State Management – Demo 2 Transcript

In this demo we’re going to take a look at the new profiles feature in ASP.NET 2.0, which makes it very easy for you to build pages that store data persistently on behalf of individual users. I’d like to begin by running for you a page named stickyquotes.aspx. It’s very much like the smartquotes page you saw just a few moments ago in that it displays famous quotations in response to query string parameters passed into it. But this page has a feature that smartquotes.aspx did not. It has an add-to-favorites button, and if I click add to favorites when one of these quotations is displayed, that is added to a favorites list that is very private to me, the person who is currently using this site. We just added that quotation in. Let’s add another one as well. How about quotation number 1? Le me click add to favorites. Let me close that page down and run for you another page named favoritequotes.aspx. You’ll see when that page comes up it reads the favorites that I have designated and list them back for me. It renders them out as hyperlinks, so that if I click one of those hyperlinks, it takes me back to stickyquotes.aspx and shows me that quotation again.

What did it take to write this application, to enable the application to store favorites on behalf of each individual user? Well, not surprisingly I used the profile service to do this. It begins with something that I added to web.config. Let me show this to you here. In this web.config file I have added a profile property, and I’m defining a profile for storing data on behalf of individual users. This profile has just one property. Its name is favorite quotes, it’s type is favorite quotes. That’s a class that doesn’t belong to the .NET Framework, but one that I wrote for this application, which I’ll show you in just a moment. I made the class serializable, as you will see, so I’ve included a serialized as-equals binary attribute so the class can be serialized and deserialized by the framework’s binary formatter. Because I want to allow unauthenticated users as well as authenticated users to record their favorite quotations, I’ve included and allow anonymous equals true attribute as well. Remember, in order to store profile information on behalf of anonymous users, you also need to be enable the anonymous identification service in ASP.NET, hence, the anonymous identification element you see here that enables that service.

That’s a start. Remember now that ASP.NET at runtime will compile this profile for me and give me strongly typed access to it. Let’s take a quick look at stickyquotes.aspx.vb, specifically at the code that executes when a user clicks the add-to-favorites button. When that button is clicked, this method that you see right here is executed. In this method we first read favorite quotes from the profile for this user. If this user has had a favorite quote stored for him or her, this will return a non-no or non-nothing value. I do a check right here to see if I actually got back profile data. If the answer is no, I create a new favorite quotes object. On behalf of that user, I call a method on that object named add quote to record this quote, to add it to this user’s favorites. Then I write this information back to the profile simply by assigning it to profile.favoritequotes. Where does this favorite quotes class comes from? It comes from an auto-compiled VB file in my code directory. That VB file is named favoritequotes.vb. If you look through this file, you’ll see that among other things I’ve defined a class named quotation, which I use to represent individual quotations. Note that I’ve attributed it serializable. I’ve also defined a class named favorite quotes. This is the actual class that is getting serialized out to the profile data store. Note that I’ve marked it serializable as well. This class has an add-quote method that I can call to add a quotation to a user’s favorite’s list. This method, before adding the quote to the favorite’s list, checks to make sure the quote isn’t already in there so that we don’t duplicate quotations. The get favorite quotes method allows a caller to, given a favorite quotes object read out of the profile, retrieve an array of quotation objects representing all the quotations that this user has added to his or her favorite’s list.

Given that, now let’s look at favoritequotes.aspx’s page-load method. Recall that this is the page that displays your favorites for you. If you look at this page, you’ll see that in the page-load method, I’m reading the favorite quotes from this user’s profile. If that returns a non-nothing value, then I bind to a repeater control. Note, that I’m calling the get-favorite-quotes method of the favorite quotes class, so I’m taking the quotation’s array that comes back from that and physically binding it to a repeater control to display that quotation as a hyperlink. If you look in favoritequotes.aspx, you’ll see that in the item template of that repeater control, I am indeed rendering out a hyperlink that refers back to stickyquotes.aspx. With that you can see how easy it is to store data like favorite’s list or anything else you want to store on behalf of individual users using profiles.

If you choose to use profiles in the site that you will soon be building, feel free to refer back to this demo to see how profiles are defined and how they are accessed in your code.

Page 1 of 2

