[image: image2.png]4% Windows

Discovering Fibre Channel Topology through WBEM - 17

Discovering Fibre Channel Topology through WBEM

February 27, 2006

Abstract

A Fibre Channel (FC) storage area network (SAN) has many components such as servers and FC host bus adapters (HBAs), switches, hubs, and storage. The SAN topology is the graph that describes how these components are cabled together. This paper presents several examples that explain how to use the Microsoft® Windows® HBA API Windows Management Instrumentation (WMI) interfaces through Web-Based Enterprise Management (WBEM) to discover a SAN topology.

This information applies for the following operating systems:

Microsoft Windows Vista™

Microsoft Windows Server™ 2003

Microsoft Windows XP

Microsoft Windows 2000

The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/device/storage/FCTopology.mspx
References and resources discussed here are listed at the end of this paper.

Contents

3Introduction

3HBA API

3WMI Security

4Listing Fibre Channel Adapters

6Listing Fabric Elements

7The SendCTPassThru Method

8The SendCTPassThru Method In Parameters

9The SendCTPassThru Method Out Parameters

10Listing Fabric Ports

10Listing Fibre Channel Nodes

11The GetFcpTargetMapping Method

13Platform Registration

15SAN Topology

16Conclusion

16Resources

18Appendix: Listings

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

A Fibre Channel (FC) storage area network (SAN) is usually viewed as a central pool of FC storage that is accessible from many servers. However, FC SANs have many additional interoperating components such as servers and FC host bus adapters (HBAs), switches, and hubs. A SAN administrator can find it difficult to keep track of the overall SAN topology itself, and the SAN's physical cabling adds even further complexity. This paper explains how to use the Microsoft® Windows® HBA application programming interface (API) Windows Management Instrumentation (WMI) interfaces to list the elements of a SAN and to discover a SAN topology.

HBA API

The HBA API is a set of well-defined programming interfaces for managing FC HBAs and for discovering and managing FC SANs. The HBA API is defined in the draft FC-HBA ANSI standard document. The Microsoft implementation of Common HBA API, Version 2.18, can be downloaded and installed on Microsoft Windows 2000, Microsoft Windows XP, Microsoft Windows Server™ 2003, and Microsoft Windows Vista™. Additionally, Microsoft Windows Server code name "Longhorn" will ship with inbox support for the HBA API.

The Windows HBA API programming interfaces are implemented at two levels. The first is the function library in hbaapi.dll, which provides a set of C functions for using the HBA API programming interfaces with local FC adapters. The second is a set of HBA API WMI classes that are provided by FC adapters. The function library in hbaapi.dll uses the HBA API WMI classes to access local FC adapters. However, using the WMI classes directly through Web-Based Enterprise Management (WBEM) provides access to FC adapters on both the local server and remote servers. This paper discusses using the HBA API WMI classes through WBEM.

To find FC drivers that support the HBA API WMI interfaces, refer to the Windows Server Catalog.

WMI Security

The default security for the root\wmi name space in Windows Server Longhorn allows full access to members of the local Administrators group. Users of authenticated accounts have write and execute privileges. In Windows 2003 and earlier, members of the Everyone group have write and execute privileges. However, when the WMI HBA API schema is added by using setup for the Fibre Channel Information (FCInfo) tool (or similar tools that use hbains.exe), this security is overwritten so that administrator privilege is required for access. This is true even in Windows Vista when the FCInfo tool is installed. Although this paper does not discuss FC WMI events, note that the permissions on FC WMI events allow general read access so that an authenticated user can listen for events without being an administrator.

Listing Fibre Channel Adapters

The following two samples illustrate how to enumerate the local FC adapters by using VBScript and C#, respectively. For clarity, the examples do not show error handling code. Listing 1 in the appendix illustrates how to perform the same enumeration by using the C++ programming language. Clearly, the C++ programming language can be verbose when illustrating WMI client code. Therefore, for brevity, most samples in this paper are in VBScript and C#.

' (VBScript)

' Connect to WMI.

Set oWbemServices = GetObject("winmgmts:{impersonationLevel=impersonate}!root/wmi")

' Enumerate the FC adapters.

Set enumSetAdapters =
 oWbemServices.InstancesOf("MSFC_FCAdapterHBAAttributes")

nIndex = 0

For Each oEltAdapter in enumSetAdapters

 sAdapterName = oEltAdapter.MfgDomain & _

 "-" & oEltAdapter.Model & "-" & nIndex

 WScript.Echo " adapter: " & sAdapterName

 nIndex = nIndex + 1

Next ' oEltAdapter

// (C#)

// Connect to WMI.

ManagementScope MS = new ManagementScope("root\\wmi");

// Enumerate the FC adapters.

ObjectQuery OQ =
 new ObjectQuery("SELECT * FROM MSFC_FCAdapterHBAAttributes");

ManagementObjectSearcher MOS = new ManagementObjectSearcher(MS, OQ);

ManagementObjectCollection MOC = MOS.Get();

int Index = 0;

foreach(ManagementObject MO in MOC)

{

 String AdapterName = MO["MfgDomain"] + "-" + MO["Model"] + "-" + Index++;

 Console.WriteLine(" adapter: " + AdapterName);

}

Each of the previous code snippets performs the same steps. After connecting to WMI, they enumerate instances of the MSFC_FCAdapterHBAAttributes class. There is one instance of this class for each FC port on the server. For example, if a single FC card supports four ports, then the previous code reports four instances of MSFC_FCAdapterHBAAttributes.

For each instance of MSFC_FCAdapterHBAAttributes, the code:

· Gets the values of the MfgDomain and Model properties.

· Uses these two properties and an index value to construct a unique adapter name string for each HBA.

· Displays the adapter name.

The output of most of the code snippets in this paper can be compared with the output of the Microsoft Fibre Channel Information tool (FCInfo) that is installed as part of the HBA API download. FCInfo uses the hbaapi.dll rather than making direct calls to WMI.

The MSFC_FCAdapterHBAAttributes class contains other useful properties. MfgDomain, Model, ModelDescription, and SymbolicNameString are string properties. The NodeWWN property is an array of 8 bytes that contains the HBA Node world wide name (WWN).

The following VBScript snippet shows a useful pair of functions—WWNToString and Hex0—that illustrate how to convert the 8‑byte NodeWWN array property into a readable hexadecimal WWN string such as “20:00:00:00:C9:41:A1:45”.

' (VBScript)

Function WWNToString(arrayWWN)

 WWNToString = Hex0(arrayWWN(0))

 For I = 1 To 7

 WWNToString = WWNToString & ":" & Hex0(arrayWWN(I))

 Next
End Function

Function Hex0(n)

 Hex0 = Hex(n)

 If (n < &h10) Then Hex0 = "0" & Hex0

End Function

The WWNToString function may then be used as follows:

 WScript.Echo "Node WWN: " & WWNToString(oEltAdapter.NodeWWN)

to give output such as “Node WWN: 20:00:00:00:C9:41:A1:45”.

The InstanceName string property is important. The InstanceName string is unique for each adapter and allows HBA instances to be matched with Port instances and other class instances that are discussed in this paper. That is, for each physical FC port, there is a unique instance of the MSFC_FCAdapterHBAAttributes class that describes the HBA and a unique instance of the MSFC_FibrePortHBAAttributes class that describes the port, but they both have the same InstanceName property value.

The following snippet of VBScript enumerates the HBAs and the ports and uses the InstanceName property to match each Port instance with its associated HBA instance.

' (VBScript)

Set enumSetAdapters = oWbemServices.InstancesOf("MSFC_FCAdapterHBAAttributes")

Set enumSetPorts = oWbemServices.InstancesOf("MSFC_FibrePortHBAAttributes")

nIndex = 0

For Each oEltAdapter in enumSetAdapters

 For Each oEltPort in enumSetPorts

 If (oEltAdapter.InstanceName = oEltPort.InstanceName) Then

 sAdapterName = oEltAdapter.MfgDomain & _

 "-" & oEltAdapter.Model & "-" & nIndex

 WScript.Echo " adapter: " & sAdapterName

 WScript.Echo " node_wwn: " & WWNToString(oEltAdapter.NodeWWN)

 WScript.Echo " port_wwn: " & _

 WWNToString(oEltPort.Attributes.PortWWN)

 WScript.Echo

 nIndex = nIndex + 1

 End If

 Next ' oEltPort

Next ' oEltAdapter

Note that this script gets the PortWWN property, but not directly from an instance of MSFC_FibrePortHBAAttributes. Instead, it must get PortWWN from an embedded Attributes property, which references an instance of the MSFC_HBAPortAttributesResults class. This class also contains other useful properties such as NodeWWN. Therefore, although the script uses the InstanceName property to match HBA and Port instances, clearly it could instead use the NodeWWN property.

The FabricName property of the MSFC_HBAPortAttributesResults class contains the Fabric WWN of the fabric to which the port is connected. For example, if the port is cabled to an FC switch, then the FabricName property contains the Fabric Name of the switch. If the port is not cabled to a switch or if the switch is powered off, then the FabricName property contains a zeroed WWN.

Listing Fabric Elements

A FabricName property for a port instance that is not zeroed indicates that the port is connected to a live FC fabric. Additional information about the fabric can be obtained by sending Fibre Channel generic services (FC-GS) commands directly to the fabric configuration server. The FC-GS commands are defined in the draft ANSI standards FC-GS-3 and FC-GS-4.

One such command is Get Interconnect Element List (GIEL), which returns the Interconnect Element Name (IE Name) for each of the IEs (such as FC switches) that comprise the fabric. If the fabric consists of a single switch, then GIEL returns a single IE Name (represented as a WWN), which is identical to the Fabric Name. If the fabric consists of multiple interconnected switches, then GIEL returns multiple IE Names, one of which corresponds to the Fabric Name for the fabric. In a multiswitch fabric, the Fabric Name is the IE Name of the master switch that controls the fabric.

To send an FC-GS-3 command to a fabric, developers must construct a common transport (CT) information unit (IU) that contains the command. A CT IU is an array of bytes that describes the command, followed by any required parameters. The exact byte layout of a CT IU is defined in the FC-GS-3 draft standard. The following snippet of VBScript illustrates how to construct an array that contains the CT IU for sending GIEL to a fabric.

' (VBScript)

Dim arrGIEL(55) ' 56 byte array.

arrGIEL(0) = CByte(&h01) ' Revision: FC_GS_3

arrGIEL(1) = CByte(&h00) ' IN_ID (3 bytes): always 000000

arrGIEL(2) = CByte(&h00)

arrGIEL(3) = CByte(&h00)

arrGIEL(4) = CByte(&hFA) ' GS_TYPE: Management Service

arrGIEL(5) = CByte(&h01) ' GS_Subtype: Fabric Configuration Server

arrGIEL(6) = CByte(&h00) ' Options

arrGIEL(7) = CByte(&h00) ' Reserved

arrGIEL(8) = CByte(&h01) ' Command/Response Code (2 bytes): GIEL

arrGIEL(9) = CByte(&h01)

arrGIEL(10) = CByte(&h00) ' Maximum/residual size (2 bytes): Any Size.

arrGIEL(11) = CByte(&h00)

arrGIEL(12) = CByte(&h00) ' Fragment ID: 00

arrGIEL(13) = CByte(&h00) ' Reason Code: (N/A for requests)

arrGIEL(14) = CByte(&h00) ' Reason Code Explanation: (N/A for requests)

arrGIEL(15) = CByte(&h00) ' Vendor Specific: (N/A for requests)

Setting the GS_TYPE field to 0xFA selects the Fabric Management Service, which includes the Fabric Configuration Server, the Unzoned Name Server, and the Fabric Zone Server. Setting the GS_Subtype field to 0x01 indicates that the command is destined for the Fabric Configuration Server. Setting the Command/Response Code field to 0x0101 indicates that the command is the GIEL command.

The SendCTPassThru Method

The SendCTPassThru method of the MSFC_HBAAdapterMethods class can be used to send this CT IU to the fabric. As with the previously mentioned classes, each HBA has exactly one instance of MSFC_HBAAdapterMethods. The following snippet of VBScript shows how to send GIEL through each adapter and parse the response into the returned IE Names. Listing 2 in the appendix illustrates how to do this by using the C# programming language.

' (VBScript)

Set enumSetPorts = oWbemServices.InstancesOf("MSFC_FibrePortHBAAttributes")

Set enumAdapterMethods = oWbemServices.InstancesOf("MSFC_HBAAdapterMethods")

For Each oEltPort in enumSetPorts

 For Each oEltAdapterMethods in enumAdapterMethods

 If (oEltPort.InstanceName = oEltAdapterMethods.InstanceName) Then

 ' Construct the InParams for the SendCTPassThru method.

 Set oInParams = _

 oEltAdapterMethods.Methods_("SendCTPassThru").InParameters.Clone_

 oInParams.PortWWN = oEltPort.Attributes.PortWWN

 oInParams.RequestBufferCount = UBound(arrGIEL) + 1

 oInParams.RequestBuffer = arrGIEL

 ' Execute the SendCTPassThru method.

 Set oOutParams = oWbemServices.ExecMethod(_

 oEltAdapterMethods.Path_, _

 "SendCTPassThru", _

 oInParams _

)

 ' Check whether the SendCTPassThru succeeded.

 If (0 = oOutParams.HBAStatus) Then

 ' Check whether the GIEL succeeded

 arrGIELAccept = oOutParams.ResponseBuffer

 nCommandResponse = arrGIELAccept(8)

 nCommandResponse = (nCommandResponse * &h100) + arrGIELAccept(9)

 If (Hex(&h8002) = Hex(nCommandResponse)) Then

 ' The GIEL succeeded.

 ' Extract the count of IE entries.

 celtIE = arrGIELAccept(16)

 For I = 17 to 19

 celtIE = (celtIE * &h100) + arrGIELAccept(I)

 Next ' ULONG byte

 WScript.Echo "Found " & celtIE & " IEs"

 ' Extract each IE field.

 For I = 1 to celtIE

 nOffset = 20 + 12 * (I-1)

 ' Extract the IE Name

 Dim arrNodeWWN(7)

 For J = 0 to 7

 arrNodeWWN(J) = arrGIELAccept(nOffset + J)

 Next ' WWN byte

 ' Display the IE Name

 WScript.Echo " IE Name: " & WWNToString(arrNodeWWN)

 Next ' IE list item

 End If ' GIEL succeeded

 End If ' SendCTPassThru succeeded

 End If ' oEltAdapterMethods is paired with oEltPort

 Next ' oEltAdapterMethods

Next ' oEltPort

This script:

1. Enumerates instances of MSFC_FibrePortHBAAttributes and MSFC_HBAAdapterMethods.

2. Loops over each instance and finds pairs of instances of MSFC_FibrePortHBAAttributes and MSFC_HBAAdapterMethods that have matching InstanceName properties

3. Before calling the SendCTPassThru method, clones an instance of the In parameters class for the method and then fills in the In parameters instance.

Note that the script uses Clone_ instead of SpawnInstance_ to generate the In parameters instance. This is important because using Clone_ ensures that the In parameters instance is filled, whereas using SpawnInstance_ returns an empty instance of the In parameters.

Consider the following .mof definition for the SendCTPassThru method:

// (IDL)

void SendCTPassThru (

 [out, HBA_STATUS_QUALIFIERS] HBA_STATUS HBAStatus,

 [in, HBAType("HBA_WWN")] uint8 PortWWN[8],

 [in] uint32 RequestBufferCount,

 [in, WmiSizeIs("RequestBufferCount")] uint8 RequestBuffer[],

 [out] uint32 TotalResponseBufferCount,

 [out] uint32 ActualResponseBufferCount,

 [out, WmiSizeIs("ActualResponseBufferCount")] uint8 ResponseBuffer[]

);

As one example, using Clone_ ensures that the instance is populated with the WmiSizeIs qualifiers, whereas using SpawnInstance_ produces an instance without the WmiSizeIs qualifiers. Invoking SendCTPassThru and passing an In parameters instance that omits these qualifiers may result in WMI inexplicably failing the invocation before the method even reaches the adapter.

The SendCTPassThru Method In Parameters

The first In parameter for the SendCTPassThru method consists of the PortWWN of the port through which the command is being sent. The other two parameters specify the command buffer. The RequestBuffer parameter contains the CT IU array that describes the command, and the RequestBufferCount property indicates the number of bytes in the RequestBuffer parameter. Note that the arrGIEL array that was defined earlier contains 56 bytes, whereas the CT IU contains only 16 bytes. Therefore, the script sends 40 extra bytes that do not contain useful information. The script does this because some FC WMI providers assume that when the client sends down a RequestBuffer, the RequestBufferCount property also specifies the correct size for the ResponseBuffer.

The size of the ResponseBuffer for a successful GIEL command is always greater than 16 bytes. If the script sends down only 16 bytes, then the WMI provider may report this as an error and the call fails, sometimes catastrophically. This issue can be avoided by sending a RequestBuffer that is large enough to hold the response—even though the response is not returned in this buffer. Because most fabrics do not contain more than a few switches, 56 bytes is large enough to hold a response that describes at least three switches.

If GIEL returns information for more than three IEs, then the SendCTPassThru command may fail with a nonzero HBAStatus value. In response, the script should make another, larger estimate and try again. Some providers return as much data as possible in the ResponseBuffer and an HBAStatus value of HBA_STATUS_ERROR_MORE_DATA, which makes it possible to extract the count of IEs and use that to calculate the exact size of the response buffer.

The SendCTPassThru Method Out Parameters

The SendCTPassThru method returns four Out parameters. The first of these is the HBAStatus parameter, which indicates whether the call was successful. This parameter is set to 0 if the SendCTPassThru call succeeds; otherwise, it is set to a nonzero error code. For other HBAStatus error values and their meanings, see the MSDN Web site. A successful SendCTPassThru call does not indicate whether GIEL was successful. To make this determination, the script must parse the 2-byte Command/Response code field (bytes 8 and 9) in the ResponseBuffer. A Command/Response code value of 0x8002 indicates that GIEL succeeded and a value of 0x8001 indicates that it failed. If GIEL succeeded, then the script extracts the contents of the response, including the count of IE entries in the ResponseBuffer, and the actual IE Names. For the complete byte layout of the response buffer for GIEL and other commands, see the FC‑GS‑3 draft standard.

After the script has the IE Name for a switch, it can use the Get Interconnect Element Information List (GIEIL) command to request more information about the switch, such as the Vendor Name, Model Name, and Release Code. The following VBScript sample illustrates how to append an IE Name to a GIEIL CT IU, send GIEIL, and parse the response to get the switch Vendor Name, Model Name, and Release Code.

' (VBScript)

' Append the IE Name (from arrIEName) after the 16 byte CT IU.

For I = 0 To 7

 arrGIEIL(16 + I) = arrIEName(I)

Next ' I

' Construct the InParams for the SendCTPassThru method.

Set oInParams = _

 oEltAdapterMethods.Methods_("SendCTPassThru").InParameters.Clone_

oInParams.PortWWN = oEltPort.Attributes.PortWWN

oInParams.RequestBufferCount = UBound(arrGIEIL) + 1

oInParams.RequestBuffer = arrGIEIL

' Execute the SendCTPassThru method.

Set oOutParams = oWbemServices.ExecMethod(_

 oEltAdapterMethods.Path_, _

 "SendCTPassThru", _

 oInParams _

)

' Check whether the SendCTPassThru succeeded.

If (0 = oOutParams.HBAStatus) Then

 ' Check whether the GIEIL succeeded

 arrGIEILAccept = oOutParams.ResponseBuffer

 nCommandResponse = arrGIEILAccept(8)

 nCommandResponse = (nCommandResponse * &h100) + arrGIEILAccept(9)

 If (Hex(&h8002) = Hex(nCommandResponse)) Then

 ' The GIEIL succeeded.

 ' Extract the zero-terminated Information List fields.

 nOffset = 16 + 3 + 1 ' Skip header, Reserved field, and List Length.

 sVendorName = ""

 I = 0

 While (0 <> arrGIEILAccept(nOffset + I))

 sVendorName = sVendorName & Chr(arrGIEILAccept(nOffset + I))

 I = I + 1

 Wend

 sModelName = ""

 I = I + 1

 While (0 <> arrGIEILAccept(nOffset + I))

 sModelName = sModelName & Chr(arrGIEILAccept(nOffset + I))

 I = I + 1

 Wend

 sReleaseCode = ""

 I = I + 1

 While (0 <> arrGIEILAccept(nOffset + I))

 sReleaseCode = sReleaseCode & Chr(arrGIEILAccept(nOffset + I))

 I = I + 1

 Wend

 ' Display the Information List fields.

 WScript.Echo " Vendor Name: " & sVendorName

 WScript.Echo " Model Name: " & sModelName

 WScript.Echo " Release Code: " & sReleaseCode

 End If ' GIEIL succeeded

End If ' SendCTPassThru succeeded

The previous VBScript snippet assumes that the arrGIEIL array already contains the CT IU for the GIEIL command and that the arrIEName array already contains the IE Name. For GIEIL, the script must also append the 8‑byte IE Name array to the 16-byte GIEIL CT IU. Therefore, the arrGIEIL array must be at least 24 bytes (16 plus 8 bytes). However, as with GIEL, the size of the arrGIEIL buffer must be at least as large as the expected size of the return buffer. In this case, the Information List that GIEIL returns is always exactly 256 bytes, so the arrGIEIL array must contain at least 272 bytes (16 plus 256 bytes).

Listing Fabric Ports

Another typical FC-GS-3 command for getting information about a switch is the Get Port List (GPL) command. Like GIEIL, GPL requires the IE Name to be appended to the CT IU. GPL returns the list of Port Names for the switch and the type of each port. A switch usually has no more than 256 ports, but this is not the maximum. If GPL returns information for more than 256 ports, then SendCTPassThru may fail with a nonzero HBAStatus value. The script must make another, larger guess and try again. Alternatively, as with the GIEL command, some providers may handle this gracefully and return enough data to the client so that the count of attached ports can be extracted and used to calculate the required size of the request buffer.

The Get Attached Port Name List (GAPNL) command can be used to determine the port to which each switch port is connected. GAPNL requires that a switch Port Name be appended to the CT IU. GAPNL returns the list of Port Names to which the switch port is connected. The returned list of ports usually contains a single Port Name. However, if the switch Port is part of an arbitrated loop, then the returned list of ports contains the Port Name for every other port in the loop. If the Port Name of an attached port (returned by GAPNL) matches the Port Name for a switch port (returned by GPL), then this indicates that one switch port is connected to another switch port—usually on a different switch. In this case, the Port Type for each port as reported by GPL is either B_Port, E_Port, or sometimes Reserved.

Listing Fibre Channel Nodes

Each attached port must be associated with a node, but the GAPNL command returns only lists of attached Port Names, not Node Names. The Get All Next (GANXT) command can be used to get the associated Node Names and to query for all the Name Server objects in the fabric Name Server, which is part of the Directory Service. A 3-byte Port Identifier must be appended to the CT IU. GANXT then returns the Name Server object for the next higher valued Port Identifier, which allows an iterative query for all Name Server objects. Each Name Server object that GANXT returns contains a list of information, including the Port Name and Node Name. By scanning the list of Name Server objects for a Port Name that matches a Port Name that GAPNL returned, the Node Name for that Port Name can be determined. This reveals the nodes to which each switch is connected.

Several different techniques can be used to determine whether a Port Name that was reported by GAPNL is a storage device. One technique is to use the SendRNID method of the MSFC_HBAAdapterMethods class. This method sends a Request Node Identification Data (RNID) to a port. The command returns a buffer that contains the RNID response, which may be parsed to determine the type of the node that is associated with the port. For example, RNID may report that the port is a switch port, a storage port, or a host port (that is, a port on an FC adapter). However, RNID does not always succeed. For example, attempting to send RNID to get the type of the actual port through which RNID is being sent—a kind of loopback request—usually fails. Also, the FC controller on a storage array may not support RNID.

Another technique is to send a SCSI command such as SCSI READ CAPACITY to an attached port. If the command succeeds, then the attached port is a direct access storage device. SCSI READ CAPACITY can be sent by using the ScsiReadCapacity method of the MSFC_HBAAdapterMethods class. This method takes a 10-byte SCSI command data block (CDB) that describes the READ CAPACITY command, the destination Port Name, the Port Name of the HBA Port through which the command will be sent, and an FcLun value that indicates the LUN to which the SCSI READ CAPACITY command will be sent. It is possible to simply set the FcLun value to 0, although LUN 0 may be a controller device, which causes READ CAPACITY to fail. It is better to send a SCSI INQUIRY command and examine the response to determine device type. SCSI INQUIRY may be sent by using the ScsiInquiry method of the MSFC_HBAAdapterMethods class.

The GetFcpTargetMapping Method

The most reliable technique is to call the GetFcpTargetMapping method of the MSFC_HBAFCPInfo class. GetFcpTargetMapping accepts a Port Name for the HBA Port through which the command is sent and an InEntryCount that indicates the maximum number of mappings to return. Note that if InEntryCount is less than the number of LUNs that can be reported, then the WMI provider returns no more than the requested number of mappings, an HBAStatus value of HBA_STATUS_ERROR_MORE_DATA, and a TotalEntryCount value that indicates the total number of LUNs that may be reported. In that case, it is necessary to call the method a second time by passing a value of InEntryCount at least as large as the reported TotalEntryCount. Alternatively, a very large value of InEntryCount—such as 1000—could be passed, to avoid having to call the method twice.

The GetFcpTargetMapping method returns a list of mappings between logical unit numbers (LUNs) of storage and FC protocol identifiers for these LUNs. FC protocol identifiers contain (among other things) the Node WWN and Port WWN that are mapped to each LUN. If a Port Name that was returned by GAPNL matches a Port WWN that was mapped to a LUN, then the attached Port Name is a port on a storage device. The following VBScript snippet illustrates how to call GetFcpTargetMapping, considering the reported value of TotalEntryCount and calling the method again if required:

' (VBScript)

Const HBA_STATUS_ERROR_MORE_DATA = 7

' Enumerate the FC adapters and ports.

Set enumSetPorts = oWbemServices.InstancesOf("MSFC_FibrePortHBAAttributes")

Set enumHBAFcpInfo = oWbemServices.InstancesOf("MSFC_HBAFCPInfo")

For Each oEltPort in enumSetPorts

 For Each oEltHbaFcpInfo in enumHBAFcpInfo

 If (oEltPort.InstanceName = oEltHbaFcpInfo.InstanceName) Then

 Set oInParams = _

 oEltHbaFcpInfo.Methods_("GetFcpTargetMapping").InParameters.Clone_

 nInEntryCount = 1

 Do

 fRepeat = False

 ' Construct the InParams for the GetFcpTargetMapping method.

 oInParams.HbaPortWWN = oEltPort.Attributes.PortWWN

 oInParams.InEntryCount = nInEntryCount

 ' Execute the GetFcpTargetMapping method.

 Set oOutParams = oWbemServices.ExecMethod(_

 oEltHbaFcpInfo.Path_, _

 "GetFcpTargetMapping", _

 oInParams _

)

 ' Check whether the GetFcpTargetMapping failed.

 If (0 <> oOutParams.HBAStatus) Then

 If (HBA_STATUS_ERROR_MORE_DATA <> oOutParams.HBAStatus) Then

 WScript.Echo "Error " & oOutParams.HBAStatus

 Else

 ' Set InEntryCount to the total reported count and try again.

 nInEntryCount = oOutParams.TotalEntryCount

 fRepeat = True

 End If

 Else

 ' Display the returned mappings.

 If (0 = oOutParams.OutEntryCount) Then

 WScript.Echo "(No mappings)"

 Else

 For I = 0 To oOutParams.OutEntryCount - 1

 Set oEntry = oOutParams.Entry(I)

 Set oFCPId = oEntry.FCPId

 WScript.Echo "Mapping[" & I & "]"

 WScript.Echo " Fcid = " & oFCPId.Fcid & _

 " = x" & Hex0(oFCPId.Fcid)

 WScript.Echo " FcpLun = " & oFCPId.FcpLun

 WScript.Echo " Node WWN = " & WWNToString(oFCPId.NodeWWN)

 WScript.Echo " Port WWN = " & WWNToString(oFCPId.PortWWN)

 Set oScsiId = oEntry.ScsiId

 WScript.Echo " SCSI Bus Number = " & oScsiId.ScsiBusNumber

 WScript.Echo " SCSI Target Number = " & _

 oScsiId.ScsiTargetNumber

 WScript.Echo " SCSI OS LUN = " & oScsiId.ScsiOSLun

 If (vbNull = VarType(oScsiId.OSDeviceName)) Then

 WScript.Echo " OS Device Name = NULL"

 Else

 WScript.Echo " OS Device Name = " & oScsiId.OSDeviceName

 End If

 Next ' I

 End If

 End If

 Loop While (True = fRepeat)

 End If ' oEltHBAFcpInfo is paired with oEltPort

 Next ' oEltHBAFcpInfo

Next ' oEltPort

Platform Registration

This section provides an example of how to register information with a fabric, particularly registering information about the local server with the fabric so that other servers can read this information. The FC-GS-3 Register Platform (RPL) command is used to accomplish this task. RPL is processed by the Fabric Configuration Server and allows registration of a platform name, a list of platform management addresses, and a list of platform node names. There is no restriction on the platform name except that it contain no more than 255 bytes and be unique in the Fabric Configuration Server database. Using a naming scheme similar to an iSCSI qualified name (IQN) ensures uniqueness. This convention is described in IETF iSCSI Naming & Discovery and includes the fully qualified domain name (FQDN) of a server as part of the IQN name. The following is an example of an IQN name that would be suitable for a unique platform name:

iqn.1991-05.com.microsoft:myserver.mydomain.microsoft.com

The only restriction on the form of the management address is that it contain no more than 255 bytes. The following is an example of the FQDN of a server:

myserver.mydomain.microsoft.com
The platform node name is an array of 8 bytes that represents a node WWN. It must be unique among all platform registrations in the Fabric Configuration Server database. To ensure this uniqueness, the Node WWN of the HBA through which the RPL command is sent is registered. The following VBScript snippet illustrates how to use RPL to register the platform with the fabric.

' (VBScript)

' Connect to WMI.

Set oWbemServices = _

 GetObject("winmgmts:{impersonationLevel=impersonate}!root/wmi")

' Enumerate the FC ports and adapter methods.

Set enumSetPorts = oWbemServices.InstancesOf("MSFC_FibrePortHBAAttributes")

Set enumAdapterMethods = oWbemServices.InstancesOf("MSFC_HBAAdapterMethods")

For Each oEltPort in enumSetPorts

 For Each oEltAdapterMethods in enumAdapterMethods

 If (oEltPort.InstanceName = oEltAdapterMethods.InstanceName) Then

 ' [0] Define the Platform Name and Management Address

 sPlatformName = _

 "iqn.1991-05.com.microsoft:myserver.mydomain.microsoft.com"

 sManagementAddress = "myserver.mydomain.microsoft.com"

 ' [1] Append the Platform Name (Length byte first)

 nOffset = 16

 arrRPL(nOffset) = CByte(Len(sPlatformName))

 nOffset = nOffset + 1

 For I = 1 To Len(sPlatformName)

 arrRPL(nOffset+I-1) = CByte(ASC(Mid(sPlatformName, I, 1)))

 Next ' I

 ' [2] Append the Platform Type (4 bytes: 00 00 00 0A) = Host Computer

 nOffset = nOffset + 255

 arrRPL(nOffset+0) = &h00

 arrRPL(nOffset+1) = &h00

 arrRPL(nOffset+2) = &h00

 arrRPL(nOffset+3) = &h0A

 ' [3] Append Count of Management Address entries (4 bytes: 00 00 00 01)

 nOffset = nOffset + 4

 arrRPL(nOffset+0) = &h00

 arrRPL(nOffset+1) = &h00

 arrRPL(nOffset+2) = &h00

 arrRPL(nOffset+3) = &h01

 ' [4] Append the Management Address (Length byte first)

 nOffset = nOffset + 4

 arrRPL(nOffset) = CByte(Len(sManagementAddress))

 nOffset = nOffset + 1

 For I = 1 To Len(sManagementAddress)

 arrRPL(nOffset+I-1) = CByte(ASC(Mid(sManagementAddress, I, 1)))

 Next ' I

 ' [5] Append the Count of Platform Node Name entries (4 bytes)

 nOffset = nOffset + 255

 arrRPL(nOffset+0) = &h00

 arrRPL(nOffset+1) = &h00

 arrRPL(nOffset+2) = &h00

 arrRPL(nOffset+3) = &h01

 nOffset = nOffset + 4

 ' [6] Append the list of Platform Node Names (8 bytes each)

 nOffset = nOffset + 4

 For I = 0 To 7

 arrRPL(nOffset+I) = oEltPort.Attributes.NodeWWN(I)

 Next ' I

 ' Construct the InParams for the SendCTPassThru method.

 Set oInParams = _

 oEltAdapterMethods.Methods_("SendCTPassThru").InParameters.Clone_

 oInParams.PortWWN = oEltPort.Attributes.PortWWN

 oInParams.RequestBufferCount = UBound(arrRPL) + 1

 oInParams.RequestBuffer = arrRPL

 ' Execute the SendCTPassThru method.

 Set oOutParams = oWbemServices.ExecMethod(_

 oEltAdapterMethods.Path_, _

 "SendCTPassThru", _

 oInParams _

)

 ' Check whether the SendCTPassThru succeeded.

 If (0 = oOutParams.HBAStatus) Then

 ' Check whether the RPL succeeded

 arrRPLAccept = oOutParams.ResponseBuffer

 nCommandResponse = arrRPLAccept(8)

 nCommandResponse = (nCommandResponse * &h100) + arrRPLAccept(9)

 If (Hex(&h8002) = Hex(nCommandResponse)) Then

 WScript.Echo "RPL succeeded"

 Else

 nReason = arrRPLAccept(13)

 nExplanation = arrRPLAccept(14)

 WScript.Echo "RPL failed: Reason = x" & Hex0(nReason)

 WScript.Echo "RPL failed: Explanation = x" & Hex0(nExplanation)

 End If ' SendCTPassThru succeeded

 End If ' RPL succeeded

 End If ' oEltAdapterMethods is paired with oEltPort

 Next ' oEltAdapterMethods

Next ' oEltPort

In the previous VBScript snippet, we assume that the first 16 bytes of the arrRPL array already contains the CT IU for the RPL command. If RPL is used to update the platform registration multiple times, then the Deregister Platform (DPL) command must be sent to deregister the platform before each RPL is sent. Otherwise, RPL may fail because the platform name, management address, or platform node name may already be registered.

SAN Topology

The previous discrete examples provided a general review of the elements of a SAN, but they did not explain the entire topology. The following figure is a concise, high-level representation of a SAN topology. This representation is obtained by using an algorithm that gathers enough information from each element and then partitions the elements into distinct fabrics.

[image: image1.wmf]PC

HBA

HBA

C

o

m

3

C

o

m

3

C

o

m

3

C

o

m

3

C

o

m

3

C

o

m

3

Switch

Switch

Switch

Switch

Switch

Switch

Fabric

Fabric

Storage

Storage

Storage

Storage

HBA

PC

HBA

Figure 1. High-Level SAN Topology

The term fabric refers to an interconnected set of one or more switches. Each HBA port on a host computer may be attached to a distinct fabric or they may all be attached to the same fabric. Therefore, the algorithm must partition the global list of switches into distinct fabrics. The following are two alternative techniques for performing this partition:

· After generating the global lists of all fabric elements, perform a depth-first traversal of the switch graph to find the connected subgraphs. Each connected subgraph is then isomorphic with a distinct fabric. This method is considered a physical technique because it is equivalent to tracing the cabling in a fabric. It works only if the set of global graphs can be traversed from a Switch to a Switch Port to an Attached Port to another Switch.

· For each switch, send the Get Interconnect Element Fabric Name (GFN) command to get the Fabric Name for the switch. If two or more switches have the same Fabric Name then, by definition, they are part of the same fabric. This method is logical rather than physical and relies on the reasonable assumptions that distinct fabrics have distinct fabric names and that the fabric name for a switch remains static between calls to GFN. This technique is simpler than the first technique.

The following DISCOVER_SAN_TOPOLOGY algorithm is an example of a basic fabric topology discovery algorithm.

Algorithm 1: DISCOVER_SAN_TOPOLOGY

Input:

 A list of the HBA ports on the local PC.

Output:

 A list of the discoverable Fabrics in the SAN

1. [Gather the discrete elements comprising all fabrics]

1.1 For each HBA Port

 1.1.1 Send series of GANXTs to create a list of FC Nodes

 1.1.2 Send a GIEL to create a list of Switches

 1.1.3 For each Switch

 1.1.3.1 Send a GFN to get Switch.FabricName

 1.1.3.2 Send a GPL to get the list of Switch Ports

 1.1.3.3 For each Switch Port

 1.1.3.3.1 Send GAPNL to create attached port list.
2. [Sort list of discovered switches into distinct fabrics]

2.1 For each discovered Switch

 2.1.1 Add Switch to Fabric with name Switch.FabricName

Conclusion

The set of HBA API WMI classes provides an easy-to-use interface for management application developers to list the elements of an FC SAN and to discover the SAN topology. The Microsoft Windows HBA API will ship as part of Microsoft Server Longhorn and is available as a download for Windows 2000, Windows XP, and Windows Server 2003. The hbaapi.dll library was shipped with Windows Server 2003 SP1, but the methods in this article work only if the HBA API download is installed.

Resources

See the following resources for further information:

Microsoft:

Fibre Channel Information Tool (FCInfo) and HBA API
http://www.microsoft.com/downloads/details.aspx?FamilyID=73d7b879-55b2-4629-8734-b0698096d3b1
How to Add WMI Interfaces to SCSIPort and Storport Miniports

This WinHEC 2005 Presentation describes how storage device drivers provide WMI classes.
http://download.microsoft.com/download/f/0/5/f05a42ce-575b-4c60-82d6-208d3754b2d6/WMI_SCSIPort-StorPort.ppt
Windows Server Catalog:

Fibre Channel device drivers that support the HBA API WMI classes
http://www.microsoft.com/windows/catalog/server/
Microsoft Developers Network Web site:

Maintaining WMI Security

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wmisdk/wmi/maintaining_wmi_security.asp
Fibre Channel HBA Library Routines

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/Storage_r/hh/Storage_r/fibreHBA_rtns_89778d35-209c-4abb-95a7-e6062d7ba655.xml.asp
Fibre Channel WMI Classes

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/Storage_r/hh/Storage_r/storewmiclass_b976f486-d36b-4767-b8d2-d223b595f20d.xml.asp
Windows Management Instrumentation: Background and Overview

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwmi/html/wmioverview.asp
InterNational Committee for Information Technology Standards,
Technical Committee T11

FC-GS and FC-HBA ANSI standards
http://www.t11.org
Internet Engineering Task Force

iSCSI Naming & Discovery
http://www3.ietf.org/proceedings/01mar/slides/ips-8.pdf
Appendix: Listings

Listing 1:

// (C++)

//

// Listing1.cpp

//

// Use WBEM to enumerate the local Fibre Channel adapters.

//

#include <windows.h>

#include <wbemcli.h>

#include <stdio.h>

#define NAMESPACE L"root\\wmi"

#define CLASS_NAME L"MSFC_FCAdapterHBAAttributes"

#define QUERY_STRING L"SELECT * FROM " CLASS_NAME

#define PROP_NAME_MfgDomain L"MfgDomain"

#define PROP_NAME_Model L"Model"

int __cdecl main()

{

 HRESULT hr = 0;

 HRESULT hr_CoInit = 0;

 HRESULT hr_next = 0;

 IWbemLocator *pIWbemLocator = NULL;

 IWbemServices *pIWbemServices = NULL;

 IEnumWbemClassObject *pIEnumWbemClassObject = NULL;

 IWbemClassObject *pIWbemClassObjectInst = NULL;

 BSTR bstrNamespace = NULL;

 BSTR bstrQueryLanguage = NULL;

 BSTR bstrQuery = NULL;

 VARIANT vtMfgDomain; VariantInit(&vtMfgDomain);

 VARIANT vtModel; VariantInit(&vtModel);

 ULONG ulCount = 0;

 ULONG nIndex = 0;

 // Initialize the COM library.

 hr_CoInit = CoInitialize(NULL);

 if (FAILED(hr_CoInit)) {

 printf("Error 0x%0x calling CoInitialize()\n", hr_CoInit);

 return(hr_CoInit);

 }

 // Set our default security.

 hr = CoInitializeSecurity(

 NULL, // PSECURITY_DESCRIPTOR pVoid,

 -1, // LONG cAuthSvc,

 NULL, // SOLE_AUTHENTICATION_SERVICE * asAuthSvc,

 NULL, // void * pReserved1,

 RPC_C_AUTHN_LEVEL_DEFAULT, // DWORD dwAuthnLevel,

 RPC_C_IMP_LEVEL_IMPERSONATE, // DWORD dwImpLevel,

 NULL, // SOLE_AUTHENTICATION_LIST * pAuthList,

 EOAC_NONE, // DWORD dwCapabilities,

 NULL // void * pReserved3

);

 if (FAILED(hr)) {

 printf("Error 0x%0x calling CoInitializeSecurity()\n", hr);

 goto Exit;

 }

 // Create a WBEM locator instance.

 hr = CoCreateInstance(

 CLSID_WbemLocator, // REFCLSID rclsid,

 NULL, // LPUNKNOWN pUnkOuter,

 CLSCTX_INPROC_SERVER |
 CLSCTX_LOCAL_SERVER, // DWORD dwClsContext,

 IID_IUnknown, // REFIID riid,

 (void**)&pIWbemLocator // LPVOID * ppv

);

 if (FAILED(hr)) {

 printf("Error 0x%0x calling CoCreateInstance()\n", hr);

 goto Exit;

 }

 // Connect to WMI on the destination server.

 bstrNamespace = SysAllocString(NAMESPACE);

 hr = pIWbemLocator->ConnectServer(

 bstrNamespace, // const BSTR strNetworkResource,

 NULL, // const BSTR strUser,

 NULL, // const BSTR strPassword,

 NULL, // const BSTR strLocale,

 0, // LONG lSecurityFlags,

 NULL, // const BSTR strAuthority,

 NULL, // IWbemContext* pCtx,

 &pIWbemServices // IWbemServices** ppNamespace

);

 pIWbemLocator->Release();

 if (FAILED(hr)) {

 printf("Error 0x%0x calling pIWbemLocator->ConnectServer()\n", hr);

 goto Exit;

 }

 // Query for the list of Fibre Channel HBAs.

 bstrQueryLanguage = SysAllocString(L"WQL");

 bstrQuery = SysAllocString(QUERY_STRING);

 hr = pIWbemServices->ExecQuery(

 bstrQueryLanguage, // const BSTR strQueryLanguage,

 bstrQuery, // const BSTR strQuery,

 WBEM_FLAG_FORWARD_ONLY |

 WBEM_FLAG_RETURN_IMMEDIATELY, // LONG lFlags,

 NULL, // IWbemContext* pCtx,

 &pIEnumWbemClassObject // IEnumWbemClassObject** ppEnum

);

 pIWbemServices->Release();

 if (FAILED(hr)) {

 printf("Error 0x%0x calling pIWbemServices->ExecQuery()\n", hr);

 goto Exit;

 }

 // Iterate over the returned set of HBA object instances

 // and display an adapter name for each.

 do {

 hr_next = pIEnumWbemClassObject->Next(

 WBEM_INFINITE, // LONG lTimeOut,

 1, // ULONG uCount,

 &pIWbemClassObjectInst, // IWbemClassObject** ppObjects,

 &ulCount // ULONG* puReturned

);

 if (WBEM_S_NO_ERROR == hr_next) {

 // Extract the MfgDomain parameter.

 hr = pIWbemClassObjectInst->Get(

 PROP_NAME_MfgDomain, // LPCWSTR wszName,

 0, // LONG lFlags,

 &vtMfgDomain, // VARIANT* pVal,

 NULL, // CIMTYPE* pvtType,

 NULL // LONG* plFlavor

);

 if (FAILED(hr)) {

 printf("Error 0x%0x calling pIWbemClassObject->Get()\n", hr);

 goto Exit;

 }

 // Extract the Model parameter.

 hr = pIWbemClassObjectInst->Get(

 PROP_NAME_Model, // LPCWSTR wszName,

 0, // LONG lFlags,

 &vtModel, // VARIANT* pVal,

 NULL, // CIMTYPE* pvtType,

 NULL // LONG* plFlavor

);

 if (FAILED(hr)) {

 printf("Error 0x%0x calling pIWbemClassObject->Get()\n", hr);

 goto Exit;

 }

 wprintf(L" adapter: %ws-%ws-%1d\n",

 vtMfgDomain.bstrVal,

 vtModel.bstrVal,

 nIndex++);

 VariantClear(&vtMfgDomain);

 VariantClear(&vtModel);

 pIWbemClassObjectInst->Release();

 pIWbemClassObjectInst = NULL;

 }

 } while (WBEM_S_NO_ERROR == hr_next);

Exit:

 if (NULL != pIEnumWbemClassObject) pIEnumWbemClassObject->Release();

 if (NULL != pIWbemClassObjectInst) pIWbemClassObjectInst->Release();

 if (SUCCEEDED(hr_CoInit)) CoUninitialize();

 return(hr);

} // main()

//

// Listing1.cpp

//

Listing 2:

// (C#)

//

// Listing2.cs

//

// Use WBEM to send the GIEL command via each adapter and

// parse the response into the returned IE Names

//

using System;

using System.Management;

class Listing2

{

 // WWNToString() returns a readable string representation of

 // the 8 byte WWN array passed in arrayWWN.

 public static string WWNToString(byte[] arrayWWN)

 {

 string WWNString = arrayWWN[0].ToString("X2");

 for (int i = 1; i <= 7; i++)

 {

 WWNString = WWNString + ":" + arrayWWN[i].ToString("X2");

 }

 return(WWNString);

 }

 public static void Main()

 {

 // Define a CT_IU buffer containing a GIEL request.

 byte[] arrayGIEL = new byte[56];

 arrayGIEL[0] = 0x02; // Revision: FC_GS_3

 arrayGIEL[1] = 0x00; // IN_ID (3 bytes): 000000

 arrayGIEL[2] = 0x00; //

 arrayGIEL[3] = 0x00; //

 arrayGIEL[4] = 0xFA; // GS_TYPE: Management Service

 arrayGIEL[5] = 0x01; // GS_Subtype: Fabric Configuration Server

 arrayGIEL[6] = 0x00; // Options

 arrayGIEL[7] = 0x00; // Reserved

 arrayGIEL[8] = 0x01; // Command/Response Code (2 bytes): GIEL

 arrayGIEL[9] = 0x01; //

 arrayGIEL[10] = 0x00; // Maximum/residual size (2 bytes): Any Size.

 arrayGIEL[11] = 0x00; //

 arrayGIEL[12] = 0x00; // Fragment ID: 00

 arrayGIEL[13] = 0x00; // Reason Code: (N/A for requests)

 arrayGIEL[14] = 0x00; // Reason Code Explanation: (N/A for requests)

 arrayGIEL[15] = 0x00; // Vendor Specific: (N/A for requests)

 string Namespace = "root\\wmi";

 string QueryAttributes = "SELECT * FROM MSFC_FibrePortHBAAttributes";

 string QueryMethods = "SELECT * FROM MSFC_HBAAdapterMethods";

 string MethodName = "SendCTPassThru";

 string PropName_InstanceName = "InstanceName";

 string PropName_PortWWN = "PortWWN";

 string PropName_RequestBufferCount = "RequestBufferCount";

 string PropName_RequestBuffer = "RequestBuffer";

 string PropName_Attributes = "Attributes";

 string PropName_HBAStatus = "HBAStatus";

 string PropName_ResponseBuffer = "ResponseBuffer";

 // Connect to WMI.

 ManagementScope oMS = new ManagementScope(Namespace);

 // Enumerate the FC adapters.

 ObjectQuery oOQAttributes = new ObjectQuery(QueryAttributes);

 ManagementObjectSearcher oMOSAttributes =

 new ManagementObjectSearcher(oMS, oOQAttributes);

 ManagementObjectCollection oMOCAttributes = oMOSAttributes.Get();

 // Enumerate the FC adapter methods.

 ObjectQuery oOQMethods = new ObjectQuery(QueryMethods);

 ManagementObjectSearcher oMOSMethods =
 new ManagementObjectSearcher(oMS, oOQMethods);

 ManagementObjectCollection oMOCMethods = oMOSMethods.Get();

 foreach (ManagementObject oMOAttributes in oMOCAttributes)

 {

 foreach (ManagementObject oMOMethods in oMOCMethods)

 {

 String MethodsInstance = (String)oMOMethods[PropName_InstanceName];

 String AttributesInstance =
 (String)oMOAttributes[PropName_InstanceName];

 if (0 == String.Compare(MethodsInstance, AttributesInstance))

 {

 // Construct the InParams for the SendCTPassThru method.

 ManagementClass wmiClass;

 wmiClass = new ManagementClass(Namespace +
 ":MSFC_HBAAdapterMethods");

 MethodDataCollection oMDC = wmiClass.Methods;

 foreach (MethodData method in oMDC)

 {

 if (0 == string.Compare(method.Name, MethodName))

 {

 // Get a reference to the InParameters

 ManagementBaseObject inParams = method.InParameters;

 // Set the arguments.

 ManagementBaseObject Attributes;

 Attributes =
 (ManagementBaseObject)oMOAttributes[PropName_Attributes];

 inParams[PropName_PortWWN] = Attributes[PropName_PortWWN];

 inParams[PropName_RequestBufferCount] = arrayGIEL.GetLength(0);

 inParams[PropName_RequestBuffer] = arrayGIEL;

 // Execute the SendCTPassThru method.

 ManagementBaseObject outParams;

 outParams = oMOMethods.InvokeMethod(MethodName,inParams,null);

 // Check whether the SendCTPassThrough succeeded.

 if (0 == Convert.ToInt32(outParams[PropName_HBAStatus]))

 {

 // Check whether the GIEL succeeded.

 byte[] arrayGIELAccept =
 (byte[])outParams[PropName_ResponseBuffer];

 int nCommandResponse = arrayGIELAccept[8];

 nCommandResponse = (nCommandResponse * 0x100) +
 arrayGIELAccept[9];

 if (0x8002 == nCommandResponse)

 {

 // The GIEL succeeded.

 // Extract the count of IE entries.

 int celtIE = arrayGIELAccept[16];

 for (int i = 17; i <= 19; i++)

 {

 celtIE = (celtIE * 0x100) + arrayGIELAccept[i];

 }

 Console.WriteLine("Found " + celtIE + " IEs");

 for (int i = 1; i <= celtIE; i++)

 {

 int nOffset = 20 + 12 * (i - 1);

 // Extract the IE Name

 byte[] arrayNodeWWN = new byte[8];

 for (int j = 0; j <= 7; j++)

 {

 arrayNodeWWN[j] = arrayGIELAccept[nOffset + j];

 }

 // Display the IE Name

 Console.WriteLine(" IE Name: " +
 WWNToString(arrayNodeWWN));

 }

 }

 }

 }

 }

 }

 }

 }

 }

}

February 27, 2006
© 2006 Microsoft Corporation. All rights reserved.

[image: image2.png]