[image: image1.png]4% Windows

Header-Data Split Feature and Its Impact on WFP Callouts, TDI Filters,

NDIS IMs, NDIS Filters, and NDIS Protocol Drivers
- 2

Header-Data Split Feature and Its Impact on WFP Callouts, TDI Filters, NDIS IMs, NDIS Filters, and NDIS Protocol Drivers

March 21, 2007

Abstract

This paper provides information about a new Microsoft® Windows Server® 2008 feature called Header-Data Split and discusses the requirements for Microsoft Windows® drivers in the networking stack to be able to co-exist with the Header-Data Split feature.
The paper provides guidelines for driver developers who develop NDIS Intermediate (IM) drivers, NDIS filter drivers, NDIS Protocol drivers, Windows Filtering Platform (WFP) callouts, and TDI filter drivers to implement their drivers while remembering the Header-Data Split feature and to test their code for compatibility with this feature by using the tools that Microsoft provides.

This information applies to drivers that intend to run in the networking stack of Windows Server 2008 and Windows Vista™ SP1.
The current version of the NDISTest tool referenced in this paper is maintained on the NDISTest Connect Web site at:

http://connect.microsoft.com
References and resources discussed here are listed at the end of this paper.

Contents

31.
Introduction

32.
Header-Data Split Compatibility

4Avoiding Assumptions in Your Driver Code

4Referring to the Following Sample Code

6Using the Test Tools Provided by Microsoft to Verify Header-Data Split Compatibility in Your Drivers

73.
The NDISTest Tool Kit

7Header-Data Split VMP

8Header-Data Split LWF

84.
Verifying Compatibility of NDIS IM, NDIS Filter, and NDIS Protocol Drivers

9Using the Header-Data Split LWF with NDIS Protocol, IM, and Filter Drivers

105.
Verifying Compatibility of TDI Filters, WFP Callout Modules, and NDIS Protocol Drivers

116.
Contact Information

117.
References

Disclaimer

This is a preliminary document and might be changed substantially prior to final commercial release of the software described herein.
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.
© 2007 Microsoft Corporation. All rights reserved.
Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

1. Introduction
Header-Data Split is a new feature that will be introduced in Microsoft® Windows Server® 2008. This feature allows NDIS miniport drivers that implement the feature to indicate incoming packets up to the networking stack so that the header portion of the packet and the data payload portion of the packet are mapped into two or more memory descriptor lists (MDLs). The headers and the remainder of the payload are located in different areas in virtual memory rather than in one contiguous virtual memory block. This split of the header portion and the data portion of the packets into multiple MDLs increases system performance through intelligent cache management.

Microsoft has established requirements for this type of miniport driver that define how incoming IP packets should be split into two or more MDLs. As a result, a miniport driver could indicate incoming packets so that the first MDL maps as little as 34 bytes (the Ethernet header plus the IPv4 header) while the rest of the headers (such as TCP/UDP) and packet payload are located in a completely different region in memory and are mapped by the second MDL in the net buffer MDL chain. In Windows Vista®, NDIS6 intermediates (IMs), filters, protocols, and other higher layer drivers that inspect packets are required to handle such packets.

This paper outlines the implications of this Windows Server 2008 feature, outlines potential issues, and identifies tools that you can use to test your upper layer drivers in Windows Vista and to prepare your drivers for this Windows Server 2008 feature. We recommend that any driver that is in the path of receive indications from a miniport driver use the test tools that Microsoft provides to verify that the driver is compatible with the Header-Data Split feature.
2. Header-Data Split Compatibility
Header-Data Split is a feature that enables taking advantage of cache locality to improve system performance. When several packets are indicated up to the TCP/IP networking stack in a packet receive indication, the TCP/IP protocol typically processes just the relevant headers. The data portion is usually looked at only by the concerned applications. Placing just the TCP/IP-relevant header portions of multiple packets indicated in a contiguous section of memory improves TCP/IP processing performance due to cache locality. This also implies that packets can be indicated up with the packet contents broken up as described in “1. Introduction”. This means that drivers in the networking stack that inspect packet headers must handle these types of packet indications.

We strongly recommend that you carefully examine your higher layer network driver code, especially the portion in the incoming data path, to see how your driver might process packets indicated by a Header-Data Split–capable miniport driver. To ensure that your driver can co-exist with the Header-Data Split feature, your driver must handle incoming packets of the above-described nature.

Older NDIS drivers may have made assumptions such as "the first MDL in a receive indication contains at-least 128 bytes.” To handle these older NDIS IM, filters and protocol drivers, NDIS can dynamically disable the Header-Data Split feature on miniport drivers if an older driver binds to a miniport driver that implements the Header-Data Split feature.

In Windows Vista, drivers that inspect packets, such as NDIS6 IMs, filters, protocols, WFP callouts, and other higher layer drivers, must be able to handle incoming packets with the header and the data portions in separate MDLs. Further, protocols are expected to process the first MDL (header MDL) during its ProtocolReceiveNetBufferLists handler because this MDL can be reclaimed and reused elsewhere immediately after control returns from the ProtocolReceiveNetBufferLists handler to the indicating miniport driver. The header MDL is not guaranteed to stay valid until the protocol calls NdisReturnNetBufferLists.

If the upper layer drivers are not written to handle such incoming frames, then the drivers are likely to fail when the driver runs on Windows Server 2008 in a system that includes a miniport adapter that implements the Header-Data Split feature. Following the guidelines in this paper can help you to develop and test your driver and ensure that it is compatible with the Header-Data Split feature.
Avoiding Assumptions in Your Driver Code
· Do not assume that the minimum size of the data in the first MDL contains all of the TCP/IP headers.
· Don’t expect incoming packets to be described in a single MDL. A driver must be able to handle multiple MDLs.
· Don’t expect to see the TCP header placed immediately after the IP header in virtually contiguous memory. The TCP/UDP header could reside in a separate section of memory and start at a virtual address located in a completely different memory page than that of the last byte of the IPv4/IPv6 header.
· NDIS Protocol drivers cannot assume that the information in the first MDL (header MDL) remains valid until they call NdisReturnNetBufferLists. The driver must process the information in the header before returning control from its ProtocolReceiveNetBufferLists handler. This first MDL can be reclaimed and reused by the miniport as soon as the NdisMIndicateReceiveNetBufferLists function called by the miniport returns control to the miniport.
If your driver does not handle these Header-Data Split requirements or makes any of the aforementioned assumptions, the driver can cause undesirable results such as a bug check of the system, dropped packets because of accessing incorrect information, or corruption by using information from incorrect memory locations.
Referring to the Following Sample Code

The sample code snippet below is an illustration of how a higher layer driver that processes receive indications from a NIC can do so in a way that is compatible with the Header-Data Split feature. This simple example parses incoming packet MDLs and prints out basic information from the IPv4 and UDP headers.

//

// This is an illustration of header-data split compatible code for Ethernet II
// frames

//

// In this example, we parse incoming packets and print the source &
// destination IPv4 addresses and source & destination UDP port numbers in
// the UDP header for UDP/IPv4 packets

// For the sake of simplicity, some checks have been ignored & we assume 20
// byte IPv4 headers (i.e.: no IPv4 options and no VLAN tags)

//
for (currentNBL = NetBufferLists; currentNBL;
 currentNBL = NET_BUFFER_LIST_NEXT_NBL(currentNBL))
{
 //
 // There's always exactly one NB per NBL on receive path
 //
 currentNB = NET_BUFFER_LIST_FIRST_NB(currentNBL);
 currentMDL = NET_BUFFER_CURRENT_MDL(currentNB);
 do
 {
 //
 // If MDL is not at least the size of ethernet header (runt packet
 //
 NdisQueryMdl(currentMDL, &currMDLDataPtr, &currMDLByteCount,
 LowPagePriority);
 if (currMDLByteCount < ETHERNET_HDR_SIZE)
 {
 // Runt packet - bail out
 break;
 }
 ethHeader = (PETHERNET_HDR)(currMDLDataPtr);
 if (htons(ethHeader->Type) == ETH_TYPE_IPV4)
 {
 //
 // IPv4 packet - This MDL should contain IPv4 header as well
 //
 if (currMDLByteCount < (ETHERNET_HDR_SIZE + IPV4_HDR_SIZE))
 {
 // Bad split happened - ignore frame, report driver
 break;
 }
 ip4Header = (PIP4_HDR)((PUCHAR)ethHeader + ETHERNET_HDR_SIZE);
 //
 // Copy the 4 byte src & dst IPv4 addresses to stack vars
 //
 NdisMoveMemory(&srcIP, ip4Header->SrcIP, IP4_ADDR_SIZE);
 NdisMoveMemory(&dstIP, ip4Header->DstIP, IP4_ADDR_SIZE);
 }
 else
 {
 // Not IPv4 packet - we are not interested
 break;
 }
 //
 // This is an IPv4 packet. Is this a UDP packet?
 //
 if (ip4Header->Protocol == IP_PROTOCOL_UDP)
 {
 //
 // Does this MDL contain the UDP header as well?
 //
 // Note: It is an error to split in the middle of a header e.g. first 4 bytes of UDP header
 // in one MDL and the remaining 4 bytes in the following MDL constitutes an illegal
 // header-data split. For simplicity we assume that will not occur
 //
 if (currMDLByteCount >= (ETHERNET_HDR_SIZE + IP4_HDR_SIZE +
 UDP_HDR_SIZE))
 {
 //
 // UDP header is in this MDL. Packet may be split after the UDP header
 // (payload may be in another MDL) Copy the src & dst port values to stack vars
 //
 udpHeader = (PUDP_HDR)((PUCHAR)ip4Header + IP4_HDR_SIZE);
 srcPort = udpHeader->SrcPort;
 dstPort = udpHeader->DstPort;
 }
 else
 {
 //
 // Packet has been split after IPv4 header. UDP header is in the next MDL
 // This can happen for fragmented IPv4 packets. (We assume that next MDL is not
 // a zero byte MDL)
 //
 currentMDL = currentMDL->Next;
 NdisQueryMdl(currentMDL, &currMDLDataPtr, &currMDLByteCount,
 LowPagePriority);
 udpHeader = (PUDP_HDR)(currMDLDataPtr);
 if (currMDLByteCount < UDP_HEADER_SIZE)
 {
 // Error - not enough bytes for UDP header
 break;
 }
 //
 // Copy the src & dest UDP port numbers to stack vars
 //
 srcPort = udpHeader->SrcPort;
 dstPort = udpHeader->DstPort;
 }
 }
 else
 {
 //
 // This is IPv4, non-UDP packet.
 // Print source & destination IP addresses
 //
 LogDbgMsg(("SrcIP: %x DstIP %x\n", srcIP, dstIP));
 break;
 }
 //
 // This is IPv4-UDP packet.
 // Print source & destination IP addresses, source & destination UDP port numbers
 //
 LogDbgMsg(("SrcIP: %x DstIP %x, SrcPort %x, DstPort %x\n", srcIP, dstIP,
 srcPort, dstPort));
 } while (FALSE);
}
Using the Test Tools Provided by Microsoft to Verify Header-Data Split Compatibility in Your Drivers

We provide a virtual miniport (VMP) driver that indicates packets just like a miniport driver that works with a Header-Data Split–capable hardware NIC. We also provide a NDIS lightweight filter (LWF) driver that can be bound on any NIC and can split the header and payload information into two MDLs just like a Header-Data Split miniport NIC driver. Both drivers achieve the same end result of emulating a Header-Data Split–capable NIC to the drivers above them.
· NDIS IM, NDIS Filter, and NDIS Protocol Drivers
The Header-Data Split VMP is suitable for testing NDIS IM drivers, NDIS filter drivers, and NDIS protocol drivers. A test job in the NDISTest tool kit generates various types of TCP/IP packets and uses the VMP to indicate the split packets. Developers of these types of drivers can focus on section 4.
· WFP Callout, TDI Filters, and NDIS Protocol Drivers

The Header-Data Split LWF running over any hardware NIC driver indicating packet from the wire is suitable for testing Header-Data Split compatibility of WFP callout modules, TDI filter drivers, and NDIS protocol drivers. To test the driver using this LWF, you must use your own suite of tests (preferably socket based) that send various types of IP packets. Developers of these types of drivers can focus on section 5.
3. The NDISTest Tool Kit
After implementing your driver code for Header-Data Split compatibility, you can use the NDISTest tool kit to verify that your drivers are properly handling the feature. You can download the NDISTest tool kit for testing driver compatibility with the Header-Data Split feature from the Microsoft Connect Web site. The References section at the end of this paper has instructions on how to download the tool kit.
Header-Data Split VMP
The NDISTest tool kit provides a set of tests that use a kernel-mode NDIS protocol driver called ndprot60.sys to create and send simulated TCP/IP packets from a source network adapter to a destination network adapter. The NDISTest tool kit also provides VMP adapters that can be installed and used as source and destination network adapters, with the Header-Data Split VMP being selected as the destination adapter. NDIS filters, NDIS IM drivers, and NDIS protocol drivers that receive incoming packets from the Header-Data Split VMP see these split packets and thus can be tested to determine if the driver is Header-Data Split ready.

The VMP adapter that emulates the Header-Data Split feature is called “NDISTest 6.0 - CL - IM/Filter Test”. You can install the miniport adapter on Windows Vista client systems without additional hardware. You can then install a general VMP adapter called “NDISTest 6.0 – CL” that is instantiated from the same driver binary. Doing so allows pairing these two adapters as destination and source adapters and enables setup of a two virtual adapter test configuration whereby the Header-Data Split VMP adapter (test device) can receive the incoming packets sent by its peer VMP adapter (support device) and indicate up these packets with the header and data split into two MDLs.
The NDISTest tool kit contains a test job named HeaderPayloadSplit. This test sends various types of packets through the virtual support device and over a virtual hub and to the virtual test device. The test verifies that the test device sees the incoming packets and splits the header and the data portions in accordance with the specifications.

Because the test generates simulated TCP/IP packets, you cannot use the VMP setup and the HeaderPayloadSplit test job to test TDI filters or WFP callout modules. This is because TCP/IP sees no state for these simulated packets and would likely drop these packets before your WFP Callout module or TDI filter might be able to see them. You also cannot use socket-based tests over the VMP setup because TCP/IP loops back all traffic of local origin destined for local sockets. Hence, traffic generated by a source socket on the local system and destined for another socket on the same system does not arrive at the NDIS layer or reach the VMP drivers.

Header-Data Split LWF

To test WFP callout modules, TDI filters, or NDIS protocol drivers, you must use the Header-Data Split LWF driver shipped with NDISTest 6.5. This LWF can achieve the same effect as having a Header-Data Split VMP or a physical miniport driver over physical hardware that implements Header-Data Split. The LWF is set up in the NDIS layer between an NDIS miniport driver and an NDIS protocol driver such as TCP/IP.
This LWF must be installed on the destination network adapter that receives the incoming IP traffic/test traffic from the wire. The test traffic generated by the test suite must travel over the wire and be indicated up by the destination network adapter miniport driver on which this LWF is bound.
Packets are always split for simple IPv4 and IPv6 packets (non-fragmented, without options or extensions) and TCP (plain TCP or TCP with only the TCP timestamp option) / UDP frames. TDI filter drivers and WFP callout modules that inspect traffic indicated up by this destination network adapter would be able to see the Header-Data Split packets.
4. Verifying Compatibility of NDIS IM, NDIS Filter, and NDIS Protocol Drivers
To help you verify your drivers, you can use the NDISTest tool kit, which provides two ways to test your drivers. For drivers that do not require the traffic to be based on TCP/IP state, use the VMP adapter. To test drivers that require real TCP/IP traffic, use the Header-Data Split LWF.

You can test your NDIS protocol drivers, NDIS IM drivers, or NDIS filter drivers for Header-Data Split compliance by using the Header-Data Split VMP and a test job provided by the NDISTest tool kit. This test job runs through several variations, each generating and sending different types of packets and should pass with no errors unless your drivers are written to filter out or drop certain packets.

· Non-IP frames sent by the test job are not split by the indicating virtual adapter.

· Simple IP frames and TCP/UDP frames are split by the adapter after the TCP/UDP header.
· Fragmented IP packets are split after the IP header regardless of the type of transport header.
Packets are always split for simple IPv4 and IPv6 packets (non-fragmented, without options or extensions) and TCP (plain TCP or with only the TCP timestamp option) / UDP frames.
The traffic generated by this test might not exercise all of the code paths because the HeaderPayloadSplit test job does not generate traffic based on TCP/IP state. If you want to test with traffic based on TCP/IP state, use the Header-Data Split LWF described in the following section. Using LWF for NDIS IM or filter drivers has a certain limitation, which is mentioned later in this paper.
To install and use the Header-Data Split VMP

1. Log on as Administrator and type “bcdedit /debug on” in a command window to place the test system into debug mode. Set up and connect a kernel debugger session to the test system and then reboot the system. Note that the x64 version of Windows Vista does not allow you to install these drivers unless a debugger is attached.
2. Download and copy NDISTest version 6.5.000x to your test system. For details on how to download the tool, see Section 7.
3. The NDISTest VMP driver is located in the %NDISTestRoot%\bin\miniport directory. The VMP adapter that is capable of Header-Data Split is specified in the nmpcl60.inf file and loaded from the nmpcl60.sys driver binary. As discussed in the preceding section, you need two installed VMPs to use the HeaderPayloadSplit test job. Complete the following steps to install an instance of a Header-Data Split–capable VMP, to install an instance of a peer VMP, and then to execute the HeaderPayloadSplit test job.
4. In Control Panel (classic view), click Add Hardware. Select Install the hardware that I manually select from a list (Advanced) and click Next. Select Network Adapters and, in the dialog box, click Have Disk. Locate and select the INF file named nmpcl60.inf.

Select NDISTest 6.0 - CL - IM/Filter Test and continue to finish installing this VMP.

5. Install your NDIS IM driver, NDIS Filter driver, or NDIS Protocol driver and bind it to the Header-Data Split–capable VMP that you installed in the preceding step.
6. Repeat step 4, but this time select NDISTest 6.0 – CL and install this peer VMP.

7. Start the NDISTest UI by executing %NDISTestRoot%\Ndistest.exe.

Put the UI into Client Test Mode by clicking Client on the File menu, or by pressing CTRL+C.

Under Test Target, select Filter.
Under Test Device, select NDISTest 6.0 - CL - IM/Filter Test.
Under Support Device, select NDISTest 6.0 – CL.
8. On the right side, select HeaderPayloadSplit test job and click Start.

The Test User Interface description box shows the type of test that is in progress.

Using the Header-Data Split LWF with NDIS Protocol, IM, and Filter Drivers

If effectively testing your driver requires traffic that is based on TCP/IP state, use the Header-Data Split LWF to exercise this feature on your NDIS protocol drivers, IM drivers, or NDIS filter drivers. You can install the LWF on miniport drivers running on any hardware NIC. The LWF sees the incoming packets from the NIC and performs Header-Data Split on packets that qualify for Header-Data Split and then passes the split packets up the stack.

To use the Header-Data Split LWF to test NDIS IM drivers and NDIS filter drivers, the LWF must be bound below your IM driver or filter driver in the NDIS filter stack. This binding order is necessary because the LWF must see the incoming traffic before your IM driver or filter driver sees the incoming traffic so that the Header-Data Split occurs before your driver sees the packets.

The Header-Data Split LWF categorizes itself in the lowest class (FilterClass = custom) of a modifying filter so that the binding engine tries to bind the LWF at the lowest layer in the NDIS filter stack, as close to the miniport driver as possible.

The limitation with this approach is that the Header-Data Split LWF might not always be the lowest filter in the stack. Monitoring filters have at least one instance attached below the Header-Data Split LWF in the stack and that instance is not tested. Likewise, if another filter driver is competing with the Header-Data Split LWF for the lowest spot in the NDIS filter stack, the Header-Data Split LWF might be bound above the competing driver. This binding occurs if the competing driver was installed before the Header-Data Split LWF, regardless of what order they are started or attached. For this to work, the competing driver that you want to test must be installed after the Header-Data Split LWF.

Although the Header-Data Split VMP setup mentioned above provides a test setup for your NDIS filter or IM driver for Header-Data Split compliance, the test traffic generated by the NDISTest HeaderPayloadSplit test job is not based on an active TCP/IP protocol state. This traffic may or may not trigger the various packet examination code paths in your filter or IM driver. Therefore, we strongly recommend that, in addition to the VMP setup, you try and use the Header-Data Split LWF running over a physical network adapter and run your own test traffic through it to verify your NDIS IM or NDIS filter driver more completely.

To use the Header-Data Split LWF
1.
Install the Header-Data Split LWF first on any physical network adapter as described in section 5.
2.
Install your NDIS IM or NDIS filter driver and ensure that your driver is above the Header-Data Split LWF in the NDIS filter stack.
3.
Run your test traffic that uses a remote source and is destined for the network adapter on which the Header-Data Split LWF and your driver is bound. This should give you a well-tested, Header-Data Split–compliant NDIS IM or filter driver.

5. Verifying Compatibility of TDI Filters, WFP Callout Modules, and NDIS Protocol Drivers
If you want to test a TDI filter driver, WFP callout module, or any other upper layer driver that expects to see packets from a network adapter during or after the packets are processed by the TCP/IP layer, you must implement or use your own suite of tests to verify Header-Data Split compatibility. You must use the Header-Data Split LWF and bind it to a miniport driver running on a hardware NIC on the system to which your test sends packets over the wire. Your driver should be listening to the incoming packets on this NIC.
A socket-based test that sends various types of TCP/IP and UDP/IP packets is a suitable test. The test should also try to send fragmented as well as non-fragmented IPv4/IPv6 packets with TCP/UDP and other transport layer headers. IPv4 frames with and without IPv4 options, IPv6 frames with and without IPv6 extension headers, IP/TCP frames without TCP options and with TCP timestamp option, and IP/UDP frames are all packets that a Header-Data Split–capable miniport will split.
Minimally, the test suite you develop or use must be able to generate 802.3 TCP/IP and UDP/IP packets. The system on which the Header-Data Split LWF and your higher layer driver is running is the destination system. Your test must generate packets from a different system destined to the NIC on which the Header-Data Split LWF is bound. For more information about the Header-Data Split LWF, see “Header-Data Split LWF” earlier in this paper.
To install and use the Header-Data Split LWF
1. Log on as Administrator and type "bcdedit /debug on" in a command window to place the test system into debug mode. Set up and connect a kernel debugger session to the test system and then reboot the system. Note that the x64 version of Windows Vista does not allow you to install and run the LWF unless a debugger is attached.
2. Copy NDISTest version 6.5.000x to your test system.
3. The Header-Data Split LWF driver is located in the %NDISTestRoot%\bin\filter directory. The LWF is specified in the hdslwf.inf file and loaded from the hdslwf.sys driver binary. Complete the following steps to install and test your driver for compatibility with the Header-Data Split LWF.

4. Type "ncpa.cpl" in a command window to open the Network Connections folder.
5. Right-click the icon of the network card for your destination (receiving) network adapter and open the Properties window.
6. In the Local Area Connection Properties window, click Install, select Service, and then click Add.
7. Click Have Disk, click Browse, and then locate and open the file named hdslwf.inf under the %NDISTestRoot%\bin\filter directory.
8. Select the Network service named NDISTest Header-Data Split LWF and click OK to install the Header-Data Split LWF.

The LWF allows NDIS protocols and upper layer drivers to see any normal network interface as if it were a NIC implementing Header-Data Split.
9. Run the set of tests that you developed and verify your drivers.

6. Contact Information
If you have any questions or feedback regarding this document or the Header-Data Split drivers and tests in the NDISTest tool kit, contact NDIS Tester Beta Reports at ndiststr@microsoft.com.
7. References
Header-Data Split feature specification
In the Windows Server 2008 Beta 3 or later edition of the WDK.
Windows Driver Kit – NDIS documentation
In the Windows Server 2008 Beta 3 or later edition of the WDK.
NDISTest Tool Kit

To download the NDISTest Tool Kit from the Microsoft Connect Web site

· The Microsoft Connect Web site hosts the NDISTest beta Web site, where the NDISTest team posts the latest test tools for networking drivers. Complete the following steps to access the beta Web site:

Go to http://connect.microsoft.com.

Sign in by using your .NET passport.

On the left menu, click Invitations.

Enter the following invitation ID for the Windows Network Devices Program:

NDISTest [NTst-CY36-J9MX]

Provide all required information for access to these programs, including Company Information.

· After you complete these steps to request access, you will be granted that access in approximately 2 days. Then, log on to the Connect Web site and, in a new navigation tab in your browser, directly access the NDISTest Tool Kit for the Header-Data Split feature.

Alternatively, navigate to the main page of the NDISTest Connect Web site and look for information related to the Header-Data Split feature.
March 21, 2007
© 2007 Microsoft Corporation. All rights reserved.

[image: image1.png]