
[image: image1.jpg]Microsoft: .

Windows Server 2003

[image: image8.wmf]

Enterprise UDDI Services: An Introduction to Evaluating, Planning, Deploying, and Operating UDDI Services
Microsoft Corporation

Published: February 2003

Abstract

UDDI Services in Microsoft® Windows® Server 2003 helps provide essential infrastructure for Web services within an organization. With careful planning, any organization can successfully deploy UDDI Services and in the process provide a foundational layer to support the effective use of Web services.

This paper describes the evaluation, planning, deployment, and operations phases of the UDDI Services life cycle, considers the critical issues involved in each phase, and provides guidance on how to achieve the maximum benefits from a UDDI Services deployment.

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2003 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, MapPoint, SQL Server, Visual Studio, Windows, Windows NT, and the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

1Introduction

2Evaluation Phase

2UDDI Resources

3Feature Overview: UDDI Services in Windows Server 2003

5Planning Phase

5Core UDDI Concepts

5Modeling Data in UDDI Services

6Relationships between UDDI Core Entities

7Providers

7Services

8Bindings

8tModel

9Naming tModel Entities

9Using Categorization in UDDI Services

10Creating and Using Categorization Schemes

10Categorizing Bindings: categoryBags and tModelInstanceInfo

11Inheriting Service Categorizations: categoryBags

11Using tModel Entities to Categorize Bindings: InstanceInfo

12Recommended Practice

12Process and Procedural Considerations

13Standardizing Publications in UDDI Services

13Documenting Organizational UDDI Services Policy

14Managing Multiple UDDI Services Sites

14Promoting Entities in UDDI Services

14Preservation of Ownership

14Advertising and Evangelizing UDDI Services

16Deployment Phase

16Installing UDDI Services

16Stand-Alone Installation

17Distributed Installation

18Recommended Practice

18Configuring UDDI Services

19Assigning Security Roles

20Recommended Practice

20Choosing UDDI Authentication Compared to Windows Authentication

20UDDI Authentication

20Using the UDDI Services SOAP API

22Using the UDDI Services ASP.NET User Interface

22Windows Authentication

22Using the UDDI Services SOAP API

23Using the UDDI Services ASP.NET User Interface

23Considerations and Recommended Practice

23Running Over Secure Sockets Layer

23Active Directory Service Publication

24Operations Phase

24Backup and Restoration of UDDI Services Data

24Logging and Performance Counters

25Interpreting Statistics

26Conclusions

27Related Links

Introduction

Enterprise UDDI Services in Microsoft® Windows® Server 2003 is a dynamic and flexible infrastructure that enables Web services discovery. This standards-based solution enables companies to run their own private UDDI service for use on the corporate intranet or extranet.

UDDI Services helps companies organize and catalog programmable resources. By applying geographic location, quality of service (QoS), or other organization categorization schemes in UDDI Services, companies can establish a structured and standardized way to describe and discover Web services.

UDDI Services, an essential element of Web services infrastructure of Windows Server 2003, delivers strategic benefits to enterprises deploying Web services. For example, UDDI Services:

· Provides easy discovery, sharing, and reuse of Web services and other programmable resources.

· Contributes to improved productivity for developers and IT support personnel.

· Helps lower the total cost of ownership (TCO) of IT resources.

· Contributes to more reliable and manageable applications.

UDDI Services provides benefits throughout any organization. For example:

· Developers can use UDDI Services to quickly find and reuse Web services.

· IT administrators can catalog and manage the programmable resources in their network.

· Companies can build and deploy smarter, more reliable applications.

Built on the Microsoft Windows .NET Framework, UDDI Services in Windows Server 2003 is a reliable and scalable solution that provides easy integration with existing enterprise technologies and tools. IT managers can take advantage of native support for standard and custom categorization schemes, Microsoft SQL Server™, and Windows authentication using the Active Directory® service. UDDI Services, which is fully compliant with Versions 1 and 2 of the UDDI application program interface (API) specifications, includes an intuitive Web interface and is fully localized to each of the 17 languages supported by the Windows Server 2003 family.

UDDI Services is most effective when the behaviors, processes, policies, and architecture are determined before deployment. Determining this information involves a process with distinct evaluation, planning, deployment, and operations phases.

This paper considers the critical issues involved in each phase of adopting UDDI Services and offers guidance on how to achieve the maximum benefits from a UDDI Services deployment.

Evaluation Phase

Before embarking on a wide-scale UDDI Services deployment, it is advisable to engage in an evaluation phase. This process helps to determine whether UDDI Services will provide the technology that best addresses the requirements identified by a company-specific set of use cases. This evaluation phase involves three stages:

· Obtaining a general understanding of UDDI capabilities.

· Identifying the features and functionality made available by UDDI Services in Windows Server 2003.

· Developing a detailed understanding of the use cases and scenarios that drive the adoption of UDDI Services within each specific organization.

Although the final stage of the evaluation process requires company-specific information, the first two stages can be completed by obtaining publicly available resources.

UDDI Resources

Successful adoption of UDDI Services requires a familiarity with what UDDI is, how it works, and the problems it can—and cannot—solve. Links to key documents and sites that discuss these topics are provided below.

· What’s New in Enterprise UDDI Services at http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddi.mspx.

This Web page provides an overview of the scenarios and benefits of UDDI Services in Windows Server 2003.

· Enterprise UDDI Services: A Synopsis at http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddisynop.mspx.

This white paper introduces UDDI Services in Microsoft Windows Server 2003 and provides IT managers with an overview of how UDDI Services works within the corporate firewall. The paper also:

· Describes how UDDI Services maximizes the visibility and reuse of Web services and other existing applications.

· Provides a brief overview of UDDI Services support in other Microsoft technologies such as Microsoft Visual Studio® .NET, Microsoft Office, and the Active Directory service.
· Enterprise UDDI Services: Three Usage Scenarios at http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddiscen.mspx.

This white paper describes three implementation scenarios for UDDI Services in Windows Server 2003 in an enterprise environment. The paper also documents:

· Improved software developer and IT support efficiency during design time that results from UDDI Services deployment across the enterprise.

· Increased application flexibility and reliability that results from updating applications with UDDI Services at run time.

· How enterprises can extend the UDDI categorization capabilities to external business partners, vendors, and customers.

· UDDI on MSDN at http://msdn.microsoft.com/uddi.

This Microsoft Developer Network (MSDN) portal page contains several articles that provide developers with UDDI resources.

· Frequently Asked Questions About UDDI at http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddifaq.mspx.
This Web page answers frequently asked questions about UDDI Services in Windows Server 2003.

· OASIS UDDI Specifications at http://www.uddi.org.

This Web site, which contains the industry-standard UDDI specifications managed by the OASIS standards group, provides an in-depth look at the capabilities of UDDI.

Become familiar with these resources and consider them vital, requisite knowledge to successful application of UDDI services.

In order to maximize your understanding and application of this white paper, you should familiarize yourself with the industry standard information on UDDI presented above and more specifically with UDDI Services in Windows Server 2003 before reading the remainder of this document.

The following overview of UDDI Services in Windows Server 2003 will help as you read and apply the information presented in this paper.

Feature Overview: UDDI Services in Windows Server 2003
UDDI Services in Windows Server 2003 offers the following features and capabilities:

· Manageability. UDDI Services features a familiar Microsoft Management Console (MMC) snap-in that can be used for all configuration and administration tasks.

· Scalability. UDDI Services supports both scale up and scale out. Stand-alone and distributed, multi-box installations are supported.

· Comprehensive User Interface. The UDDI Services ASP.NET user interface (UI) is a user-friendly, comprehensive rendering of the UDDI specification API. Users can issue complex queries through this interface, and all fields available through the API can be accessed for publication. An intuitive interface enables parameterized queries that are issued by hierarchical categorization schemes.

· First-Class Tool Integration. UDDI Services has native integration with the Office Web Services Toolkit and Visual Studio .NET.

· Windows Server 2003 Resource Kit. UDDI Services features a resource kit that includes tools that assist in categorization scheme management, data export, and command line configuration.

· UDDI Software Development Kit. The UDDI SDK is a collection of client development components, sample code, and reference documentation that enables developers to interact programmatically with UDDI-compliant servers.

· Conformance to Standard. UDDI Services is compliant with Versions 1 and 2 of the UDDI API specifications.

· Custom Categorization Support. UDDI Services helps companies organize and catalog Web services and other programmatic resources. By applying categorization schemes such as geographic location, quality of service (QoS), or organization in UDDI Services, companies can establish a structured and standardized way to describe and discover services.
For additional information on UDDI Services in Windows Server 2003, go to http://www.microsoft.com/windowsserver2003/evaluation/overview/uddi.mspx.
Planning Phase

After the decision to proceed with a UDDI Services installation has been made, the next stage of the UDDI Services life cycle is a planning phase.

Key tasks in the planning phase include:

· Considering core UDDI concepts.

· Modeling core UDDI entities.

· Using categorization in single and multiple instances of UDDI Services.

· Standardizing publications and documenting UDDI-related policies.

· Evangelizing UDDI Services within organizations.

Core UDDI Concepts

The first step in the planning phase is to develop a general understanding of how UDDI Services will fit into a company-specific Web services strategy. For example, answers to the following questions are essential to a successful planning process:

· How will data and metadata be modeled in the registry?

· Who will be allowed to read from and publish to the registry?

· How will publications to the registry be audited?

· How will data consistency be enforced?

· How will developers learn to use the UDDI Services registry?

· Will applications be used with UDDI Services at run time to dynamically configure Web services clients? If so, how will the coding of Web services clients change?

· Will the organization use multiple UDDI Services installations for different purposes? If so, how will those different installations relate to each other? For example, a common scenario is to have both test and production registries. If this scenario applies, will entries be promoted from one registry to another?

· How will a UDDI Services installation be incorporated into IT department processes and procedures?

There are no right or wrong answers to these questions. However, having clearly defined responses is an important part of understanding how UDDI Services fits into the larger framework of a service-oriented architecture (SAO)--inclusive of Web services and UDDI Services--for your organization.

Modeling Data in UDDI Services

Defining how providers and services are represented in a Web services environment is an essential part of establishing UDDI services. It is also a significant undertaking. Although the UDDI API specification provides a framework within which to perform this modeling task, each UDDI Services deployment requires organization-specific definitions of four core entities. It is recommended that you make modeling decisions as part of the planning phase. The four core entities that you need to model when developing UDDI services are:

· Provider

· Service

· Binding

· tModel

This section describes and recommends how to model each of these entities in UDDI Services. Each core entity has an XML equivalent that is described in the schema contained in the UDDI API specification. In Microsoft UDDI Services, the names of the different entities correlate to those in the specification as presented in Table 1. Semantically, the terms are equivalent and can be used interchangeably.
	UDDI.org Specification
	Microsoft UDDI Services

	· businessEntity
	· Provider

	· businessService
	· Service

	· bindingTemplate
	· Binding

	· tModel
	· tModel

Table 1 Comparison of UDDI.org and UDDI Services Terminology
Relationships between UDDI Core Entities

A closer look at each core UDDI entity is required. There is a clear containment model between the entities:

· Providers contain 0…n services.

· Services contain 0…n bindings.
· tModels can be referenced by bindings, which enables declarations across bindings.
Figure 1 illustrates the relationships of the core entities.
[image: image5.wmf]Provider: Information about the

Provider: Information about the

entity who offers a service

entity who offers a service

0…n

Service: Descriptive information

Service: Descriptive information

about a particular family of

about a particular family of

technical offerings

technical offerings

0…n

Service: Descriptive information

Service: Descriptive information

about a particular family of

about a particular family of

technical offerings

technical offerings

Service: Descriptive information

Service: Descriptive information

about a particular family of

about a particular family of

technical offerings

technical offerings

0…n

Binding: Technical information

Binding: Technical information

about a service entry point

about a service entry point

0…n

Binding: Technical information

Binding: Technical information

about a service entry point

about a service entry point

Binding: Technical information

Binding: Technical information

about a service entry point

about a service entry point

tModel: Descriptions of

tModel: Descriptions of

specifications for services.

specifications for services.

Bindings contains

Bindings contains

references to tModels.

references to tModels.

These references declare

These references declare

the interface specifications

the interface specifications

for a service.

for a service.

0…n

tModel: Descriptions of

tModel: Descriptions of

specifications for services.

specifications for services.

tModel: Descriptions of

tModel: Descriptions of

specifications for services.

specifications for services.

Bindings contains

Bindings contains

references to tModels.

references to tModels.

These references declare

These references declare

the interface specifications

the interface specifications

for a service.

for a service.

0…n

Figure 1 UDDI Core Entity Relationships

Providers

Ensuring that all publishers of UDDI Services or Web services understand how to model providers is an important undertaking, which should be carefully planned before the deployment of UDDI Services.

In UDDI Services, a provider is a top-level entity. A provider can be any business, physical organization, or conceptual group (for example, virtual) that offers services. For example, a business, business unit, organization, organizational department, person, computer, or application can be a UDDI Services provider. In the UDDI Services data structure, a provider represents the parent entity, under which all contact, service, and binding information is stored and organized.

When defining UDDI Services providers, consider the following points:

· Providers are the only type of entity that can be associated with contacts. Each provider should be linked to at least one person, who is responsible for that provider.

· Providers can create relationships with other providers. Each provider should logically be able to establish a relationship with another provider. For example, a team might have a child/parent relationship with a department.

· Providers logically contain services. If a provider definition does not contain services, it probably hasn’t been defined appropriately.

· Providers should be chosen with a naming protocol well understood throughout an organization. Because a common search pattern is based on a provider’s name, those names should be intuitive.

· Provider names can be established in multiple languages.

Whether providers are based on actual departments, other organizational units, application servers, or some other construct, the most important aspect of choosing a provider construct (that is, the strategy for naming a provider) is consistency. When a provider naming scheme is chosen, it must be followed throughout an organization. Deviations from the scheme cause confusion and should be avoided.
Services

When a provider has been defined, the next step is to define the services associated with that provider.

A service is defined as a UDDI Services entity that describes and provides access to a function shared with other UDDI Services users. Services can perform any function across a network, ranging from simple requests to complex business processes. A stock ticker feed and an online procurement system are examples of functions that can be published as a service. A service typically has one or more bindings, although it is also possible that a service has zero bindings.
When defining services, consider the following points:

· The service entity is logical. Consider a service as a logical collection of bindings.
· Services logically contain bindings. If a service cannot contain bindings, it probably hasn’t been defined appropriately.

· Technical information need not be provided at the services level. However, a service may be supplemented with technical metadata that describes it.

· Services should be chosen with a naming protocol well understood throughout an organization. As with providers, the name of a service is a common search parameter. As a result, services should have intuitive names.

· Service names can be established in multiple languages.

· Services do not contain contacts. All contact information for a service is derived logically from its parent provider. If a service has a different contact from its parent provider, consider creating a new provider for that service.

Bindings

Unlike services, bindings are not logical. Rather, they are physical, in that they contain both the access point of a Web service or other service as well as information about the interfaces that are implemented at the access point.

When defining bindings, consider the following points:

· The access point is the most important information in the binding. In the case of a Web service binding, the access point contains the URL from which the Web service can be invoked by clients. In the case of a different service, the access point might be a phone number or an e-mail address.

· Bindings lack names and categorization. As a result, they cannot be discovered with a name-based or category-based query.

· Bindings cannot be queried across services. To query for a specific binding, one must first know which service is the binding’s parent.

· Bindings can have tModelInstanceInfo structures. These structures can provide additional data about the binding, such as instance parameters, tModel references, and overviewURLs. Consider carefully how the instance parameters and overviewURLs within the tModelInstanceInfo structure will be used.
tModel
The tModel entity offers an extremely flexible approach to providing technical information about the conventions that are supported by UDDI entities.

Most often, tModel entities represent files such as Web Service Description Language (WSDL) documents, which define interfaces that can be reused by one or more services.

tModel entities can also represent an organized unit of descriptive data, such as an identification or categorization scheme. How tModels are used in an implementation may vary. Note that tModel entities point to WSDL files, XML Schema Data types (XSD), XML files, and other documents located on the network, but tModel entities do not contain the documents.

Modeling WSDL Files as tModels

When tModel entities represent WSDL files, be sure to follow the best practices described in version 1.07 of the white paper, “Using WSDL in a UDDI Registry,” which is located on the OASIS UDDI Web site at http://uddi.org/pubs/wsdlbestpractices-V1.07-Open-20020521.pdf. The following recommendations summarize the guidelines described in the paper:

· Using the uddi-org:types taxonomy, categorize the tModel entity as wsdlSpec. This categorization, which is used by many different tools, ensures that the WSDL files are discoverable. If this categorization is not added to the tModel entity, tools such as Visual Studio.NET cannot discover Web services in UDDI Services.

· Make sure that the overviewURL of the tModel entity points to the location of the WSDL file on the network.

· Do not auto-generate the WSDL file in the overviewURL of the tModel entity. Tools such as those in the Microsoft Windows .NET Framework will auto-generate WSDL files from the .asmx file (http://localhost/service.asmx?wsdl). However, referencing auto-generated WSDL files is bad practice because they can change from implementation to implementation and as a result, are not stable documents. WSDL files should exist as resources separate from the endpoint. One can certainly save files by appending ?wsdl to an ASP.NET Web service. However, the file should be saved out (http://example/service.wdsl).
For more information about modeling .NET WSDL files in UDDI Services, refer to “Using UDDI at Run Time, Part II,” which is available via search on MSDN at http://msdn.microsoft.com.

Modeling Other Constructs as tModel Entities

Because tModel entities can represent any concept or construct, they can represent many other concepts within UDDI Services, with the result that metadata concepts can be reused throughout the model. For example, tModel entities are used for the following purposes within UDDI:
· Transport and protocol definitions such as HTTP and SMTP
· Security models such as Windows Authentication

· Value sets including identifier systems, categorization systems, and namespaces
Naming tModel Entities

There are a variety of choices when naming tModel entities.

The UDDI API specification recommends that tModel names should be written in the Universal Resource Identifier (URI) format. Although each tModel entity is ultimately referenced by its key, naming it after URIs standardizes the naming convention and emphasizes the unique role of tModel entities.

However, there are cases where it makes sense to break this rule. For example, tModel entities that represent categorization schemes appear in the UDDI Services user interface. Naming them as URIs may not be an ideal user experience.

Using Categorization in UDDI Services

The purpose of UDDI is to describe and discover services. The ability to perform searches and queries based on categorization is a critical aspect of UDDI functionality. The ability to supplement UDDI Services entries with strongly typed metadata from known categorization schemes is a key benefit of using UDDI Services. As the number of entries registered in UDDI Services expands, this ability assumes an increasingly important role as it helps ensure that data contained within UDDI Services is not at risk for being lost in an overabundance of information.

As a result, understanding the categorization strategy within an organization is an essential part of the UDDI Services planning process.

Creating and Using Categorization Schemes

Determining how to take advantage of categorization is the principle consideration in a successful UDDI Services deployment.

Establishing categorization schemes before deploying UDDI Services and requiring their use in all service publications ensure that all entities registered in UDDI Services are discoverable.

In the UDDI information model, providers, services, and tModels can be categorized. For example, a service might be supplemented with categories declaring that the service is:

· Located in the United States.

· Available for use on a 24x7 basis.

· A financial service.

The property that states that the service is in the United States comes from a geographic categorization system. The property that describes service level agreement (SLA) information comes from a quality of service (QoS) categorization system, which uses an entirely different set of values. Supplementing UDDI Services entities with these values provides critical metadata and context that can be used to discover and consume the services.

What makes the categorization support in UDDI Services particularly powerful is that there are no limits to the number of categorization schemes that can be created or to the number of values within each scheme. The context of a specific scheme is determined completely by the person who creates it. There is no requirement to pick from a set of predefined systems. Rather, developers have complete autonomy in defining the meaning of multiple metadata schemes.

Several UDDI Services resources facilitate the creation of categorization schemes. The UDDI Services Resource Kit contains a categorization scheme editor, which developers or business analysts can use to create simple or complex hierarchical taxonomies for use in UDDI Services. This editor generates an XML file, which a UDDI Services administrator can import into the system and make available for browsing in the user interface.

For more information about using categorization in UDDI Services, refer to “The Importance of Metadata: Reification, Categorization, and UDDI,” which is available via search on MSDN at http://www.msdn.microsoft.com.
Categorizing Bindings: categoryBags and tModelInstanceInfo

Because Versions 1 and 2 of the UDDI API specification do not allow adding categories to bindings, categorizing bindings in UDDI Services must be addressed with different modeling techniques.

Two modeling methods are available:

· Inherit the categories of the service that contains the binding.

· Use tModel entities to distinguish between different bindings.

Each method has advantages and disadvantages, which are discussed below.

Inheriting Service Categorizations: categoryBags

As mentioned previously, a service entity contains a collection of bindings, and the service can be categorized. One modeling technique is based on the fact that any categorization that is applied at the service level will also hold true for the children of that businessService entity. So, for example, if the businessService entity is financial Web services, it might be categorized as financial and deployed to production. As a result, any bindings under that service would inherit those categories.

Using categorization at the service level enables developers to take advantage of the categorization schemes made available in UDDI Services. The disadvantage of this modeling approach is that in order to understand how to search the registry, the implied behavior of inheritance must be known by both a publisher and an inquirer. In Figure 2, note how categorizations are applied at the service level from known categorization schemes, and note the single tModel entity that represents the WSDL file.
[image: image6.wmf]ASP.NET

ASP.NET

SQL

SQL

Server

Server

Stored

Stored

procs

procs

Windows .NET Server

Windows .NET Server

UDDI Services

UDDI Services

Web UI

Web UI

SOAP

SOAP

API

API

.NET

.NET

business

business

logic

logic

Figure 2 Using Categorization at the Service Level

Using tModel Entities to Categorize Bindings: InstanceInfo

The other modeling technique available to developers is to categorize bindings that use tModel entities.

In this approach, the binding itself is supplemented with tModel entities that represent the various facets of categorization. Using the previous example, the binding that contained the accessPoint of the production financial Web service would be associated with three tModel entities: one that signifies that the service was in production, a second that signifies that the service was a financial service, and a third tModel entity that represents the interface that the service implements.

The advantages of this approach are that all metadata is directly associated with the binding, and there is no implied behavior of categorized services that are inherited by the binding. The disadvantage of this approach is that developers cannot take advantage of hierarchical categorization schemes. Instead, each value in the categorization scheme becomes a separate tModel entity. Also, the results of this modeling approach are more difficult to browse and manage, especially in the case of large categorization schemes.

In Figure 3, note the use of three different tModel entities to tag the binding.

[image: image2.png]2@ wisa
B mostes
B8 oo
@ Sl St Cepasn
1 Sih e g s

2, et roacon

o | umse rir | Sun

- hitpi/ sompie/ accussy

A i reeesens o acass s and s o e oress o o sarvice i e
e kot 4 B e oS F o1 AR, o 35 38
i Spachesion, b 54 o o ot

[el
s it sl corenns el i, sach o otnce

s o s raoapse Ssenphen, o o1 o R, o8t or
s s o 0 54 hins

e e
rekineies) ()
e G (i)
i e S

3reonsts v T

Figure 3 Using tModel Entities to Tag Bindings
Recommended Practice

When a categorization scheme includes a large set of values and those values have hierarchical relationships, the inheritance method is recommended.

When there are few values in the scheme, the tModel entity method is recommended.

For example, the UDDI Services self-registration signature uses the following three tModel entities to distinguish between security requirements on UDDI Services itself: microsoft-com:authentication-anonymous, microsoft-com:authentication-uddi, and microsoft-com:authentication-windows.
In this case, using three tModel entities was preferable to using categorization. The Microsoft MapPoint® geographic categorization scheme, however, contains more than 20,000 values that share a hierarchical relationship. In this case, a single categorization scheme that encompasses all of these values was clearly preferable to the creation of thousands of tModel entities. Note that it is, however, possible to mix these two methods as required by circumstances. The only requirement is to define and broadcast the method being used, so that services are published and queried consistently.

Process and Procedural Considerations

Standardizing and evangelizing UDDI-related processes and procedures are crucial activities that can contribute to successful UDDI Services planning efforts. This section describes issues and recommends practices to help ensure the quality of data entered in UDDI registries as well as promote organization-wide awareness of UDDI Services.

Standardizing Publications in UDDI Services

The quality of data within a UDDI Services site depends on the processes and procedures that support UDDI Services publication. Without consistent data modeling, naming conventions, and required fields, substandard data can enter the registry.

Important: Substandard data could be information that is improperly categorized or inappropriately named. It could also be due to inconsistencies that arise when one group uses department names for providers and another uses applications. There are a wide variety of ways the data could be defined as substandard depending on how a company defines standard.

As the UDDI API specification indicates, there are few requirements for publishing an entity in UDDI. Compliance with the specification’s schema requires only that the name field of providers, services, and tModel entities be completed. Bindings require only an access point, and tModelInstanceInfo entities require only a tModelKey value.

Consequently, compliance with the UDDI API specification schema does not guarantee that users will register entries with enough details to make it useful. A different approach must be taken to ensure that entries are standardized and consistent. Developers can use several approaches to gain this result.

Documenting Organizational UDDI Services Policy

The first step to standardizing publication into UDDI Services is to establish organization-wide policy and publication guidelines that state the requirements that apply to all UDDI Services entries. Consistent organization and data modeling will help to ensure that all participants can locate and interact with services quickly and efficiently.

Publishing guidelines should include:

· A description and example of the type of organization or group that a provider represents.

· The convention used to name providers, services, and tModel entities.

· A description of the modeling approach and an example of a service publication data structure.

· The names and descriptions of tModel entities that represent available, standard interface definitions.

· The names and descriptions of any categorization or identification schemes that should be used.

For example, the publication guidelines for an organization might contain the following guidelines:

· All provider names must be based on organizational units within the company.

· All providers must be identified with the cost center code of the business unit that uses the cost center identification tModel entity.

· All providers must contain a contact that includes a phone number and an e-mail address.

· All providers, services, and tModel entities must contain a description written in English and Chinese.

· All services must be categorized by geographic region with the Microsoft MapPoint geographic categorization scheme.

· All tModel entities that represent WSDL files must be categorized with the wsdlSpec value of the uddi-org:types taxonomy.

Whatever the rules, documenting and distributing them is the first step to consistency.

Managing Multiple UDDI Services Sites

One way to promote data consistency within UDDI Services and still allow flexibility and autonomy to developers is to host multiple UDDI registries that have different purposes.

For example, consider the deployment of both sandbox and production registries in an organization. The sandbox registry would give publication rights to a wide range of users, and the production registry would limit use to a few select system administrators.

Developers could register their services in the sandbox registry whenever they wish. After the service is considered ready for production, the developer could notify the UDDI Services system administrator to migrate that service to the production instance of UDDI Services. The system administrator would then be able to audit that entry, both to confirm that the service was ready for production and to validate that the UDDI Services entry complies with the policies of the organization.

Promoting Entities in UDDI Services

Currently, there are no Microsoft tools available to automate the promotion of entities from one instance of UDDI Services to another. However, tools that manually export and import UDDI Services information are available. The UDDI Data Export Wizard is available in the Windows Server 2003 Resource Kit. The wizard enables providers or tModel entities to be exported to an XML file. Complete documentation about this tool and how to use it is provided in the resource kit.

To promote entities from one instance of UDDI Services to another, an entity or set of entities must be serialized to an XML file by using the resource kit or another tool. The exported files are then imported into another UDDI Services site by the use of the bootstrap.exe tool (available in \inetpub\uddi\bin) or with the Data Import feature of the UDDI user interface. More information about importing entities can be found in the UDDI Services Help documentation.
Preservation of Ownership

During the promotion of entries from one UDDI Services instance to another, the preservation of ownership is an important issue. When the Data Import feature of the UDDI Services user interface is employed, ownership of all entities in a bootstrap file is assigned to the user importing the entries. The bootstrap.exe tool, on the other hand, issues a command-line switch that specifies which user should be the owner of the entities. These switches enable the transfer of ownership of a UDDI Services entity to another user.

Whenever scenarios include both a staging server and production server and preservation of keys is important to dependent client code, the ability to copy entries from one registry to another is essential.

Advertising and Evangelizing UDDI Services

Planning and deployment efforts could be considered useless unless the entire organization is aware of the UDDI Services site and its content.

It is important to educate development teams, IT administrators, and other groups about the benefits to be gained from UDDI Services and the organizational policies that relate to using it.

Organizations can conduct UDDI Services education in a number of different ways, including intranet mailing lists, brown bag discussions, and departmental meetings.

Because UDDI Services is ultimately a technology about process and procedure, a thorough educational effort that addresses the various issues discussed in this paper is absolutely essential to a successful UDDI Services deployment.
Deployment Phase

When planning activities are complete, the next phase in a UDDI Services life cycle is deployment. Key tasks within this phase include:

· Installing UDDI Services

· Configuring UDDI Services

Installing UDDI Services

The first step in deploying UDDI Services is to understand UDDI Services structure and function. UDDI Services consists of three components:

· Web server component. The Web server component consists of the core engine that comprises the business logic of UDDI Services and processes all messages. It also houses the ASP.NET front end, which is used to browse UDDI Services. The Web component uses Microsoft Internet Information Services 6.0 (IIS 6.0) to serve its content.

· Database component. The database component stores all UDDI Services information. Either Microsoft SQL Server 2000 or Microsoft SQL Server 2000 Desktop Engine (MSDE) can be used as the database component in a UDDI Services installation.

· Management component. The management component consists of a Microsoft Management Console (MMC) snap-in, which can be used to manage multiple UDDI Services sites from one administrative console.

These components can be installed on a single computer (stand-alone installation) or can be distributed across multiple machines (distributed installation).
Stand-Alone Installation

In a stand-alone installation of UDDI Services, both the Web server and database components are installed on a single computer that runs a supported member of the Windows Server 2003 family.

The database components are installed on SQL Server 2000 or a local MSDE database instance, and the Web server components are connected to that instance. If SQL Server 2000 hosts the database components, SQL Server 2000 should be installed before beginning the UDDI Services installation.

A stand-alone installation is the only type of installation available with the Windows Server 2003, Standard Edition.

Figure 4 presents the relationship between UDDI Services, Windows Server 2003, and SQL Server 2000 for a stand-alone installation.

[image: image7.png]General (RS | Secuty | actve iectry | Advnced

Select the group to associated with each level of
permission.

- Administrators' Group Name

BUILTIN Administrators: Select.

[~ Coordinatars' Group Name

BUILTIN Administrators: Select.

[-Publishers' Group Name

BUILTINUsers: Select.

[-Users' Group Name

BUILTINUsers: select,

Tl o | o0 |

Figure 4 UDDI Services Site for a Stand-alone Installation

Distributed Installation

A distributed installation of UDDI Services is available only with the Datacenter or Enterprise Editions of Windows Server 2003.

Note: MSDE cannot be used in a distributed installation.

This installation method provides the most fault-tolerant and responsive configuration available because it places each UDDI Services component onto a separate server, a server cluster, or a Web farm. How UDDI Services components are distributed depends on how you choose to load balance your installation.

UDDI Services database components are installed onto a computer that runs both a supported member of the Windows Server 2003 family and SQL Server 2000. The UDDI Services Web server components are installed onto another computer, which runs a supported member of the Windows Server 2003 family and is configured to use the instance to which the UDDI Services database components are installed.

Figure 5 presents the relationship between UDDI Services, a Windows Server 2003 cluster, and SQL Server 2000 running on Windows Server 2003 in a distributed installation.

[image: image3]
Figure 5 Running UDDI Services in a Distributed Installation

Recommended Practice

Deciding whether an MSDE-based stand-alone installation or a SQL Server 2000-based distributed installation is more appropriate requires consideration of expected patterns of use and the desired scale, performance, and cost of the resulting services.

As part of Windows Server 2003, MSDE provides a lightweight solution. SQL Server 2000 is an enterprise-scalable database designed to support high-availability, mission-critical operations. Note that licenses for SQL Server 2000 must be purchased in addition to those for Windows Server 2003.

A development team that uses UDDI Services to prototype applications might regard a stand-alone installation as a better choice. An organization wanting to deploy a UDDI Services architecture to dynamically configure many clients each day would regard a Web farm and database server cluster as a more appropriate method.

Because UDDI Services consists of components, UDDI Services sites can be scaled up as needed by adding Web components as use of the registry grows.

Configuring UDDI Services

After installation of UDDI Services, configuration is required. Key configuration tasks include:

· Assigning security roles

· Choosing appropriate types of authentication

· Deciding whether to run UDDI Services with Secured Sockets Layers (SSL)

· Registering UDDI Services into Active Directory

Adjusting the security configurations appropriate to your organization is the first step.

Assigning Security Roles

UDDI Services contains four roles that define the level of interaction that each user is allowed. Existing Windows NT® or Active Directory groups can be mapped to each of these roles. Understanding the exact privileges given to each role will help developers determine the most appropriate role to assign specific individuals and groups.

Figure 6 shows the administrative user interface for configuring roles, security, and Active Directory.

Figure 6 Microsoft Management Console (MMC) User Interface Used to Assign Security Roles

Security levels need to be assigned for each of the four roles:

· User. The User role is assigned to individuals who are only allowed to query UDDI Services for Web service information. Any partner or organization with whom an organization wants to share Web services data must be part of the User group, at a minimum. By default, the User role is assigned to the local machine group BUILTIN\Users.

· Publisher. The Publisher role is assigned to individuals who are allowed to query to and publish in UDDI Services. Members of the Publisher group can add entities to UDDI Services or modify any of the entities owned by the Publisher. By default, the Publisher group is assigned to the local machine group BUILTIN\Users.

· Coordinator. The Coordinator role is assigned to individuals who are allowed to query, publish, and configure data in the UDDI Services Web-based user interface. In addition to Publisher privileges, a member of the Coordinator group can view and modify any data stored in UDDI Services, change entity ownerships, import categorization schemes, and generate and view statistical reports. By default, the Coordinator group is assigned to the local machine group BUILTIN\Administrators.

· Administrator. The Administrator role is assigned to individuals who are allowed to query, publish, coordinate, and administer UDDI Services. In addition to Coordinator privileges, a member of the Administrator group can administer service options, manage security settings, perform backups, and carry out other administrative tasks. Members of this group perform these tasks at the system level by using the UDDI Services Web-based user interface and MMC snap-in and command-line tools. By default, the Administrator group is assigned to the local machine group BUILTIN\Administrators.

Recommended Practice

The previously specified roles are assigned depending on the use scenarios considered most important by an organization.

In some organizations, for example, it may be appropriate to assign every developer in the organization Publisher group privileges to UDDI Services. However, in other organizations, developers may only have read access, and only certain individuals would have rights to publish UDDI Services. When assigning security roles, keep the following considerations in mind:

· UDDI Services roles are mapped at the group level rather than the user level. Be certain that it is appropriate for each user in a particular group to be assigned the group’s permissions. For example, assigning the Everyone group to the Coordinator role could include users who are not appropriate for that level of privileges.

· The Coordinator role is very powerful. A Coordinator can take ownership of any published entity and change that data in any way, including the ownership of the data. Although these changes are captured in the SQL Server transaction log, auditing these changes is not a trivial task. As a result, the Coordinator role should be assigned judiciously.

· Although members of the Coordinator group can change data, they cannot import it. If you intend to bootstrap files such as custom categorization schemes into UDDI Services, be sure to include the individual responsible for these activities to the group assigned to the Administrator role.

Choosing UDDI Authentication Compared to Windows Authentication

UDDI Services supports two types of authentication: UDDI authentication and Windows authentication. Understanding the differences between these modes of authentication is an important part of determining which method to use for a specific UDDI Services deployment.

UDDI Authentication

This security mode supports authenticated publications by using criteria defined in Section 4 of the UDDI Programmer's API Specification Version 2.

All interaction with UDDI Services that uses this style of authentication occurs under the http://<server name>/uddipublic or https://<server name>/uddipublic virtual directory in IIS 6.0.

Using the UDDI Services SOAP API
When publishing to UDDI Services, UDDI authentication requires clients to issue a get_authToken SOAP API message to UDDI Services, which provides clients with Windows user names and passwords as arguments. The response is an opaque token, which the client must pass in any subsequent SOAP API message intended for UDDI Services publication. For example, a get_authToken SOAP message would look like this:
<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

 <Body>

 <get_authToken generic="2.0" xmlns="urn:uddi-org:api_v2" userID="DOMAIN\USER" cred="******" />

 </Body>

</Envelope>

The response might look like this:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>

 <authToken operator="DEMO BOX" generic="2.0" xmlns="urn:uddi-org:api_v2">

 <authInfo>zA/l/0vHtGnJ6zTQFiDNRYIDLk7Pd2Gzlq/bAxP8enjOm7iu2Z1C71BKWCyf7lFCdwhW5Z5Q8SOcs01xBSB72RKqTOPRG6lA+2Bq/66zf0P20zP8JZAq8V8BBc0IoHIe1rNX15Q7tmBIDazEWmOVeF0/4+h1FGsaDfqrebUG0UMO4CVMnGkSYrgrHDuvDsLKTmGAtMNU2UfwUl1ArrsykhD/SzKjcEdQdeyyDHAmbhtqlV4jHIKTAXHZyx2ouXibv2x65spyP01FNlkhrbwILBEKOUdjTCsg9xAaqRTa9bpdAQ9pCrJC9OoVlp7DAGDq1UOQK/hpLtB7/HqSFL5pXCsmSc1VMY8srsp0uttDyD6t+wCP0Fjxzsml75lm8Krx5OA6KAlbOjFJWJjLt7hEkpxHznbdyseIzi6oHC+EnQ4=</authInfo>

 </authToken>

 </soap:Body>

</soap:Envelope>

After the token has been obtained, it can be used in any publication API message. Note that the user’s Windows password is passed in the request message.

The UDDI specification does not support authenticated reads. Consequently, in UDDI authentication, all inquiry calls made to UDDI Services through the API occur anonymously. The token is passed only on Publish operations. This mode of authentication cannot support authenticated inquiry.

UDDI Services uses a cryptographic key to generate the token passed in the SOAP messages. By default, tickets expire in 60 minutes, and the cryptographic key is reset automatically every seven days. These settings can be changed as necessary.

Using the UDDI Services ASP.NET User Interface

Browsing the UDDI Services ASP.NET user interface in the /uddipublic directory reveals that publication is not allowed. When using UDDI authentication, the UDDI Services ASP.NET user interface supports only anonymous searching.
Windows Authentication

This security mode supports authenticated inquiries and publications by using Windows Integrated Authentication.

When a user logs on to the network, Windows authentication uses the security context of the user. Any message passed to UDDI Services is authenticated based on the Security Identifier (SID) token generated by Windows at login. All interaction with UDDI Services that uses this type of authentication occurs under the http://<server name>/uddi or https://<servername>/uddi directory in IIS 6.0. Note that publication can occur through the UDDI Services ASP.NET user interface.

Using the UDDI Services SOAP API

Publishing to UDDI Services with Windows authentication at the SOAP API level does not require use of the get_authToken API call to generate a token.

Instead, all Publish messages may be sent to UDDI Services without any token because UDDI Services will authenticate the user, based on the user’s SID. For example, a save_tModel message might look like this:

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

 <Body>

 <save_tModel generic="1.0" xmlns="urn:uddi-org:api">

 <authInfo></authInfo>

 <tModel tModelKey="">

 <name>TEST</name>

 </tModel>

 </save_tModel>

 </Body>

</Envelope>
Notice how the authInfo element has no content. Unlike UDDI authentication, user name or password information in Windows authentication is not passed in a SOAP message.

Authenticated read support is an important feature of Windows authentication in UDDI Services. By specifying authenticated reads in the MMC snap-in, UDDI Services inspects the SID in any inquiry API message sent by using Windows authentication. This approach does not allow anonymous browsing of data with the UDDI Services user interface.
Using the UDDI Services ASP.NET User Interface
With Windows authentication, publication can occur through the UDDI Services ASP.NET user interface. Also, with this style of authentication, authenticated reads are supported, which effectively disallows anonymous browsing of the data through the user interface.

Considerations and Recommended Practice

When assigning a security mode, consider using only Windows authentication with authenticated reads. This approach provides the highest level of security of UDDI Services data.

By using Windows authentication exclusively, user credentials are never passed over the Internet in a UDDI Services API call.

UDDI authentication is recommended in some cases, especially when non-Windows clients publish entries to UDDI Services. In fact, using UDDI authentication is the only option for non-Windows clients to use the Publish API.

Whichever security configuration is chosen, be sure that the organization’s user community is aware of the choice. The decision affects which URLs are used and, in the case of dynamic configuration, it affects how clients are configured and written.

Running Over Secure Sockets Layer

Another security consideration is whether to run UDDI Services with Secure Sockets Layer (SSL). This approach, which provides added security for any data that is communicated across the Internet, is recommended for maximum security when UDDI Services are used.

If users access UDDI Services over the Internet or an extranet, SSL should be enabled for the entire site regardless of the type of authentication employed. This approach ensures that the initial authentication occurs over an encrypted layer. Running UDDI Services with SSL is also recommended in an intranet environment.

Active Directory Service Publication

During installation, UDDI Services can be registered into Active Directory. If the user installing UDDI Services has the appropriate write privileges in Active Directory, the UDDI Services connection points will be published under the System container in the Domain sub-tree. The exact location would look like this:

“LDAP://<domain>/CN=<uddi site provider key>,CN=Sites,CN=UDDI,CN=Microsoft,CN=System,DC=xxxx,DC=com”.

The Active Directory service publication can then be used to discover instances of UDDI Services on the network. For example, Visual Studio .NET 2003 takes advantage of this feature to display available UDDI Services sites to developers when using the Add Web Reference feature.

The Active Directory signature can be refreshed or removed at any time with the UDDI Services MMC snap-in.

Operations Phase

After UDDI Services has been deployed, monitoring and ongoing maintenance activities are required to ensure smooth operations. Key tasks in the operations phase include:

· Data backup and restoration

· Data and event logging

· Interpretation of network monitoring statistics

Backup and Restoration of UDDI Services Data

All data, metadata, configuration settings, and other information reside in either SQL Server 2000 or MSDE, which serves as the UDDI Services data store.

The data store can be backed up and restored with tools that are available in SQL Server 2000. Because MSDE does not ship with these tools, UDDI Services provides command-line scripts that back up and restore data to a UDDI Services installation on MSDE.

These tools (uddi.database.backup.cmd and uddi.database.restore.cmd) are located in the UDDI Services \inetpub\uddi\data directory and are documented in the UDDI Services MMC snap-in Help file.

Logging and Performance Counters

UDDI Services can be configured to include text file logging, event logging, or both. These settings are configured through the MMC snap-in of each Web component that is installed at a UDDI Services site. Note that as logging settings increase, performance declines. As a result, the Verbose setting in the MMC should be used only during debugging procedures.

Figure 7 shows the MMC administrative user interface used to set performance counters.

[image: image4.png]KARSTENJNETSERY Prope:

e e

[-Event Log settings

f Select the level of Informatian reparted to the Event
Log.

None Emor Waming FalAudt Passudt Info Verbose

[Log File Settings

Select the level of Informatian reparted to the LDDI
A Serviceslogfie.

Location: CH{WINDOWStsystem32]Logfiles|UDDIuddiog

/

None Ewor Waming FaiAudt Passudt Info Verbose

ok Cancel apply Help

Figure 7 MMC User Interface Used to Set Performance Counters
Also, performance logs and alerts, which are available through the Performance snap-in, support the detailed monitoring of UDDI Services resource use. Each available API call can be added to track both server response time and to count the number of times a specific API is invoked. These statistics can also be viewed live through the system monitor.
Interpreting Statistics

The UDDI Services Web user interface also provides use statistics. This data offers slightly different information from that available through the performance monitoring counters. These statistics would be helpful to a coordinator, who would be more interested in how UDDI Services is being used rather than in the performance of the system.

The Entity Counts tab in the UDDI Services Web user interface shows the number of providers, services, bindings, or tModel entities that are published in a specific installation of UDDI Services. The Publisher Statistics tab shows the total number of publishers, the number of publishers with active publications, and the top publishers of each different type of entity. The Categorization Statistics tab displays the available categorization schemes and the number of categories they contain.
All statistics displayed on the user interface are based on data accumulated on the date displayed at the bottom of the screen. This information, which is not refreshed automatically, can be updated by clicking the Refresh Statistics button.

Conclusions

Enterprise UDDI Services in Microsoft Windows Server 2003 provides a standards-based solution that enables the discovery, sharing, and reuse of Web services.

Adding UDDI Services in Windows Server 2003 to a Web services infrastructure requires careful planning, deployment, and post-deployment monitoring. With a clearly defined UDDI Services infrastructure, organizations can achieve the following benefits:

· Easy discovery, sharing, and reuse of Web services and other programmable resources

· Improved developer and IT support productivity

· Lower total cost of ownership (TCO)

· More reliable and manageable Web services applications
By delivering these benefits, Microsoft Windows Server 2003 provides significant business value that companies can use to increase their market agility and competitive advantage.

Related Links

See the following resources for further information:

What's New in Enterprise UDDI Services at http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddi.mspx

Frequently Asked Questions About UDDI at http://www.microsoft.com/windowsserver2003/evaluation/overview/dotnet/uddifaq.mspx

Enterprise UDDI Services: A Synopsis at http://www.microsoft.com/windowsserver2003/techinfo/overview/uddisynop.mspx
Enterprise UDDI Services: Three Usage Scenarios at http://www.microsoft.com/windowsserver2003/techinfo/overview/uddiscen.mspx
For the latest information about Windows Server 2003, see the Windows Server 2003 Web site at http://www.microsoft.com/windowsserver2003.

.NET

.NET

business

business

logic

logic

ASP.NET

ASP.NET

Windows .NET Server

Windows .NET Server

UDDI Services

UDDI Services

Web UI

Web UI

SOAP

SOAP

API

API

.NET

.NET

business

business

logic

logic

.NET

.NET

business

business

logic

logic

ASP.NET

ASP.NET

Windows Server 2003

UDDI Services

UDDI Services

Web UI

Web UI

SOAP

SOAP

API

API

.NET

.NET

business

business

logic

logic

ASP.NET

ASP.NET

Stored

Stored

procs

procs

Web UI

Web UI

.NET

.NET

business

business

logic

logic

SQL

SQL

Server

Server

Stored

Stored

procs

procs

Windows Server 2003

.NET

.NET

business

business

logic

logic

ASP.NET

ASP.NET

Windows .NET Server

WinServer 2003Windows

.NET Server

UDDI Services

UDDI Services

Web UI

Web UI

SOAP

SOAP

API

API

.NET

.NET

business

business

logic

logic

.NET

.NET

business

business

logic

logic

ASP.NET

ASP.NET

Windows Server 2003

UDDI Services

UDDI Services

Web UI

Web UI

SOAP

SOAP

API

API

.NET

.NET

business

business

logic

logic

.NET

.NET

business

business

logic

logic

ASP.NET

ASP.NET

Windows .NET Server

Windows .NET Server

UDDI Services

UDDI Services

Web UI

Web UI

SOAP

SOAP

API

API

.NET

.NET

business

business

logic

logic

.NET

.NET

business

business

logic

logic

ASP.NET

ASP.NET

Windows Server 2003

UDDI Services

UDDI Services

Web UI

Web UI

SOAP

SOAP

API

API

.NET

.NET

business

business

logic

logic

UDDI Services Site

UDDI Services Site

ASP.NET

ASP.NET

SQL

SQL

Server

Server

Stored

Stored

procs

procs

Windows Server 2003

Windows

UDDI Services

UDDI Services

Web UI

Web UI

SOAP

SOAP

API

API

.NET

.NET

business

business

logic

logic

