State Management – Presentation Transcript

Our next module has to do with state management. Now, as an ASP programmer, you know that state is not something that is handled easily in HTTP, being that HTTP is a stateless protocol. Platforms like ASP give you certain mechanisms for building stateful applications, Session State being one of those. ASP.NET provides a handful of different facilities and mechanisms that you can use to help build stateful applications. That's what this talk is all about.

Here's what we're going to look at. We're going to begin with View State then talk about the application cache, which is like ASP application state, but a whole lot better. We're going to talk very briefly about how ASP.NET handles Session State. Then we're going to talk about what I think is a very important new feature of ASP.NET 2.0, called profiles. We'll finish up by taking a quick look at cookies. That is, HTTP cookies. Let's begin with View State.

In ASP.NET View State is a very lightweight mechanism for persisting pieces of data across postbacks. Now, I say lightweight, but that's only if you use it properly. Here's the deal. When a request comes in for a page and that page executes, that page and all the controls on it have the opportunity, if they want to, to write data to View State. Now, the reason you write data to View State is because you want that data to still be there when a postback occurs. In fact, it's using View State that ASP.NET controls maintain their state across postbacks. That's why text typed into a text box control in ASP.NET doesn't go away as it does in ASP without you writing special code to prevent it from going away. That text box writes out its content in the View State and restores it when a postback occurs.
Physically, View State is persisted as a hidden field. ASP.NET takes a subtotal of all the View state written out by the page and its controls, returns in a hidden field to the client a Base 64 string containing all of that View State data. When a postback occurs, ASP.NET takes the value of that hidden field, repopulates a View State with it so that any controls or pages that read from View State can read out of it what the previous generation of that page and its controls wrote in. You should know that View State, by default, is tamper-proof. ASP.NET uses a keyed hashing algorithm to detect any changes made to View State. If changes have been made as that View State traveled down to the client and back, ASP.NET throws an exception. There's even an option through Web.Config, if you choose to use it, for encrypting View State so that not only can't be altered, it can't even be read unless someone can steal a decryption key from your server.

Here's an example of how a page or a control can write data into View State so that it can recover that data following a postback. View State is basically a big dictionary. I can stick items into it. Those items can be instances of anything derived from System.Object, which in the .NET Framework means all managed types. When I place an item in View State, I key it with a string. Then I can retrieve it from View State simply by using the string name that I keyed it with. The View State property that I'm reading here from is the View State property inherited from a base class. That is Page.View State or Control.View State. What can you store in View State? I said you can put anything into it that's derived from System.Object, and that is true. For more exotic types, however, there may be a little bit of work that you have to do.

First off, primitive types like string and integers can go into View State without you having to do anything extra to allow that to happen. .NET also supports the notion of type converters, special classes which are specifically designed to convert objects of one type into objects of another type.

You can, if you want, build and register type converters for custom types, and they can be used to allow those types to be stored in View State. Also, you can mark types as serializable, using the .NET Framework serializable attribute. That allows those types to be serialized and deserialized by the binary formatter. It also allows those types to be stored in View State. In general you don't want to store instances of large types in View State, because remember, once those type instances are serialized out, they're persisted by writing them out as a hidden input field. The more data you write into View State, the slower the connection to that Web server is going to feel. A data grid control is one example of one that is a prodigious user review state. Data grid controls are frequently contributors to low performance in ASP.NET applications. When we disable View State usage in a data grid, however, performance goes back up.
A second way to store across requests in ASP.NET is to use a mechanism called the application cache. This is somewhat similar to application state in ASP Classic, but it's a lot smarter. It is an in-memory data store. It's a great way to minimize or eliminate redundant database I/O, file I/O, etc. I say that it's an intelligent data store because of some of the features that it offers to us. For example, when you place an item in the application cache, you can assign it an expiration policy. You can say, This item should remain cached for five minutes and then be automatically decached. You could even do a sliding expiration. You can put an item in the cache and say, It should remain there until it goes for five minutes without being retrieved from the cache. You can create cached dependencies. You can create dependencies between cached items and objects in the file system, objects in databases, and even other objects in the cache.

If the object that a cached item depends on changes, if, for example, the time stamp on a file named in the cache dependency changes, the corresponding item is automatically removed from the cache. ASP.NET even allows you to be notified when it removes an item from the cache, if you wish, using cache removal callbacks. The scope of the application cache is very similar to that of application state in ASP. It's not a per-user quantity; it's a per-application quantity. Any data written into the application cache by one page can be read by another. Any data written into the cache by one user can also be read by another. Here, syntactically, is how you use the application cache. Pages inherit from their base class a property named Cache that allows us to access the cache.
Probably the most important method of the cache is one named Insert which lets us insert items into them. In this example right here, I create a hash table, I stuff some stock prices into that hash table, and I stuff the entire hash table into the application cache by calling Cache.Insert. Any managed type can be stored in the cache. You don't have to worry about making the type serializable here, because they're always stored in memory, inside the same application domain that hosts the application that does the writing to the cache. Reading from the cache is a simple matter of accessing the cache as if it were an array, specifying the name of or string identifying the item that you wish to retrieve. If you want, you can call Remove on the cache to empty it out and remove everything from it. That showed one way to use Cache.Insert, but it didn't show all the capabilities of the Cache.Insert method. Here's what that method looks like. You can see that it accepts a number of parameters you can optionally specify. In fact, this is an overloaded method, and the example on the previous slide used a simple form of Cache.Insert.
By using some of these other parameters, here are some of the interesting things that you can do with it. In the example at the top, I'm stuffing a hash table or some other object into the cache, but I'm assigning an expiration policy that will cause it to automatically be decached after five minutes. That's an absolute expiration, because that item will be removed, if it hasn't already been removed. After it's been in the cache for five minutes. At the bottom you see an example of how we implement a sliding expiration. Here I place that same object in the cache and I ask that it remain there until the item goes for five minutes without being retrieved. As long as I'm retrieving the item every few seconds or every couple minutes, it's going to stay in the cache, but if I go for five minutes without retrieving it, then it is automatically decached.

One thing I'd like to mention before I move to the next slide is that by default, ASP.NET reserves the right to remove items from the cache early, and it may do so if it senses memory pressure on that server and thinks that it can better use the memory for other things. You can specify priority values in the cache to let ASP.NET know which items are more important to you and therefore which should be discarded first and which should be discarded last. You could even, through the cached priority, parameter to Cache.Insert, tell ASP.NET not to remove an item from the cache early. In general, that's not a good thing to do. You want to give ASP.NET that latitude to remove items from the cache if it feels that it needs to. That's why I say that when you put an item in the cache for five minutes, as we do in the top example here, I try to say that the item will be cached for up to five minutes.

Cache dependencies allow items to be automatically removed from the cache if the data that was used to populate those items or any other data, for that matter, changes. In the first example right here, you see me reading an XML file, grabbing some content from it, and stuffing that content into the application cache. Probably that content is in the form of a data set, because data sets, through methods like Read XML, make it very easy to read XML content. Notice the third parameter to Cache.Insert is a new cache dependency object. It's there that I'm creating a dependency between the cached item and Stocks.XML. Under the hood, ASP.NET now monitors very efficiently that Stocks.XML file. If the file changes, the corresponding item is removed from the cache. At the bottom you see a slightly different example. Instead of using a cache dependency, there I use a SQL cache dependency. SQL cache dependencies are new in ASP.NET 2.0. They allow you to create dependencies between items in the cache and database entities such as database tables. I'd like to pause and do demo. I'd like to show you a simple application implemented two different ways, one way, without the application cache and another way, with. When you see the difference between those two applications, see how the application cache is used, and see why the implementation that uses the application cache is a better implementation of that application. Session State is something you're probably familiar with in ASP. Session State is a per-user data store that allows us to store data on behalf of individual users and to store it across requests. It's one way to help overcome the stateless nature of HTTP. Session State in ASP.NET, in a lot of ways, is like Session State in ASP.

Syntactically, reading and writing Session State looks very much like it does in ASP. However, Session State does offer some additional features that ASP does not. First and foremost, it offers options for making Session State compatible with Webforms. This is an example of how to use Session State. Again, it's very much like ASP. If I want to read or write Session State, I use the Session property which I inherit, if this is an ASPX file, from my base class, System.Web.UI.Page. In this example at the top, I'm creating a shopping cart object then I'm storing a reference to that shopping cart object in Session State. That shopping cart is intrinsically tied to the user that that session belongs to.
Later on, if I want to retrieve that shopping cart from Session State, I simply read it back. Notice that I'm using C-Type to cast the object retrieved from Session State to a shopping cart object. Session State in ASP.NET is weakly typed. In other words, all of our compiler sees when I retrieve something from Session State is a System.Object. If that was a shopping cart that I retrieved and I want to treat it as such by calling Shopping Cart Methods on it, for example, then I need to tell the compiler what type of object I retrieved from the session data store. In ASP, Session State is stored in memory. In ASP.NET there are three different ways that it can be stored. By default, Session State is stored in memory in ASP.NET on the Web server.

That's good for performance, but it also means that if you're building an ASP.NET application that runs on a Web farm, this model doesn't adapt very well to that. What's written to memory on one Web server can't easily be read from memory on another. That's why ASP.NET offers a couple of other session-state process models or session-state modes. In the State Server model, we direct ASP.NET to store Session State in an external process. That process can be on the Web server or on a completely different machine. One way that we can achieve compatibility between Session State and Web farms is to point all of the servers in that farm to a common machine on the back end hosting a state server process for Session State.
Performance-wise, we lose a little bit there, because it takes time to serialize and deserialize the contents of Session State and move it back and forth between machines. We do this on a Web farm, because we hope to more than make up for, in terms of scalability, what we lose in performance. Because we have Web farm compatibility, because we have scalability, we can drop additional servers into that farm and grow our Web site to meet the needs of a growing customer base. The third of the three session-state modes or process models in ASP.NET is called the SQL Server model. This is the one that a lot of companies find interesting. Just by flipping a switch in Web.Config, you can now direct ASP.NET to store Session State in a SQL Server database. ASP.NET comes with a pair of SQL installation scripts that will create that database for you. They're called Install SQL State.SQL and Install Persist SQL State.SQL. Again, we can use this to get compatibility with Web farms by storing this ASP.NET database on a back-end machine and pointing all of our Web servers to it with a Web.Config file like the one that you see right here. If you are going to create that database and experiment with this, you probably want to use Install Persist SQL State.SQL to create the database, because it creates a database with permanent storage. If you use Install SQL State.SQL instead, that uses temp tables to store the Session State data with the result that while it's a little bit faster, if your database server goes down at the wrong time, you'll lose what's in Session State.
Sessions fire events, or I should say, ASP.NET fires session-related events. This isn't new to you if you're an ASP programmer, because these same events existed in ASP as well. In your Global.ASAX file you can include a method named Session Start or a method named Session End. Each time a new session is created on behalf of a user or each time a session ends, those methods will be called, if present. In ASP it was very common to process that Session End event, because that was where you deleted objects that you had created or freed-up memory you had allocated. In ASP.NET it's somewhat rare to need to process Session End, because we're working in a managed environment where all managed types, managed resources, are cleaned up automatically. You probably only override or process that Session End event if you're holding onto unmanaged resources that you want to let go of before that session ends.

Sessions time out in ASP.NET in pretty much the same way that they time out in ASP. By default, sessions time out after 20 minutes. That means once a session is created on behalf of a given user, if 20 minutes go by and no requests are received from that user, their session is ended. You can change that time-out if you want, using the Session State element in Web.Config. Session State is all fine and good. It's something that's well understood, because it is very much like ASP Session State, but ASP.NET Version 2.0 offers another way to store data on behalf of individual users, a way that has several advantages over Session State. It's called the Profile Service or simply Profiles. Unlike Session State, which is weakly-typed profiles, give you strongly-typed access to per-user data.
Unlike Session State, which has to be loaded and saved on each and every request, Profile data is only read and written when you read and write it. Unlike Sessions, which time out, Profile data is long-lived, so you can use it to store, for example, a list of favorites that a user has selected and to store that information indefinitely. The way that the Profile Service works is pretty interesting, and we're going to look under the hood and understand that some, but first I'd like to say a word or two about how you, as a developer, will use the Profile Service. Here's what the architecture of the service looks like. Like many of the state management services in ASP.NET, it is a provider-based service. What that means effectively is that you have some choices as to how data that you write to a user profile is stored. In beta 1 we have a choice of storing that information in an Access or SQL Server database. In beta 2 that will change to SQL Server and SQL Express. Since the provider model is open and well documented, you can plug in additional providers, third-party providers or providers you've written yourself, and store profile data anywhere you want to. If you want to store it in an XML file or an IBM 2 database, you have that flexibility in ASP.NET Version 2.0. Let's look at the basics of Profiles.

If you want to use the Profile Service, you begin by defining in your Web.Config file an XML profile like the one you see here. Basically, a profile is a list of the data or the values that you want to store on behalf of each user. See the Profile element in this Web.Config file? You can also see that I've defined inside it three properties named Screen Name, Post, and Last Post. Something interesting happens at runtime. ASP.NET parses that XML profile definition that you gave it. It generates a class that derives from HTTP Profile Base, and it builds a property named Profile into your page that allows you to access that profile. The derived class generated by ASP.NET has the same properties inside it that you declared in the XML profile in Web.Config. Reading or writing the HTTP Profile Base derivative reads and writes the underlying profile data being stored in a SQL Server database or elsewhere.
In this example if we're using the profile you just saw to keep track of the number of posts the user has posted in a forum, by writing Profile.Post = with the first statement, I'm reading the current value of that user's post property, adding 1 to it, then writing it right back to the post property of the same profile. If I want to update in this persistent profile the last post date, I simply write a date and time to Profile.Last Post. You can see now what I mean when I say you have strongly-typed access. You define through XML what a user profile should look like. ASP.NET dynamically builds a class that gives you strongly-typed access to that very data. Under the hood, as I mentioned, ASP.NET is doing quite a bit of fancy stuff to allow this to work. It takes your profile definition of Web.Config, drives a class from HTTP Profile Base, and adds to the drive class the properties that you define there.
Then ASP.NET's parsing engine places into the page-derived class that it generates a property named Profile that returns a reference to the HTTP Profile Base derivative that gives you strongly-typed access to Profiles. In addition to defining properties in Profiles, you can define what we refer to as profile groups. In other words, you can add properties. They can only be nested one level deep, but they can be very useful if you're defining complex profiles that have lots and lots of different properties. By grouping those properties, you have a way to categorize those properties. In this example right here, we are defining a profile. We're defining the Screen Name property outside of a group, but we're defining the Post and Last Post property inside a group named Forums.
When we programmatically access the Post or Last Post property, we'll now do it this way. Notice that the group name is used in our code to fully qualify the property that we're accessing in that profile. A logical question to ask at this point is, So what can I store in a profile? Am I limited to simple data types like strings and integers? The answer is no, you're not. All those built-in data types are supported, but you can also build custom types of your own, shopping cart classes, for example, or favorites lists or anything else you want, and store those in a profile. In order for these custom types to be stored in user profiles, they have to be serializable. ASP.NET gives you three different choices as to how those custom types are serialized with the binary serializer, the XML serializer, or with type converters registered for that type.
Won't go into all the details here, because there are a lot of ins and outs, but you should know that by default, any custom types that you use in a profile are serialized using the framework's built-in XML serializer. A corollary of that is since the XML serializer is only capable of serializing and deserializing public data members, only the public data members in your custom type will be serialized. If you would rather do a binary serialization where public, protected, private, all members can be serialized, then you need to build the type and market-attribute it serializable, making it compatible with the binary serializer, and also let ASP.NET know in the profile definition that you want the binary serializer, rather than the XML serializer, used to serialize that type. Here's what a profile definition might look like if I want to use the binary serializer to serialize a custom type. You can see that I intend to store instances of Shopping Cart, a custom class in the user profile.

If I were to show the source code for that class, you would see that I attributed it serializable, meaning it can be serialized and deserialized by the framework's binary serializer. So that ASP.NET will use the binary serializer to serialize it and not the XML serializer, I've included a Serialize as Binary attribute in the property definition. Profiles can be used for anonymous users and authenticated users. However, if you want to store profile data on behalf of anonymous users, there are a couple of steps that you need to take to let ASP.NET know that. Number one, as this Web.Config file shows, you have to enable a new service in ASP.NET called the Anonymous Identification Service. This is simply a service that assigns unique user IDs to otherwise unauthenticated users and allows them to be identified so that they can be associated with profiles.
Also, Step 2, for each of the properties in your profile that you want to store on behalf of anonymous users, you need to add an Allow Anonymous = True attribute, as you see here. In this example I can store values for Screen Name in the profile for anonymous users, but I cannot store values for Post and Last Post for anonymous users, because I have not attributed those properties Allow Anonymous = True. I mentioned earlier that many of the state management services in ASP.NET are provider-based. Profile Services no exception, as I've already indicated. Beta 1 comes with two profile providers. One stores profile data in Access databases.

The other stores it in SQL Server databases. As the note at the bottom of the slide indicates, the Access provider will be replaced by a SQL Express provider in beta 2. What's important about this is that because you can write providers of your own or acquire providers from third parties, you can configure ASP.NET to store profile data absolutely anywhere. If you want to configure it to use the SQL Server provider, and that's generally something you want to do because the default in ASP.NET is for it to use the Access provider, then you need to do this in Web.Config.

Notice the Profile attribute and the Profile Element and the Default Provider attribute accompanying it. Here I'm asking ASP.NET to use the SQL Server provider for the profile service. That means now the profile data will be stored in a SQL Server database. Something important that you should know here. If you use any of the SQL Server state management providers in ASP.NET, whether it's the SQL Server Profile Provider, Membership Provider, Roles Provider, or what have you, you must first create the database that ASP.NET uses to store that data. Beta 1 of ASP.NET Version 2.0 comes with a command-line tool named ASP NET_Reg SQL.XE that will create that database for you. Be sure you run that tool, allow it to create the database. The database in beta 1 is named ASP NET VB. Otherwise, any attempts to write to that database by the SQL Server Profile Provider or any of the other SQL Server providers in ASP.NET 2.0 will throw an exception. Let's take a look at profiles in action. Profiles are something you'll probably find very useful in the application you're going to build in this project.

It's important that you get a first-hand look at them. Final topic I want to mention in our discussion of state management is cookies. As ASP programmers, I'm sure you're well aware already of what cookies are. Cookies are simply text strings that are passed down to a browser and then resubmitted in subsequent requests to a Web site, typically requests back to the site that issued the cookie. Cookies are a very good way to persist lightweight pieces of state-like user preferences and to add some statefulness to the stateless protocol that Web applications run on top of. What does cookie handling look like in ASP.NET? It's very easy. There's a class in the framework named HTTP Cookie that wraps HTTP cookies. In addition, both the HTTP Request and HTTP Response objects which you can access through the Pages Request and Response properties have properties named Cookies that provides access to all the cookies that a company requests and all of the cookies that go out with a response. Here are the properties of the HTTP Cookie class. The most important are the name and the value properties. Every cookie has a name.

Every cookie has a value also. Those properties expose what the name and value are. The other properties map back to attributes of HTTP Cookies. For example, if you want to issue a persistent cookie rather than a session cookie, that is, one that goes away when the browser that it was issued to is closed, you simply set the Expires attribute of that HTTP Cookie object to the date and time at which the cookie should expire. It then goes back to the browser as a persistent cookie. That will prompt the browser to store the cookie on hard disk so that the lifetime of the cookie is independent of the lifetime of the browser session. Here is what the code to create a cookie and issue that cookie to a browser client looks like in ASP.NET. I simply create a new HTTP Cookie object, I pass to its constructor the cookie's name and its value, then to make sure that this cookie goes back in the response, I add that cookie to the cookies collection of the HTTP response. If I want later on to read that cookie, when a request comes in, I can inspect the Requests cookies collection for a cookie named User Name.

If there was no such cookie, then the return value will be nothing, and there's nothing more that I do. The cookie doesn't exist. If, however, that cookie has been issued and is now being resubmitted to our site, then Request.Cookies User Name will return a non-no-reference which refers to that cookie. Now I can use the value property of that cookie to get the value encoded inside it or other properties of the HTTP Cookie class to pull out other characteristics of that cookie. That concludes our look at state management in ASP.NET. All of these mechanisms are important. Probably the one that will be the most important to you in the project you have coming up is the Profile Service. If you need to, take the time to go back, review what we had to say there, and by all means, take a look at the demo application that we used to demonstrate Profiles.

Make sure you understand what it does and how it does it. That knowledge will pay off for you very shortly.
Page 1 of 9

