control to the Windows boot loader in the Windows operating system partition, which then loads the operating system. During recovery, the boot manager passes control to the Windows boot loader for Windows RE.
Custom Bootstrap Actions in Windows Vista
Windows Vista supports the ability to define actions to perform in response to a keyboard scan code that is received during boot. Windows Vista supports one action type, loading and executing a sequence of boot applications in response to a specific keyboard scan code. Additional custom bootstrap support, such as extending the types of actions that can be performed and enabling additional types of input, are being considered for later versions of Windows.

This section describes how manufacturers should define custom bootstrap actions for systems that are running Windows Vista.
Defining a Custom Bootstrap Action
Starting with Windows Vista, the Windows boot manager is the central policy engine for manipulating the pre-operating system environment and Windows operating system bootstrap. The Windows boot manager is the point at which manufacturers can extend bootstrap functionality on their systems.
In Windows Vista, the Windows boot manager can load a sequence of boot applications in response to a specific keyboard scan code. The sequence usually consists of a single boot application. However, a boot sequence can consist of more than one application. For example, a more complex boot sequence might consist of the Windows memory diagnostic application followed by a Windows boot loader.
Boot policy data is maintained in the Boot Configuration Data (BCD) store. A BCD store is a namespace container for BCD objects and elements that holds the information that is required to load Windows or run other boot applications. The most common type of BCD object describes a boot environment application, such as an instance of the Windows boot loader. Each object in the store is identified by a GUID. A BCD element is a singular item of data such as a debugger setting, a boot application name, or an operating system device. Each BCD object typically has several elements. For more information about the BCD store, see Boot Configuration in Windows Vista listed at the end of this paper.

Manufacturers can define custom actions by using the BCDedit tool or the BCD Windows Management Instrumentation (WMI) provider to modify the Windows boot manager object. Custom actions are stored in the boot manager object's customactions element, which contains an array of custom action structures. Table 1 shows the format of the custom action structure.

Table 1. Custom Action Structure

	Field
	Byte offset
	Description

	Version
	0
	Version of this structure. Must be one (1).

	Scan code
	2
	Defines the scan code on which to take action.

	Reserved
	4
	Must be zero (0).

	Action
	6
	Defines the type of action to perform. For Windows Vista, this value must be 1 (load and execute a sequence of boot applications).

	Element name
	8
	Specifies a BCD element in the OEM class range that contains configuration data for the action. For Windows Vista, the only supported action is to load a boot sequence. Thus, for Windows Vista, this BCD element must be an object list that describes a boot sequence.

	Reserved
	12
	Must be 0.

Scan Codes. Manufacturers should be aware of the following information about keyboard scan codes:
· Not all scan codes can be enumerated by using the standard keyboard BIOS input interface (int 16h, functions 0h and 1h). Extended keyboard interfaces (int 16h, functions 10h and 11h) must be used to retrieve some scan codes. To use extended keyboard interfaces, the BCD extendedinput flag must be explicitly set. To do this, run the following BCDedit command from a command prompt with elevated privileges:

bcdedit.exe –set {globalsettings} extendedinput 1

Make sure to test the extendedinput setting on the platform.
· To associate a proprietary key with a custom action, define the key scan code in the range 0xB000 to 0xBF00. The low byte must always be zero.

Defining a scan code for a proprietary key requires a BIOS change if the key is handled through system management mode (SMM).
Element Names. The element name identifies a BCD element that contains configuration data for the action that is associated with its scan code. For an OEM-specific custom action, the element name must start with 0x5, which identifies that the element is in the OEM class range. For an example, see "Integrating an OEM-specific Recovery Sequence in Windows Vista" later this paper.
The element itself must be an object list that consists of a sequence of one or more GUIDs that identify objects in the BCD store. Each object specifies the device and path of the application to run when the scan code is received.
Integrating an OEM-specific Recovery Sequence with Windows Vista
The recovery sequence for Windows RE is defined on the Windows boot loader object for the operating system instance that Windows RE services. The Recoverysequence element of the Windows boot loader object consists of a globally unique identifier (GUID) that identifies a recovery application such as Windows RE or a boot loader application. (Windows Vista Startup Repair associates the recovery application to this element.) Instead of creating a new element as described earlier in this paper, a manufacturer can associate the Recoverysequence element with a particular scan code to launch an OEM-specific recovery sequence when the user presses that key.

Note: For clarity in the following procedure, 8-byte integers in command-line input are shown with leading zeroes. In practice, the leading zeroes can be omitted.

To integrate an OEM-specific recovery sequence with Windows Vista:
1.
Install Windows RE on the system.
2.
Obtain the GUID for the Recoverysequence element by using the following command:
bcdedit -enum {default}
In this command line, {default} is the "friendly" identifier for the boot manager default application entry, which is the Windows boot loader. In response, BCDEdit displays Windows boot loader configuration data such as the following example:
Windows Boot Loader

Identifier: {default}
Type: 10200003
Device: unknown
Path: \Windows\system32\winload.exe
Description: Microsoft Windows
Locale: en-US
Inherit options: {bootloadersettings}

Recoverysequence: {d2b69192-8f14-11da-a31f-ea816ab185e1}
Truncate memory: 0x20000000
Boot debugger: No
Windows device: unknown
Windows root: \Windows
Resume application: {d2b69192-8f14-11da-a31f-ea816ab185e9}
No Execute policy: OptIn
Kernel debugger: No

3.
Create a BCD element that describes the OEM-specific recovery sequence. For example:
bcdedit –set {bootmgr} custom:0x00000000540000YY {d2b69192-8f14-11da-a31f-ea816ab185e1}
Where:
0x00000000540000 indicates that the element is OEM-defined and that it describes a boot sequence.
YY is an OEM-defined value that distinguishes between different custom actions. For the first action, use 1 (0x0000000054000001).
{d2b69192-8f14-11da-a31f-ea816ab185e1} is the Recoverysequence element from step 2 for the system on which this example was created. This GUID will be different on different systems.
4.
Create a BCD element to add to the boot manager object's customactions element. For example:
bcdedit –set {bootmgr} customactions 0x00010000SSSS0001 0x00000000540000YY
where:

0x00010000SSSS0001 is the scan code to associate with the OEM-specific recovery sequence.
0x00000000540000YY is the element created in step 3 that describes the OEM-specific recovery sequence.
5.
Verify the boot manager settings by using the following BCDedit command:

bcdedit -enum {bootmgr}

BCDedit displays boot manager configuration data such as the following example:

Windows Boot Manager

identifier {bootmgr}
device partition=C:
description Windows Boot Manager
locale en-US
inherit {globalsettings}
default {current}
displayorder {ntldr}
 {current}
toolsdisplayorder {memdiag}
timeout 30
customactions 0x10000SSSS0001
 0x540000YY
custom:540000YY {d2b69192-8f14-11da-a31f-ea816ab185e1}
During boot, if the user presses the key that sends scan code 0xSSSS, the Windows boot manager launches the OEM-specific recovery sequence specified by custom action 0x540000YY.
Resources
Boot Configuration Data in Windows Vista
http://www.microsoft.com/whdc/system/platform/firmware/bcd.mspx
White paper on WHDC that describes BCD architecture, tools for managing BCD, and how to manage BCD programmatically with WMI, with guidelines and examples for developers.
Boot Configuration Data (BCD)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/BCD/bcd/portal.asp
Documentation on MSDN about BCD, how Boot.ini maps to BCD elements, and reference information about BCD classes and enumeration types.[image: image2.png]

Published September 22, 2006 Reviewed: July 8, 2008
© 2006 Microsoft Corporation. All rights reserved.

[image: image3.png]_1218974640.vsd
MBR

Active System Partition

Windows Partition

NTFS Boot Code

Windows Boot Manager (bootmgr)

System BCD Store

Windows RE

Windows Boot Loader

Windows Boot Loader

TCG-compliant BIOS

