

http://msdn.microsoft.com/rampup


Microsoft Office SharePoint Server (MOSS) for Developers 
(Part 1) 


Topic 8: Web Services


[image: http://i.msdn.microsoft.com/bb352986.RampUp_logo(en-us,MSDN.10).jpg]
[image: Ascend to new heights in your career]
http://msdn.microsoft.com/rampup

Introduction
The Windows SharePoint Services Web services provided by the Microsoft.SharePoint.SoapServer namespace include methods for accessing content on a Web site—such as for working with lists or site data—as well as methods for customizing meetings, imaging, document workspaces, or search. 
SOAP interfaces used in these services provide Microsoft .NET Framework developers with object models for creating solutions that work with Windows SharePoint Services remotely from a client or custom application. The interfaces are defined through the server-side object model of the Microsoft.SharePoint assembly, and their design is optimized to reduce the number of roundtrips transacted between client computer and server.
Most Web services provide their functionality through the /_vti_bin virtual directory, which maps to the \\Program Files\Common Files\Microsoft Shared\web Server extensions\12\ISAPI physical directory in the file system. The Administration Web service uses the /_vti_adm virtual directory, which maps to \12\ADMISAPI.
You will need to install the Windows SharePoint Services 3.0 SDK

[bookmark: WSS3ASPNET20WebParts_AbriefBriefhistoryH]Windows SharePoint Services Web Services
Windows SharePoint Services Web services provide methods that you can use to work remotely with a deployment of Windows SharePoint Services. The following table lists and describes the available Web services.
	Service 
	Description 

	Administration Web Service
	Provides methods for managing a deployment of Windows SharePoint Services, such as for creating or deleting sites.

	Alerts Web Service
	Provides methods for working with alerts for list items in a SharePoint site.

	Authentication Web Service
	Provides classes for logging on to a SharePoint site that is using forms-based authentication.

	Copy Web Service
	Provides methods for copying items between locations in Windows SharePoint Services.

	DocumentWorkspace Web Service
	Provides methods for managing Document Workspace sites and the data they contain.

	Forms Web Service
	Provides methods for returning forms used in the user interface when working with the contents of a list.

	Imaging Web Service
	Provides methods that enable you to create and manage picture libraries.

	ListDataRetrieval Web Service
	Provides a method for performing queries against lists in Windows SharePoint Services.

	Lists Web Service
	Provides methods for working with lists and list data.

	Meetings Web Service
	Provides methods that enable you to create and manage Meeting Workspace sites.

	People Web Service
	Provides methods for working with security groups.

	Permissions Web Service
	Provides methods for working with the permissions for a site or list.

	SharepointDirectoryManagementService Web Service
	Provides methods for remotely managing distribution groups.

	SiteData Web Service
	Provides methods that return metadata or list data from sites or lists in Windows SharePoint Services. 

	Sites Web Service
	Provides a method for returning information about the site templates for a site collection.

	SPSearch Web Service
	Provides methods for remotely performing searches within a Windows SharePoint Services deployment.

	UsersGroups Web Service
	Provides methods for working with users, site groups, and cross-site groups.

	Versions Web Service
	Provides methods for working with file versions.

	Views Web Service
	Provides methods for working with views of lists.

	WebPartPages Web Service
	Provides methods to send and retrieve Web Part information to and from Web services.

	Webs Web Service
	Provides methods for working with sites and subsites.




Walkthrough: Creating a Custom Web Service
This programming task provides an overview of how to create a custom Web service that operates within the context of Windows SharePoint Services 3.0. It steps through the process of creating a simple "Hello World" Web service and then shows how to modify the service so that it implements the Windows SharePoint Services 3.0 server-side object model to return site and list data.
[image: http://i.msdn.microsoft.com/Global/Images/clear.gif] Basic Steps for Creating a Web Service 
· [bookmark: sectionToggle0]Create an ASP.NET Web service in Microsoft Visual Studio 2005.
· Create a class library within the Web service that defines the programming logic for the Web service.
· Generate and edit a static discovery file and a Web Services Description Language (WSDL) file. 
· Deploy the Web service files to the _vti_bin directory. 
· Create a client application to consume the Web service.
[image: http://i.msdn.microsoft.com/Global/Images/clear.gif] Creating an ASP.NET Web Service in Visual Studio 
[bookmark: sectionToggle1]The first step is to create an ASP.NET Web service Web site in Visual Studio 2005. 
To create an ASP.NET Web service
1. In Visual Studio, click File, point to New, and then select Web Site.
2. In the Templates box of the New Web Site dialog box, select ASP.NET Web Service, select File System in the Location box, select a programming language and location for the project, and then click OK.
3. Within the new Web service solution, create a separate class library project to contain the Web service logic. To create the project, click File, point to New, and then select Project.
4. In the New Project dialog box, select a language in the Project types box, select Class Library in the Templates box, provide a name and location for the project, select Add to Solution in the Solution box, and then click OK.
5. Add a reference to the System.Web.Services namespace in the class library project. Right-click the project in Solution Explorer, click Add Reference, select System.Web.Services in the Add Reference dialog box, and then click OK.
6. Replace the default class file in the class library project with the default service class file that Visual Studio provides in the App_Code folder of the Web service. 
To replace the class file with the service class file
a. In Solution Explorer, drag Service.cs or Service.vb to the top node in the class library project.
b. Delete the Class1.cs or Class1.vb file, and also delete the Service.cs or Service.vb file that remains in the App_Code folder.
7. Create a strong name for the class library:
a. In Solution Explorer, right-click the class library project, and then click Properties.
b. In the Properties dialog box, click Signing, select Sign the assembly, and then select <New> in the Choose a strong name key file list.
c. In the Create Strong Name Key dialog box, provide a file name for the key, clear the Protect my key file with a password check box, and then click OK.
8. To build only the class library project, right-click the project in Solution Explorer, and then click Build.
9. To add your assembly to the global assembly cache (GAC), you can either drag the assembly into the %windows%\assembly directory using 2 instances of Windows Explorer, or use the command line utility gacutil.exe that is installed with the Microsoft .NET Framework SDK 2.0.
To use gacutil.exe to copy the class library DLL into the GAC
a. To open the Visual Studio command prompt, click Start, point to All Programs, point to Microsoft Visual Studio 2008, point to Visual Studio Tools, and click Visual Studio 2008 Command Prompt.
b. At the command prompt type a command in the following form, and press ENTER:
gacutil.exe -if "<Full file system path to DLL>".
10. Now you are ready to modify the assembly information in the default Service.asmx file of the Web service with information for the DLL from the GAC. To get information from the GAC, open the %windows%\assembly directory in Windows Explorer, right-click your assembly, and click Properties.
11. To open Service.asmx in Solution Explorer, right-click the file and click Open.
12. Remove the CodeBehind attribute from the page directive in Service.asmx, and modify the contents of the Class attribute so that the directive matches the following format, where the assembly name "MyServiceAssembly" and the public key token are values specified in the Properties dialog box that you opened in step 10:
	

	<%@ WebService Language="C#" Class="Service, MyServiceAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=8f2dca3c0f2d0131" %>


13. In Visual Basic include the namespace to identify the class, for example, Class="MyServiceNamespace.Service, MyServiceAssembly, Version=1.0.0.0, Culture=neutral, PublicKeyToken=8f2dca3c0f2d0131".
14. Rename your .asmx file appropriately, and then save your changes.
[image: http://i.msdn.microsoft.com/Global/Images/clear.gif] Generating and Modifying Static Discovery and WSDL Files 
[bookmark: sectionToggle2]To provide discovery and description for your custom Web service, you must create a .disco file and a .wsdl file. Because Windows SharePoint Services virtualizes its URLs (for example, http://MyServer/MySite/MySubsite becomes http://MyServer), you cannot use the autogenerated .disco and .wsdl files generated by ASP.NET. Instead, you must create a .disco page and a .wsdl ASPX page that provide the necessary redirection and maintain virtualization.
You can use ASP.NET to generate the .disco and .wsdl files by temporarily hosting your Web service in a virtual directory, such as /_layouts, and then using the .NET Framework Web Service Discovery tool (Disco.exe) to obtain the generated files.
To generate the static discovery and WSDL files
1. In Windows Explorer, copy the .asmx file of your Web service to \\Program Files\Common Files\Microsoft Shared\web server extensions\12\TEMPLATE\LAYOUTS.
2. Run Disco.exe at the command prompt from the LAYOUTS directory to generate .disco and .wsdl files. Run a command in the following format to generate the files in \LAYOUTS:
disco http://MyServer/_layouts/MyCustomWebService.asmx
3. To register namespaces of the Windows SharePoint Services object model, open both the .disco and .wsdl files and replace the opening XML processing instruction -- <?xml version="1.0" encoding="utf-8"?> -- with instructions such as the following:
	

	<%@ Page Language="C#" Inherits="System.Web.UI.Page" %> 
<%@ Assembly Name="Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %> 
<%@ Import Namespace="Microsoft.SharePoint.Utilities" %> 
<%@ Import Namespace="Microsoft.SharePoint" %>
<% Response.ContentType = "text/xml"; %>


4. In the .disco file, modify the contract reference and SOAP address tags to be like the following example, which replaces literal paths with code generated paths through use of the Microsoft.SharePoint.Utilities.SPHttpUtility class, and which replaces the method name that is specified in the binding attribute:
	

	<contractRef ref=<% SPHttpUtility.AddQuote(SPHttpUtility.HtmlEncode(SPWeb.OriginalBaseUrl(Request) + "?wsdl"),Response.Output); %> 
docRef=<% SPHttpUtility.AddQuote(SPHttpUtility.HtmlEncode(SPWeb.OriginalBaseUrl(Request)),Response.Output); %> 
xmlns="http://schemas.xmlsoap.org/disco/scl/" />
<soap address=<% SPHttpUtility.AddQuote(SPHttpUtility.HtmlEncode(SPWeb.OriginalBaseUrl(Request)),Response.Output); %> 
xmlns:q1="http://tempuri.org/" binding="q1:HelloWorld" xmlns="http://schemas.xmlsoap.org/disco/soap/" />
<soap address=<% SPHttpUtility.AddQuote(SPHttpUtility.HtmlEncode(SPWeb.OriginalBaseUrl(Request)),Response.Output); %> 
xmlns:q2="http://tempuri.org/" binding="q2:ServiceSoap12" xmlns="http://schemas.xmlsoap.org/disco/soap/" />


5. In the .wsdl file, make the following similar substitution for the SOAP address that is specified:
	

	<soap:address location=<% SPHttpUtility.AddQuote(SPHttpUtility.HtmlEncode(SPWeb.OriginalBaseUrl(Request)),Response.Output); %> />


6. Rename both files in the respective formats MyCustomWebServicedisco.aspx and MyCustomWebServicewsdl.aspx so that your service is discoverable through Windows SharePoint Services.
[image: http://i.msdn.microsoft.com/Global/Images/clear.gif] Copying the Web Service Files to the _vti_bin Directory 
[bookmark: sectionToggle3]The _vti_bin virtual directory maps physically to the Local_Drive:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\12\ISAPI directory, which contains the default Web service files used in Windows SharePoint Services. Copy the new MyCustomWebServicewsdl.aspx and MyCustomWebServicedisco.aspx files, and also the MyCustomWebService.asmx file, to the ISAPI folder.
From the _vti_bin directory, a Web service offers its functionality to the site that is specified when adding a Web reference for the service.
To verify that your custom Web service is discoverable, navigate to http://MyServer/_vti_bin/MyCustomWebService.asmx.
[image: http://i.msdn.microsoft.com/Global/Images/clear.gif] List the New Web Service in spdisco.aspx 
[bookmark: sectionToggle4]To make your Web service discoverable in Visual Studio as a Web service alongside the default Windows SharePoint Services Web services, open the spdisco.aspx file located in \Program Files\Common Files\Microsoft Shared\Web Server Extensions\12\ISAPI and add the following code, specifying the .asmx file for your Web service. 
	

	<contractRef ref=<% SPHttpUtility.AddQuote(SPHttpUtility.HtmlEncode(spWeb.Url + "/_vti_bin/MyCustomWebService.asmx?wsdl"), Response.Output); %> 
docRef=<% SPHttpUtility.AddQuote(SPHttpUtility.HtmlEncode(spWeb.Url + "/_vti_bin/MyCustomWebService.asmx"), Response.Output); %> 
xmlns=" http://schemas.xmlsoap.org/disco/scl/ " />
<discoveryRef ref=<% SPHttpUtility.AddQuote(SPHttpUtility.HtmlEncode(spWeb.Url + "/_vti_bin/MyCustomWebService.asmx?disco"),Response.Output); %> 
xmlns="http://schemas.xmlsoap.org/disco/" />


[image: http://i.msdn.microsoft.com/Global/Images/clear.gif] Creating a Windows Application to Consume the Web Service 
[bookmark: sectionToggle5]After you copy the Web services files to the _vti_bin directory, the next step is to create a Windows Application to consume the Web service.
To create a Windows Application that consumes the Web service
1. Open Visual Studio 2005, and on the File menu, point to New, and then click Project. 
2. In the New Project dialog box, select Visual C# or Visual Basic, and then select the Windows Application template. 
3. Type a name for the application in the Name box, specify a location for the project files in the Location box, and then click OK. 
4. In Solution Explorer, right-click the project, and then click Add Web Reference. 
5. In the address bar of the Add Web Reference browser, type the URL for the site to apply the service to, as follows, and then press ENTER: 
http://Server_Name/[sites/][Site_Name/]_vti_bin/MyCustomWebService.asmx
6. Click Add Reference to download the service contract for the Web service. 
7. Open Form1 in Design view, display the Toolbox, and then drag a button onto the form.
8. Double-click the Button1 control on Form1 to display the code-behind file in the code editor, and add the following code that calls your custom method.

	Visual Basic

	Dim MyCustomService As New Web_Reference_Folder.MyServiceClass()
MyCustomService.UseDefaultCredentials = True
MessageBox.Show(MyCustomService.HelloWorld())

	C#

	Web_Reference_Folder.MyServiceClass MyCustomService = new Web_Reference_Folder.MyServiceClass();
MyCustomService.UseDefaultCredentials = true;
MessageBox.Show(MyCustomService.HelloWorld());


9. Press F5 to compile and run the project and see a message box that displays "Hello World".


Additional resources and references
· Working with SharePoint Web Services
· Introduction to SharePoint Products and Technologies for the Professional .NET Developer
· Windows SharePoint Services Developer Center
· Windows SharePoint Services TechCenter
· SharePoint Server Developer Center
· SharePoint Server TechCenter




http://msdn.microsoft.com/rampup
image3.gif




image1.jpeg
—am




image2.gif
Ascend to new heights in your career




