
ASP.NET MVC 2 Preview 2 Release Notes

This document describes the second preview of the ASP.NET MVC 2 framework.
2Documentation

2Support

2Upgrading an ASP.NET MVC 1.0 Project to ASP.NET MVC 2

3New Features

3ModelMetadata and ModelMetadataProvider Classes

4Model Validator Providers

4Client-Side Validation

4New Code Snippets for Visual Studio 2010

4New RequireHttpsAttribute Action Filter

5Overriding the HTTP Method Verb

6Single-Project Areas

7New HiddenInputAttribute for Templated Helpers

8Other Improvements

10Bug Fixes

10Breaking Changes

10Changes in Preview 2

11Changes in Preview 1

12Installation Notes

12Installing ASP.NET MVC 2 Preview 2 Alongside ASP.NET MVC 1.1

12NGen Priority Change

13Disclaimer

This document describes the preview release 2 of ASP.NET MVC 2 for Visual Studio 2008 SP1. ASP.NET MVC 2 can be installed and run side-by-side with ASP.NET MVC 1.0. This preview release is included when you install Visual Studio 2010 Beta 2.

The MVC 2 Preview 2 for Visual Studio 2008 can be downloaded from the following page:

http://go.microsoft.com/fwlink/?LinkID=154413
Documentation

Documentation for ASP.NET MVC is available on the MSDN Web site at the following URL:

http://go.microsoft.com/fwlink/?LinkId=159758
Tutorials and other information about ASP.NET MVC are available on the ASP.NET Web site (http://www.asp.net/mvc/).

Support

This is a preview release and is not officially supported. If you have questions about working with this release, post them to the ASP.NET MVC forum (http://forums.asp.net/1146.aspx), where members of the ASP.NET community are frequently able to provide informal support.

Upgrading an ASP.NET MVC 1.0 Project to ASP.NET MVC 2

To upgrade an existing ASP.NET MVC 1.0 application to version 2, perform the following steps:

1. Make a backup of the existing project.

2. Open the project file (the file with the .csproj or .vbproj file extension) and locate the ProjectTypeGuid element. In the value of that element, replace the GUID {603c0e0b-db56-11dc-be95-000d561079b0} with {F85E285D-A4E0-4152-9332-AB1D724D3325}.When you are done, the value of that element should be as follows:

<ProjectTypeGuids>{F85E285D-A4E0-4152-9332-AB1D724D3325};{349c5851-65df-11da-9384-00065b846f21};{fae04ec0-301f-11d3-bf4b-00c04f79efbc}</ProjectTypeGuids>

3. In the Web application root folder, edit the Web.config file. Search for System.Web.Mvc, Version=1.0.0.0 and replace all instances with System.Web.Mvc, Version=2.0.0.0.

4. Repeat the previous step for the Web.config file located in the Views directory.
5. Open the project using Visual Studio and expand the References node in Solution Explorer. Delete the reference to System.Web.Mvc (which points to the version 1.0 assembly). Add a reference to System.Web.Mvc (v2.0.0.0).

6. Add the following bindingRedirect element to the Web.config file in the application root under the configuraton section:

<runtime>

 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

 <dependentAssembly>

 <assemblyIdentity name="System.Web.Mvc"

 publicKeyToken="31bf3856ad364e35"/>

 <bindingRedirect oldVersion="1.0.0.0" newVersion="2.0.0.0"/>

 </dependentAssembly>

 </assemblyBinding>

</runtime>

7. Create a new ASP.NET MVC 2 application. Copy the files within the Scripts directory into the Scripts directory of the existing application.

8. Compile the application and run it. If any errors occur, refer to the Breaking Changes section of this document for possible solutions.

New Features

This section describes features that have been introduced in the MVC 2 Preview 2 release.
ModelMetadata and ModelMetadataProvider Classes
The ModelMetadataProvider class provides an abstraction for obtaining metadata for the model within a view. MVC includes a default provider which surfaces the metadata that is exposed by the attributes in the System.ComponentModel.DataAnnotations namespace. It is possible to create metadata providers that provide metadata from other data stores, databases, XML files, and so on.
The ViewDataDictionary class exposes a ModelMetada object that contains the metadata that is extracted from the model by the ModelMetadataProvider class. This allows the templated helpers to consume this metadata and adjust their output accordingly.

For more information, see the documentation for ModelMetadata and ModelMetadataProvider.

Model Validator Providers

The model validation providers class provides an abstraction for obtaining validation logic for the model. ASP.NET MVC includes a default provider based on Data Annotations validation attributes that are included in the System.ComponentModel.DataAnnotations namespace. You can also create custom validation providers that define custom validation rules and custom mappings of validation rules to the model. For more information, see the documentation for ModelValidatorProvider.

Client-Side Validation

The model validator provider class exposes validation metadata to the browser in the form of JSON-serialized metadata that can be consumed by a client-side validation library. The provider class allows you to use other client validation frameworks by writing an adapter that processes the JSON metadata and calls into the alternate client validation library.

ASP.NET MVC Preview 2 includes the jQuery validation library and a client-side validation adapter for that library. The adapter supports the following DataAnnotations namespace validation attributes:

· StringLengthAttribute

· RequiredAttribute

· RegexAttribute

· RangeAttribute
For a walkthrough of how to use client-side validation with ASP.NET MVC, see Client Side Validation in ASP.NET MVC on the MSDN Web site.
New Code Snippets for Visual Studio 2010

A set of HTML code snippets for MVC 2 is installed with Visual Studio 2010 Beta 2. To view a list of these snippets, in the Tools menu, select Code Snippets Manager. For the language, select HTML, and for location, select ASP.NET MVC 2. For more information about how to use code snippets, see the Visual Studio documentation.
New RequireHttpsAttribute Action Filter
ASP.NET MVC 2 Preview 2 includes a new RequireHttpsAttribute class that can be applied to action methods and controllers. By default, the filter redirects non-SSL (HTTP) requests to the SSL-enabled (HTTPS) equivalent.
Overriding the HTTP Method Verb
When you build a Web site by using the REST architectural style, HTTP verbs are used to determine which action to perform for a resource. REST requires that applications support the full range of common HTTP verbs, such as GET, PUT, POST, and DELETE.

ASP.NET MVC includes attributes that you can apply to action methods and that enable ASP.NET MVC to select an action method based on the HTTP verb. In the following example, a POST request will call the first action method and a PUT request will call the second action method.
[HttpPost]

public ActionResult Edit(int id)

[HttpPut]

public ActionResult Edit(int id, Tag tag)

Because not all user agents support all HTTP verbs, a new HttpMethodOverride HTML helper method renders a hidden form input element that causes the form to appear to be a have been submitted with a different HTTP method from the one that was actually used. For example, browsers typically support only the GET and POST verbs in HTML forms. By using the HttpMethodOverride HTML helper method, you can have a form support PUT, DELETE, and other HTTP verbs.

The behavior of HttpMethodOverride affects the following attributes:

· HttpPostAttribute
· HttpPutAttribute

· HttpGetAttribute

· HttpDeleteAttribute

· AcceptVerbsAttribute

The HttpMethodOverride HTML helper method renders a hidden input element that has the name X-HTTP-Method-Override and the value set to the HTTP verb. The override value can also be specified in an HTTP header or in a query string value as a name/value pair.

The override is valid only for POST requests. The override values will be ignored for requests that use any other HTTP verb.
Single-Project Areas
ASP.NET MVC 2 Preview 2 includes support for single-project areas, which expands the existing support for multiple-project areas. The following figure shows the sample project layout for a single-project area.

[image: image1.png]e

For each area in the project, you must add a class that derives from AreaRegistration, and you must provide information about the area in the overridden members of that class, as shown in the following example:
namespace MyApplication.Areas.Blog {

 public class Routes : AreaRegistration {

 public override string AreaName {

 get { return "blog"; }

 }

 public override void RegisterArea(AreaRegistrationContext context) {

 context.MapRoute(

 "blog_default",

 "blog/{controller}/{action}/{id}",

 new { controller = "Home", action = "Index", id = "" }

);

 context.MapRoute(

 "blog_whatsnew",

 "whats-new",

 new { controller = "Home", action = "WhatsNew", id = "" }

);

 }

 }

}

In the Global.asax code, add a call to the RegisterAllAreas method in order to register all areas. This method looks for all types that derive from the AreaRegistration class, instantiates the class, and then calls the RegisterArea method on the class. The following example shows how to do this.
public class MyMvcApplication : HttpApplication {

 void App_Start() {

 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);

 }

 public static void RegisterRoutes(RouteCollection routes) {

 routes.MapRoute("default", "{controller}/{action}/{id}", ...);

 }

}

If you do not specify the namespace in the RegisterArea method by calling the context.Namespaces.Add method, the namespace of the registration class is used by default.

For more information, see Walkthrough: Creating an ASP.NET MVC Areas Application Using a Single Project on the MSDN Web site.
New HiddenInputAttribute for Templated Helpers
When the new HiddenInputAttribute class is applied to a property, the attribute indicates to the editor template whether a hidden input element should be rendered when editing the model. (The attribute sets an implicit UIHint value of HiddenInput). The DisplayValue property allows you to control whether the value is displayed in editor and display modes. When the attribute is set to false, nothing is displayed (not even the HTML markup that normally surrounds a field).
You might use this attribute in the following scenarios:

· When a view lets users edit the ID of an object and it is necessary to display the value as well as to provide a hidden input element that contains the old ID so that it can be passed back to the controller.

· When a view lets users edit a binary property that should never be displayed, such as a timestamp property. In that case, the value and surrounding HTML markup (such as the label and value) are not displayed.

The following example shows how to use the HiddenInputAttribute class.
public class ProductViewModel {

 [HiddenInput] // equivalent to [HiddenInput(DisplayValue=true)]

 public int Id { get; set; }

 public string Name { get; set; }

 [HiddenInput(DisplayValue=false)]

 public byte[] TimeStamp { get; set; }

}
When the attribute is set to true (or no parameter is specified), the following occurs:
· In display templates, a label is rendered and the value is displayed to the user.
· In editor templates, a label is rendered and the value is rendered in a hidden input element.
When the attribute is set to false, the following occurs:

· In display templates, nothing is rendered for that field.
· In editor templates, no label is rendered and the value is rendered in a hidden input element.
Other Improvements

The following additional changes have been made to existing types and members for ASP.NET MVC 2 Preview 2.
· Removed the IsNullableValueType property from the TemplateInfo class and added it to ModelMetadata. When ASP.NET MVC looks up a template for Nullable<T>, the type of T is used for the type-based template lookup. This new property lets the template author know that the original value was a nullable type.

· Changed the Controller.Execute method to throw an exception when it is called more than once on the same instance. Controllers are meant to serve a single request and to be executed only once. Many developers were running into subtle bugs when they accidentally set an Inversion of Control (IoC) container to return a singleton instance of a controller rather than a new instance per request. This change makes the contract for controllers explicit.

· Changed templated helpers to return their output as a string rather than writing the output directly to the response. Before this change, the helpers returned an empty string and wrote their output directly to the response.

· Changed the Controller class so that it no longer inherits from MarshalByRefObject.
· Added support for the DataType.Password enumeration value for the DataTypeAttribute class. When a property is marked with this attribute, the default editor template will render a password input element.

· Made the AuthorizationContext(ControllerContext context) constructor obsolete. Instead, use the constructor that accepts both a ControllerContext parameter and an ActionDescriptor parameter.
· Made performance improvements to expression-based helper methods such as the template helpers. Helpers now cache compiled LINQ expressions.

· Added TemplateInfo.GetFullHtmlID and Html.GenerateIDFromName methods that are used to generate the recommended HTML id attribute value for an element within a template. This helps template authors make sure their templates work when they are nested in other templates.

· Added new attributes for simple REST scenarios, including HttpPutAttribute, HttpDeleteAttribute, and HttpGetAttribute. For more information, see Overriding the HTTP Method Override Verb earlier in this document.
· Changed the default editor template for nullable Boolean values to render a drop-down list that has three options: “Not Set”, “True”, and “False”. When “Not Set” is selected, the value that is submitted to the server is an empty string.

· Changed model types so that they can be either value types or reference types. This allows view pages and other types to support built-in .NET Framework value types such as System.DateTime and System.Int32.

· Changed the framework so that if a controller namespace is specified as part of a route registration (for example, by using the namespaces parameter in a call to the MapRoute method), the framework now looks in that namespace and its children for potential controller matches. For example, if the namespace MyNamespace is specified, the framework will look in the equivalent of MyNamespace.* for a matching controller.

· Renamed the htmlFieldPrefixId parameter for the template helper methods to htmlFieldPrefixName, and renamed TemplateInfo.GetFullHtmlFieldId renamed to TemplatInfo.GetFullHtmlFieldName. The new names better represent the purpose of the parameter and property.

Bug Fixes

The following bugs have been resolved in the ASP.NET MVC 2 Preview 2 release.
· Performance improvements were made to partial view lookup.
· Templated helpers no longer experience an infinite-recursion bug when the templates are applied to model objects with circular references.

· The default object template renders only the properties of an object and no longer attempts to render the properties of the properties of an object (that is, it no longer performs a “deep dive”). The default object template displays simple properties (primitives and value types) by converting them to a string value. For complex objects, the default object template displays a value that represents the object. If the object has a DisplayColumnAtttribute attribute applied that specifies the name of a property, the value of that property will be displayed. Otherwise , the value that results from calling the object’s ToString method is used unless it is exactly the same as the object’s full type name. In that case, the value of the first property of the object is used.

· Calling a generic templated helper with an interface type no longer throws an exception with the message “This exception should never occur”. In such cases, if there is no template for the interface, the template helpers default to an interface. The exception message was changed to be more descriptive for the case where the exception should not occur.

· Applying the RequiredAttribute attribute to a property with a type that is a value type now results in one error message instead of two.

Breaking Changes

The following changes might cause errors in existing ASP.NET MVC 1.0 applications.

Changes in Preview 2
Helpers now return an MvcHtmlString object
In order to take advantage of the new HTML-encoding expression syntax in ASP.NET 4, the return type of the HTML helpers is now MvcHtmlString instead of a string. Note that if you use ASP.NET MVC 2 and the new helpers with ASP.NET 3.5, you will not be able to take advantage of the HTML-encoding syntax; the new syntax is available only when you run ASP.NET MVC 2 on ASP.NET 4.
JsonResult now responds only to HTTP POST requests
In order to mitigate JSON hijacking attacks that have the potential for information disclosure, by default, the JsonResult class now responds only to HTTP POST requests. AJAX GET calls to action methods that return a JsonResult object should be changed to use POST instead. If necessary, you can override this behavior by setting the new JsonRequestBehavior property of JsonResult. For more information about the potential exploit, see the blog post JSON Hijacking on Phil Haack’s blog.
Model and ModelType property setters on ModelBindingContext are obsolete

A new settable ModelMetadata property has been added to the ModelBindingContext class. The new property encapsulates both the Model and the ModelType properties. Although the Model and ModelType properties are obsolete, for backward compatibility the property getters still work; they delegate to the ModelMetadata property to retrieve the value.
Changes in Preview 1
DefaultControllerFactory class changes break custom controller factories that derive from it
This change affects custom controller factories that derive from DefaultControllerFactory . The DefaultControllerFactory class was fixed by removing the RequestContext property and instead passing the request context instance to the protected virtual methods GetControllerInstance and GetControllerType.

Custom controller factories are often used to provide dependency injection for ASP.NET MVC applications. To update the custom controller factories to support ASP.NET MVC 2, change the method signature or signatures to match the new signatures, and use the request context parameter instead of the property.

“Area” is a now a reserved route-value key

The string “area” in Route values now has special meaning in ASP.NET MVC, in the same way that “controller” and “action” do. One implication is that if HTML helpers are supplied with a route-value dictionary containing “area”, the helpers will no longer append “area” in the query string.
If you are using the Areas feature, make sure to not use {area} as part of your route URL.
Known Issues

· The Add View dialog box throws a NullReferenceException when the Create strongly-typed view check box is checked, a View Content selection other than “Empty” is selected, and a View data class type name is specified for a type that does exist. When specifying a type name, either use the drop-down list to select the type name or type the fully-qualified type name. For types that do not exist, you must set View Content to “Empty”.
Installation Notes

Installing ASP.NET MVC 2 Preview 2 Alongside ASP.NET MVC 1.1

The runtime component of ASP.NET MVC is shared by Visual Studio 2008 and Visual Studio 2010. If you have ASP.NET MVC 1.1 installed, you must uninstall it before you install ASP.NET MVC 2 Preview 2. Use the following steps to uninstall ASP.NET MVC 1.1 and install ASP.NET MVC 2:

1. From the Windows Control Panel, open Add/Remove Programs.
2. Uninstall Microsoft Visual Studio 2010 Tools for ASP.NET MVC 1.1
3. Uninstall Microsoft ASP.NET MVC 1.1

4. Install ASP.NET MVC 2
NGen Priority Change

When System.Web.Mvc.dll is installed in the Global Assembly Cache (GAC), the installer also invokes the NGen service to generate a native image. In previous versions of the installer, the service was invoked with a service request priority of 0, which caused the installer to create a native image immediately as part of the setup process. Many customers have reported problems where the NGen service fails, forcing the installation of MVC to be rolled back. These failures can usually be attributed to missing assemblies or corrupt entries inside the registry hive that is maintained by the CLR. However, the cost for customers is that they cannot install MVC until these issues have been addressed.

Starting with MVC 2 Preview 2, all the assemblies for which native images are created are queued by lowering the priority of the service request to 3. This will allow the installation of MVC to complete even if other problems arise, because native images for System.Web.Mvc.dll will be created only when the system is idle after the installation process.

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
ASP.NET MVC 2 Preview 2 Release Notes

Page 2
Copyright © 2009 Microsoft Corporation

