

http://msdn.microsoft.com/rampup

Introduction to ASP.NET Events

[image: bb352986]
[image: Ascend to new heights in your career]
http://msdn.microsoft.com/rampup

Contents
Introduction	3
Application & Session Events	3
Page Events	4
Control Events	7
Client Events	10

[bookmark: _Toc223528907]
Introduction
An important feature of ASP.NET is that it allows you to program Web pages using an event-based model that is similar to that in client applications. As a simple example, you can add a button to an ASP.NET Web page and then write an event handler for the button's click event. Although this is common in Web pages that work exclusively with client script (by handling the button's onclick event in dynamic HTML), ASP.NET brings this model to server-based processing.
Events raised by ASP.NET server controls work somewhat differently than events in traditional HTML pages or in client-based Web applications. The difference arises primarily because of the separation of the event itself from where the event is handled. In client-based applications, events are raised and handled on the client. In ASP.NET Web pages, however, events associated with server controls originate on the client (browser) but are handled on the Web server by the ASP.NET page.
For events raised on the client, the ASP.NET Web control event model requires that the event information be captured on the client and an event message transmitted to the server, through an HTTP post. The page must interpret the post to determine what event occurred and then call the appropriate method in your code on the server to handle the event.
ASP.NET handles the task of capturing, transmitting, and interpreting the event. When you create event handlers in an ASP.NET Web page, you can typically do so without thinking about how the event information is captured and made available to your code. Instead, you can create event handlers in much the same way you would in a traditional client form. However, there are some aspects of event handling in ASP.NET Web pages that you should be aware of.
[bookmark: _Toc223528908]APPLICATION & SESSION EVENTS

In addition to page and control events, ASP.NET provides ways for you to work with life-cycle events that are raised when your application starts or stops or when an individual user's session starts or stops, including the following:
· Application events are raised for all requests to an application. For example, the BeginRequest event of the HttpApplication object (Application_BeginRequest) is raised when any ASP.NET Web page or XML Web service in your application is requested. This event allows you to initialize resources that will be used for each request to the application. A corresponding event, the EndRequest event of the HttpApplication object (Application_EndRequest), provides you with an opportunity to close or otherwise dispose of resources used for the request.
· Session events are similar to application events (there is a Start and an End event), but are raised with each unique session within the application. A session begins when a user requests a page for the first time from your application and ends either when your application explicitly closes the session or when the session times out.
You can create handlers for these types of events in the Global.asax file.

[bookmark: _Toc223528909]Page Events
Within each stage of the life cycle of a page, the page raises events that you can handle to run your own code. For control events, you bind the event handler to the event, either declaratively using attributes such as onclick, or in code.
Pages also support automatic event wire-up, meaning that ASP.NET looks for methods with particular names and automatically runs those methods when certain events are raised. If the AutoEventWireup attribute of the @ Page directive is set to true (or if it is not defined, since by default it is true), page events are automatically bound to methods that use the naming convention of Page_event, such as Page_Load and Page_Init. For more information on automatic event wire-up, see ASP.NET Web Server Control Event Model.
The following table lists the page life-cycle events that you will use most frequently. There are more events than those listed; however, they are not used for most page processing scenarios. Instead, they are primarily used by server controls on the ASP.NET Web page to initialize and render themselves. If you want to write your own ASP.NET server controls, you need to understand more about these stages. For information about creating custom controls, see Developing Custom ASP.NET Server Controls.
	Page Event
	Typical Use

	PreInit
	Use this event for the following:
· Check the IsPostBack property to determine whether this is the first time the page is being processed.
· Create or re-create dynamic controls.
· Set a master page dynamically.
· Set the Theme property dynamically.
· Read or set profile property values.
[image: ms178472.alert_note(en-us,VS.90).gif]Note:
If the request is a postback, the values of the controls have not yet been restored from view state. If you set a control property at this stage, its value might be overwritten in the next event.

	Init
	Raised after all controls have been initialized and any skin settings have been applied. Use this event to read or initialize control properties.

	InitComplete
	Raised by the Page object. Use this event for processing tasks that require all initialization be complete.

	PreLoad
	Use this event if you need to perform processing on your page or control before the Load event.
Before the Page instance raises this event, it loads view state for itself and all controls, and then processes any postback data included with the Request instance.

	Load
	The Page calls the OnLoad event method on the Page, then recursively does the same for each child control, which does the same for each of its child controls until the page and all controls are loaded.
Use the OnLoad event method to set properties in controls and establish database connections.

	Control events
	Use these events to handle specific control events, such as a Button control's Click event or a TextBox control's TextChanged event.
[image: ms178472.alert_note(en-us,VS.90).gif]Note:
In a postback request, if the page contains validator controls, check the IsValid property of the Page and of individual validation controls before performing any processing.

	LoadComplete
	Use this event for tasks that require that all other controls on the page be loaded.

	PreRender
	Before this event occurs:
· The Page object calls EnsureChildControls for each control and for the page.
· Each data bound control whose DataSourceID property is set calls its DataBind method. For more information, see Data Binding Events for Data-Bound Controls later in this topic.
The PreRender event occurs for each control on the page. Use the event to make final changes to the contents of the page or its controls.

	SaveStateComplete
	Before this event occurs, ViewState has been saved for the page and for all controls. Any changes to the page or controls at this point will be ignored.
Use this event perform tasks that require view state to be saved, but that do not make any changes to controls.

	Render
	This is not an event; instead, at this stage of processing, the Page object calls this method on each control. All ASP.NET Web server controls have a Render method that writes out the control's markup that is sent to the browser.
If you create a custom control, you typically override this method to output the control's markup. However, if your custom control incorporates only standard ASP.NET Web server controls and no custom markup, you do not need to override the Render method. For more information, see Developing Custom ASP.NET Server Controls.
A user control (an .ascx file) automatically incorporates rendering, so you do not need to explicitly render the control in code.

	Unload
	This event occurs for each control and then for the page. In controls, use this event to do final cleanup for specific controls, such as closing control-specific database connections.
For the page itself, use this event to do final cleanup work, such as closing open files and database connections, or finishing up logging or other request-specific tasks.
[image: ms178472.alert_note(en-us,VS.90).gif]Note:
During the unload stage, the page and its controls have been rendered, so you cannot make further changes to the response stream. If you attempt to call a method such as the Response.Write method, the page will throw an exception.

ASP.NET pages raise life-cycle events such as Init, Load, PreRender, and others. By default, you can bind page events to methods using a naming convention of Page_eventname. For example, to create a handler for the page's Load event, you can create a method named Page_Load. At run time, ASP.NET will find methods based on this naming convention and automatically perform the binding between the event and the method. You can use the convention of Page_eventname for any event exposed by the Page class.
If you prefer, you can bind handlers to events explicitly. The automatic binding of page events based on the method naming convention is controlled by a page property named AutoEventWireup. By default, for C#, this property is set to true, and ASP.NET performs the automatic lookup and binding described earlier. Alternatively, you can set this property to false by adding the attribute AutoEventWireup=false in the @ Page directive. You can then create methods with any name and bind them to page events explicitly.
By default, for Visual Basic, this property is set to false. In Visual Basic, handlers are bound to events by using the Handles keyword. This keyword is inserted automatically by Visual Studio as part of the method that you create when you select a page event from the drop-down box. The following example illustrates use of the Handles keyword:
Visual Basic
Sub MyPageLoad(sender As Object, e As EventArgs) Handles MyBase.Load
One disadvantage of the AutoEventWireup attribute is that it requires that the page event handlers have specific, predictable names. This limits your flexibility in how you name event handlers. Another disadvantage is that performance is adversely affected, because ASP.NET searches for methods at run-time. For a Web site with high traffic volumes, the impact on performance could be significant.

[bookmark: _Toc223528910]Control Events
Unlike events in desktop applications, ASP.NET server-control events are raised as well as handled on the server. When a Web request communicates a client-side action to the server, a control can raise events on the server in response to the client action. The event is handled by the page or by its child controls, and ASP.NET sends a response back to the client. This results in a user experience similar to that of a desktop application. However, control developers must understand that only one client-side event is posted to the server — the postback event. Common user-interface events such as mouse clicks or key presses are not communicated to the server and thus cannot be processed on the server.
The base class System.Web.UI.Control provides the events that govern a control's execution lifecycle, such as initialization, loading, and unloading. The server loads an ASP.NET page every time it is requested and then unloads it after the request is completed. The page and the server controls it contains are responsible for executing the request and rendering HTML back to the client. Although the communication between the client and the server is stateless and disconnected, the client experience must appear to be that of a continuously executing process.
This illusion of continuity is created by the ASP.NET page framework and by the page and its controls. On postback, a control must behave as if it were starting where it left off at the end of the previous Web request. The ASP.NET page framework makes it relatively easy to perform state management, but control developers must be aware of the control execution sequence to achieve the effect of continuity. Control developers need to understand which information is available to a control at each phase in its lifecycle, which data is persisted, and what the control's state is when it is rendered. For example, a control is unable to invoke its parent until the tree of controls on a page has been populated.
The following table provides a high-level overview of the phases in the lifecycle of a control. For details, follow the links in the table.
	Phase
	What a control needs to do
	Method or event to override

	Initialize
	Initialize settings needed during the lifetime of the incoming Web request..
	Init event (OnInit method)

	Load view state
	At the end of this phase, the ViewState property of a control is automatically populated. A control can override the default implementation of the LoadViewState method to customize state restoration.
	LoadViewState method

	Process postback data
	Process incoming form data and update properties accordingly.
Note Only controls that process postback data participate in this phase.
	LoadPostData method
(if IPostBackDataHandler is implemented)

	Load
	Perform actions common to all requests, such as setting up a database query. At this point, server controls in the tree are created and initialized, the state is restored, and form controls reflect client-side data.
	Load event
(OnLoad method)

	Send postback change notifications
	Raise change events in response to state changes between the current and previous postbacks.
Note Only controls that raise postback change events participate in this phase.
	RaisePostDataChangedEvent method
(if IPostBackDataHandler is implemented)

	Handle postback events
	Handle the client-side event that caused the postback and raise appropriate events on the server. Note Only controls that process postback events participate in this phase.
	RaisePostBackEvent method
(if IPostBackEventHandler is implemented)

	Prerender
	Perform any updates before the output is rendered. Any changes made to the state of the control in the prerender phase can be saved, while changes made in the rendering phase are lost.
	PreRender event
(OnPreRender method)

	Save state
	The ViewState property of a control is automatically persisted to a string object after this stage. This string object is sent to the client and back as a hidden variable. For improving efficiency, a control can override the SaveViewState method to modify the ViewState property.
	SaveViewState method

	Render
	Generate output to be rendered to the client.
	Render method

	Dispose
	Perform any final cleanup before the control is torn down. References to expensive resources such as database connections must be released in this phase.
	Dispose method

	Unload
	Perform any final cleanup before the control is torn down. Control authors generally perform cleanup in Dispose and do not handle this event.
	UnLoad event (On UnLoad method)

Note To override an EventName event, override the OnEventName method (and call base. OnEventName).
The methods and events in the third column are inherited from System.Web.UI.Control, with the following exceptions: LoadPostData and RaisePostDataChangedEvent are methods of the IPostBackDataHandler interface, and RaisePostBackEvent belongs to the IPostBackEventHandler interface. If your control participates in postback data processing you must implement IPostBackDataHandler. If your control receives postback events you must implement IPostBackEventHandler.
The CreateChildControls method is not listed in the table because it is called whenever the ASP.NET page framework needs to create the controls tree and this method call is not limited to a specific phase in a control's lifecycle. For example, CreateChildControls can be invoked when loading a page, during data binding, or during rendering.

[bookmark: _Toc223528911]Client Events
ASP.NET Web applications are not limited to server-based tools and languages. You can include ECMAScript (JavaScript or JScript) in your ASP.NET Web pages to create rich browser-based functionality. A wide range of features for client script support is available in ASP.NET.
One option is to create and add individual snippets of client script to ASP.NET Web pages to support browser behavior that you design for your application. This option is practical if you want to include only a few small pieces of JavaScript code or if you are working with JavaScript code that you already have. This option also helps keep the size of your ASP.NET Web pages to a minimum.
Alternatively, you can take advantage of the powerful AJAX features of ASP.NET. These AJAX features include a complete framework that supports the following:
· Object-oriented programming in JavaScript.
· Asynchronous postbacks.
· Application Web services for authentication and profiles.
· Server controls that manage client script with extended debugging and trace support.
Using ASP.NET AJAX features lets you take advantage of JavaScript functionality with less manual coding. It provides extended JavaScript functionality, and it provides a framework for creating client functionality that is integrated into ASP.NET.
Because ASP.NET Web pages just render HTML markup, you can add your own client script to ASP.NET pages. Client script is supported in ASP.NET pages to the extent that the browser requesting the page supports client script. If the page is running in a browser on a mobile phone or other device, the degree of support for client script varies, depending on the browser.
There are several options for including client script in ASP.NET pages:
· You can include client script statically in a script block that includes code or that uses an include attribute to reference a JavaScript (.js) file. Use this option to insert script blocks or JavaScript files contain client script that you do not have to create dynamically, and that do not require additional AJAX functionality provided by the Microsoft AJAX Library.
· You can dynamically create and add client script to ASP.NET Web page by using the ClientScriptManager class. Use this option when you want to create scripts that depend on information that is available only at run time.
· If you plan to take advantage of the AJAX features of ASP.NET, you can manage client-script files by using the ScriptManager server control.
· The ScriptManager server control also ensures that the Microsoft AJAX Library is loaded on the browser before your scripts run.
Including Static Client Script Blocks
You can add script blocks to an ASP.NET page just as you would for any HTML page. You can use client script to write event handlers for client events such as the page's onload event. When an ASP.NET page is running in the browser, the markup elements on the page are addressable in client script. They raise all the client events that they do in an HTML page.
An ASP.NET Web page can also access a script file by referring to it in the src attribute of a <script> tag, as in the following example:
<script type="text/javascript" src="MyScript.js"></script>
Keeping client script in external .js files rather than in the pages themselves can help organize your client scripts. It can also make them easier to manage for version control and easier to share between pages.
External .js files are cached by the browser, similar to the way Web pages and images are cached. After the script has been loaded by the browser as an external file, it is available in the cache to any other Web page that requires it. This can help increase the performance of the Web application.
Creating Client Script Dynamically
In many cases, you can create the client script for your page declaratively, usually as a script block. However, you can also create client script dynamically. This is useful if the script depends on information that is available only at run time. For example, you might insert client script into a page that addresses a server control whose name (ID) is not known until the application runs, or you might create script that depends on values that you get from a user.
You can create and insert client script dynamically into a rendered page by calling methods of the ClientScriptManager class, such as the following:
· RegisterClientScriptBlock, which inserts a script block at the top of the rendered page.
· RegisterStartupScript, which inserts a script block at the end of the rendered page.
The following example shows how to add dynamically generated client script to the page. The code checks whether a check box named checkDisplayCount is selected. If so, the code performs the following tasks:
· It creates a client script function that uses a span element to display the character count in a TextBox control named TextBox1.
· It adds a client event to the TextBox control.
· It generates the span element.
The code assumes that the page contains a check box named checkDisplayCount whose AutoPostBack property is set to true and a PlaceHolder control named PlaceHolder1.
End Sub
C#
void Page_Load(object sender, EventArgs e)
{
 if(checkDisplayCount.Checked)
 {
 String scriptText = "";
 scriptText += "function DisplayCharCount(){";
 scriptText += " spanCounter.innerText = " +
 " document.forms[0].TextBox1.value.length";
 scriptText += "}";
 ClientScriptManager.RegisterClientScriptBlock(this.GetType(),
 "CounterScript", scriptText, true);
 TextBox1.Attributes.Add("onkeyup", "DisplayCharCount()");
 LiteralControl spanLiteral = new
 LiteralControl("");
 PlaceHolder1.Controls.Add(spanLiteral);
 }
}

http://msdn.microsoft.com/rampup

image3.gif

image1.jpeg
—am

image2.gif
Ascend to new heights in your career

