[image: image1.png]4% Windows

Driver Hang Verification - 4

Driver Hang Verification
September 23, 2005

Abstract

Driver Hang Verification is a feature of I/O Verification that measures how long it takes the driver to complete and to cancel IRPs originating in user-mode applications. This paper provides a preview of Microsoft® Windows® Driver Kit (WDK) documentation for Driver Hang Verification.

This information applies for the following operating systems:

Microsoft Windows Vista™

Microsoft Windows Server™ 2003

Microsoft Windows XP

Microsoft Windows 2000

Future versions of this preview information will be provided in the Windows Driver Kit.

The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/DevTools/tools/DrvVerifier.mspx
References and resources discussed here are listed at the end of this paper.

Contents

2Introduction

2Standards for I/O Routines in Windows Drivers

2Selecting IRPs for Monitoring and Cancellation

2Activating Driver Hang Verification

2Configuring Driver Hang Verification

2Driver Hang Verification Examples

2Example 1: Change Driver Hang Verification Parameters

2Example 2: Disable Driver Hang Verification

2Example 3: Display the Driver Hang Verification Log

2Example 4: Clear the Issue Log

2Scripting Driver Hang Verification

2Scripting Parameters

2Script 1: Change Driver Hang Verification Parameters

2Script 2: Display the Driver Hang Verification Log

2Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction
Driver Hang Verification is a feature of I/O Verification that measures how long it takes the driver to complete and to cancel I/O request packets (IRPs) originating in user-mode applications. It records an issue in the Driver Verifier log when a routine exceeds time limits that you specify for completion and cancellation routines, and it includes an option to force-cancel IRPs that do not complete within the specified time limit. Driver Hang Verification also records an issue when the driver pends an IRP without setting a cancellation routine.

Driver Hang Verification is available only in the version of Driver Verifier in Microsoft® Windows Vista™ Beta 1 and later versions of Microsoft Windows®. You can use this feature to test drivers developed for Windows 2000 and later versions of Windows. To use Driver Hang Verification, you also need Debugging Tools for Windows, Version 6.5.3.8 or later.
This paper provides a preview of Windows Driver Kit (WDK) documentation for Driver Hang Verification. For availability of Windows Vista Beta 1 and Debugging Tools for Windows, see "Resources" at the end of this paper.
Standards for I/O Routines in Windows Drivers

The Driver Hang Verification feature was developed to help you test and refine the completion and cancellation logic in your driver. Completion and cancellation routines are often difficult to implement and prone to race conditions.

A leading cause of unplanned reboots is unresponsive ("hanging") applications. Drivers cause applications to hang when they use kernel-mode waits and do not support cancellation, or do not implement it correctly. Attempts to terminate the applications that are hanging fail. Driver-related application hangs are the most disruptive type of unresponsive behavior because they nearly always require the user to reboot the computer.

Drivers for Windows Vista must comply with new I/O completion and cancellation guidelines. In addition to preventing hangs, the required features support the new Windows Vista application-initiated I/O cancellation feature. Drivers that do not comply with the guidelines are unlikely to operate correctly with the applications that use this new feature.

Drivers for Windows Vista must implement some form of cancellation logic for requests that are not expected to complete within a specified interval, either by using a cancel spin lock, a driver-supplied lock, cancel-safe IRP queues, or the new Windows Driver Framework.

According to the guidelines, drivers for Windows Vista must meet the following conditions:

· The driver must either finish an IRP within a reasonable time or the driver must pend the IRP and set a cancel routine. Generally, the driver should take no more than 10 seconds (10,000 milliseconds) to complete and IRP and no more than 10 seconds (10,000 milliseconds) to cancel the IRP.

· If the cancel routine is called, it cannot be pended.

The I/O completion and cancellation guidelines are included in the Windows Vista Logo Program System and Device Requirements. For availability of the current draft of these requirements, see "Resources" at the end of this paper.

Selecting IRPs for Monitoring and Cancellation

Driver Hang Verification monitors selected IRPs that are sent to the driver. To be monitored for I/O completion or cancellation, the IRPs must meet the following criteria.

· The IRP is sent (through IoCallDriver) to a driver that Driver Verifier is monitoring.

· Driver Verifier I/O Verification is enabled for the driver that is being monitored.

· The RequestorMode field of the IRP is set to UserMode.

· None of the following masks is set in the Flags field of the IRP:

IRP_PAGING_IO

IRP_MOUNT_COMPLETION

IRP_CLOSE_OPERATION

IRP_ASSOCIATED_IRP

· To monitor I/O completion, the value of the !verifier debugger extension CompletionTime argument must be greater than 0.

· To monitor I/O cancellation, the value of the !verifier debugger extension CancelTime argument must be greater than 0.

· To be eligible for forced cancellation of an IRP, the value of the !verifier debugger extension ForceCancellation argument must be equal to 1.

Activating Driver Hang Verification

Driver Hang Verification is a feature of I/O Verification in Windows Vista and later versions of Windows. When you activate I/O Verification in Windows Vista and later versions of Windows, Driver Hang Verification is automatically activated with the default values for its parameters.

To activate Driver Hang Verification, use the Driver Verifier Manager graphical interface or the Verifier.exe command line interface to activate I/O Verification for one or more drivers. For example,

verifier /flags 0x10 /driver MyDriver.sys

or
verifier /standard /all

Then, reboot the computer to make the changes effective.

On Windows Vista and later versions of Windows, you can activate and deactivate this option without rebooting the computer by using the procedures established for volatile settings. For example, to activate this option at the command line without rebooting, add the /volatile parameter to the command. For example,

verifier /volatile /flags 0x10 /driver MyDriver.sys

This procedure activates I/O Verification and activates Driver Hang Verification with the following default values for the Driver Hang Verification parameters: These parameters are described in "Configuring Driver Hang Verification" later in this paper.

CompletionTime: 10 seconds (10000 ms = 0x2710)

CancellationTime: 5 seconds (5000 ms = 0x1388)

ForceCancellation: OFF

Configuring Driver Hang Verification

When you activate I/O Verification in Windows Vista and later versions of Windows, Driver Hang Verification is automatically activated with the default values for its parameters.

To change the Driver Hang Verification parameter values or to view the Driver Hang Verification log, use the !verifier debugger extension with Flags set to 0x20 (bit 5) and the syntax that is described in this section. You can set these parameter values manually by using KD or WinDbg, or by using a simple script, such as the ones shown in "Scripting Driver Hang Verification" later in this paper.

The Driver Hang Verification parameters in !verifier are supported only in Debugging Tools for Windows, Version 6.5.3.8 or later. The kdexts.dll file implements this functionality. You must obtain the current version of Debugging Tools for Windows and set up the symbol path appropriately, as described in the Debugging Tools for Windows documentation. For availability of Debugging Tools for Windows, see "Resources" at the end of this paper.
Syntax

!verifier 0x20 [CompletionTime CancelTime ForceCancellation]

When you type !verifier 0x20 without parameters, the debugger displays the current Driver Hang Verification log. This log includes the current values of the Driver Hang Verification parameters.

Parameters

CompletionTime
Specifies the time limit for completing an IRP, in milliseconds. The default value is 0x2710 (10 seconds). Enter a hexadecimal value. If the driver exceeds this limit, the completion routine is reported in the Driver Hang Verification log. When CompletionTime is 0, Driver Verifier does not monitor IRP completion.

CancelTime
Specifies the time limit for canceling an IRP, in milliseconds. The default value is 0x1388 (5 seconds). Enter a hexadecimal value. If the driver exceeds this limit, the cancellation routine is reported in the Driver Hang Verification log. When CancelTime is 0, Driver Verifier does not monitor IRP cancellation.

ForceCancellation
Enables or disables forced cancellation. When it is enabled, forced cancellation forcibly cancels IRPs that do not complete within the time specified by CompletionTime.

To enable forced cancellation, set ForceCancellation to 1. To disable forced cancellation, set ForceCancellation to 0. The default is 0.

Caution
Enabling forced cancellation can cause unpredictable behavior, including loss of data, if higher layer drivers or applications cannot handle the unexpected cancellation.

Driver Hang Verification Examples

The following examples show how to use Driver Hang Verification.

Example 1: Change Driver Hang Verification Parameters

To change the values of the Driver Hang Verification parameters, in a kernel debugger window, type a command that uses the command syntax described in "Configuring Driver Hang Verification" earlier in this paper.

!verifier 0x20 [CompletionTime CancelTime ForceCancellation]

For example, the following command lowers the time limit for completion routines to 5 seconds (5,000 milliseconds = 0x1388), lowers the time limit for cancellation routines to 1 second (1,000 milliseconds = 0x3E8), and enables the forced cancellation feature by setting the value of its parameter to 1.

!verifier 0x20 0x1388 0x3E8 1

In response, the !verifier extension displays the new settings.

l: kd> !verifier 0x20 0x1388 0x3E8 1

New settings:

 Maximum time to complete an IRP : 5000 ms (0x1388)

 Maximum time to cancel an IRP : 1000 ms (0x3E8)

 Force cancel IRPs : Enabled

Example 2: Disable Driver Hang Verification

To activate I/O Verification in Windows Vista and later versions of Windows, but disable Driver Hang Verification, type the following command.

!verifier 0x20 0x0 0x0 0

In response, the !verifier extension displays the new settings.

1: kd> !verifier 0x20 0x0 0x0 0

New settings:

 Maximum time to complete an IRP : 0 ms (0)

 Maximum time to cancel an IRP : 0 ms (0)

 Force cancel IRPs : Disabled

Example 3: Display the Driver Hang Verification Log

After Driver Hang Verification has been running for a while, you can display a log of its findings.

The log can hold approximately 128 issues, and because each issue represents a driver error that should be fixed, the log size should be adequate for any test.

To display the Driver Hang Verification log, in a kernel debugger, type the following !verifier command.

!verifier 0x20

In response, the debugger displays the Driver Hang Verification log, shown in the following example.

The log settings show the time limits set for completion routines (10,000 milliseconds) and cancel routines (5,000 milliseconds) and that the forced cancellation feature is disabled.

The log reveals that, under heavy stress:

· The CscFsdDispatch and MupCreate routines exceeded the completion time limit.
· NsippCancelChangeNotificationRoutine exceeded the cancellation time limit.
· In one instance, DfscFileSystemControl did not complete or set a cancel routine for an IRP, even after more than 10 seconds (0x28d9 = 10457 milliseconds).

In this case, the driver developer should examine the routines, look for errors, and ensure that the routines follow the design guidelines for completion and cancellation routines.

1: kd> !verifier 0x20

Driver hang verifier settings:

 Maximum time to complete an IRP : 10000 ms (0x2710)

 Maximum time to cancel an IRP : 5000 ms (0x1388)

 Force cancel IRPs : Disabled

Global counters:

 Total number of IRPs : 0x1ff37ba

 Skipped non-target IRPs : 0x9989c9

 Skipped K-mode IRPs : 0xac432d

 Skipped IRPs due to flags : 0x1925cf

 Skipped already hooked IRPs : 0x29659d

 IRPs tracked : 0x76df58

 IRPs completed by driver : 0x76de98

 IRPs completed by cancel : 0

 IRPs w/o a cancel routine : 0x490d9d

 Cancel successful : 0

 Cancel failed : 0

There are 0x6 issues in the cancel/complete verifier log.

 Issue : (0x2) IRP took too long to complete

 IRP dispatch routine : 0x8753b31a csc!CscFsdDispatch+0

 Maximum time expected (ms) : 0x2710

 Actual time for this IRP (ms) : 0x6755

 Issue : (0x2) IRP took too long to complete

 IRP dispatch routine : 0x85d6618a Mup!MupCreate+0

 Maximum time expected (ms) : 0x2710

 Actual time for this IRP (ms) : 0x6a62

 Issue : (0x1) IRP had no Cancel Routine

 IRP dispatch routine : 0x875303c2 dfsc!DfscFileSystemControl+0

 Number of msecs IRP was found without a Cancel Routine : 0x28d9

Example 4: Clear the Issue Log

You can clear the Driver Hang Verification issue log by using the following debugger command. There is no response from the debugger.

ed nt!ViIssueLogIndex 0

This command is useful when you are about to exercise the driver as part of a test and you want the log to include only the issues encountered during the test. You can type it at the console or include it in a test script.

Scripting Driver Hang Verification

You can create simple command scripts to set the parameters for Driver Hang Verification and to view the logs.

In your script, set the symbol path, run the kernel debugger (kd.exe) with local debugging enabled, and then execute the debugger commands by using !verifier 0x20.

The following sample scripts set Driver Hang Verification parameters and display the verification log. You can copy each sample script to a text file and then run them from the command line. However, because these examples use a symbol server, you might need to change the location of your debugger or symbol paths, as indicated in the comments within the script.

Scripting Parameters

The scripts use the following parameters:

_VRF_COMPLETION_TIMEOUT
Sets the CompletionTime parameter.

_VRF_CANCEL_ROUTINE_TIMEOUT
Sets the CancelTime parameter.

_VRF_FORCE_CANCEL
Sets the ForceCancellation parameter.

_VRF_DEBUGGERS_PATH
Represents that path to the directory in which Debugging Tools for Windows, and specifically kd.exe, is installed.

_NT_SYMBOL_PATH
Represents the path to the PDB symbol files (*.pdb) for the Windows build environment.

The SRV*\\symbols\symbols constant directs the debugger to finds the symbol files automatically. If it fails, the error message says:

Module load completed but symbols could not be loaded for ntoskrnl.exe.

or

Incorrect symbols (failed to get address of `nt!ViCancel* variables.

To correct the path, change the value of _NT_SYMBOL_PATH to the symbol path for your build of Windows, and then run the script again.

Script 1: Change Driver Hang Verification Parameters

The following script shows how to implement the parameters used in "Example 1: Change Driver Hang Verification Parameters."

The script sets the following parameter values for Driver Hang Verification:

· Lowers the value of the CompletionTime parameter to 5 seconds (5000 milliseconds = 0x1388).

· Lowers the value of CancelTime to 1 second (1000 milliseconds = 0x3E8)

· Enables the forced cancellation feature by setting the value of ForceCancellation to 1.

@ECHO OFF

REM

REM This script configures Driver Verifier to:

REM a. Log an issue if an IRP takes more than 5 seconds (0x1388

REM = 5,000 msec) to complete.

REM b. Log an issue if IRP cancellation takes longer than

REM 1 second (0x3E8 = 1,000 msec) after the cancel routine is

REM called.

REM c. Force-cancels IRPs that exceed the 5 second completion
REM time limit (Force cancel parameter = 0).

REM

set _VRF_COMPLETION_TIMEOUT=0x1388

set _VRF_CANCEL_ROUTINE_TIMEOUT=0x3E8

set _VRF_FORCE_CANCEL=1

REM

REM _VRF_DEBUGGERS_PATH is the path to the directory where

REM Debugging Tools for Windows and kd.exe is located.

REM

set _VRF_DEBUGGERS_PATH=C:\Program Files\Debugging Tools for Windows

REM

REM _NT_SYMBOL_PATH is the path to the symbol files (*.pdb)

REM for the OS build you are using. SRV*\\symbols\symbols finds

REM the symbol files automatically for most OS builds. If it

REM fails, the error message says"Module load completed but

REM symbols could not be loaded for ntoskrnl.exe" or "Incorrect

REM symbols (failed to get address of `nt!ViCancel*

REM variables." To correct the path, change the value below to

REM the symbol path for your OS build, and then run this script

REM again.

REM

set _NT_SYMBOL_PATH=SRV*c:\symcache*http://msdl.microsoft.com/download/symbols

REM

REM Run KD and change the Driver Hang Verification parameters.

REM

%_VRF_DEBUGGERS_PATH%\kd.exe -kl -c ".reload;!verifier 0x20 %_VRF_COMPLETION_TIMEOUT% %_VRF_CANCEL_ROUTINE_TIMEOUT% %_VRF_FORCE_CANCEL%;q"

Script 2: Display the Driver Hang Verification Log

The following script shows how to implement the parameters used in "Example 3: Display the Driver Hang Verification Log." It displays the contents of the verification log in the Command Prompt window.

@ECHO OFF

REM

REM _VRF_DEBUGGERS_PATH is the path to the directory where

REM Debugging Tools for Windows and kd.exe is located.

REM

set _VRF_DEBUGGERS_PATH=C:\Program Files\Debugging Tools for Windows

REM

REM _NT_SYMBOL_PATH is the path to the symbol files (*.pdb)

REM for the OS build you are using. SRV*\\symbols\symbols finds

REM the symbol files automatically for most OS builds. If it

REM fails, the error message says"Module load completed but

REM symbols could not be loaded for ntoskrnl.exe" or "Incorrect

REM symbols (failed to get address of `nt!ViCancel*

REM variables." To correct the path, change the value below to

REM the symbol path for your OS build, and then run this script

REM again.

REM

set _NT_SYMBOL_PATH=SRV*c:\symcache*http://msdl.microsoft.com/download/symbols

REM

REM Run kd and display the Driver Hang Verification log.

REM

%_VRF_DEBUGGERS_PATH%\kd.exe -kl -c ".reload;!verifier 20;q"

Resources
Cancel Logic in Windows Drivers
http://www.microsoft.com/whdc/driver/kernel/cancel_logic.mspx
Debugging Tools for Windows
http://www.microsoft.com/whdc/DevTools/Debugging/default.mspx
I/O Completion/Cancellation Guidelines
http://www.microsoft.com/whdc/driver/kernel/Iocancel.mspx
Windows Driver Foundation
http://www.microsoft.com/whdc/driver/wdf/default.mspx

Windows Driver Kit (WDK)
http://www.microsoft.com/whdc/driver/WDK/aboutWDK.mspx
WDK Beta releases are available through the Windows Vista Beta program.

Canceling IRPs
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/kmarch/hh/kmarch/IRPs_0389dd54-106e-487d-bab3-0cb681377bc7.xml.asp

Completing IRPs
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/kmarch/hh/kmarch/IRPs_5d4f9020-8fa8-4057-8a4d-ab00a50eb6b2.xml.asp
Using Volatile Settings
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ddtools/hh/ddtools/DV_d807af93-0132-4215-89d5-9cf31b6a2968.xml.asp
Windows Vista Logo Program: Proposed Requirements for Hardware (System and Devices)
http://www.microsoft.com/whdc/winlogo/hwrequirements.mspx

September 23, 2005
© 2005 Microsoft Corporation. All rights reserved.

[image: image1.png]