State Management – Demo 1 Transcript

In order to see the application cache up close and personal, we’re going to begin by looking at a page named dumbquotes.aspx. Let me first show you what this page looks like when it runs, and then we’ll see what this page looks like on the inside. It’s a simple page. It takes a query string parameter named ID and displays for you a famous quotation. The quotations are coming from a file named quotes.text, so each time I pass in a different quotation ID, this page goes to that file, reads its contents, pulls out the selected quotation, and displays it for the user to see.

Let’s take a quick look inside this page. The ASPX file is a very simple. In effect, I just have a couple of label controls in there serving as placeholders for the quotation and for the author of that quotation. The heart of the page lies in the page-load method where we find code that reads the quotations from quotes.text and displays them. We do the reading right here. Notice what I’m doing. I’m calling a static method named get quotes that belongs to a class named famous quotes. Observe that this application has a directory named code. Remember that I can drop source code files into that directory, and they get automatically compiled by ASP.NET. The famous quotes class that you see me referencing right here is in the quotes.vb file. Here is the code that physically opens the file containing the input, the quotations and reads those quotations out. As you can see here, it’s reading them into a list, a new class in Version 2.0 of the .NET Framework and returns that list so that the page can display the specified quotation.

As you can see, this page works very well. But I don’t call it dumb quotes because the quotations are dumb. I call it dumb quotes because the implementation is dumb. What’s wrong with this page? It does far too much redundant IO. Every time the page is requested, it goes out to the file system, reads quotes.text and pulls a quotation out of it. The problem with that is that quote.text is a static file. It doesn’t change often, if at all. I’m reading it much more often than I should be reading it. A better way to implement a page like this is to read the contents of that data file once, place the contents in the application cache, and then retrieve the contents from the cache in subsequent requests. That’s exactly what smartquotes.aspx does for me. We’ll run this page, and you’ll see that on the outside it looks exactly like dumbquotes.aspx.
On the inside, however, it is very different. Take a look at the page-load method in smart quotes code-behind class. Rather than go out to the file system to get the content, to get the quotations, we do this. I reach into the cache and try to pull out an already populated list named quotations. If the file has been read before and its contents have been cached, this will return a reference to that list for me, and I can simply retrieve the quotation I want straight from the cache. However, if this cache read that you see right here returns nothing indicating that the content is not in the cache, then I read the file. Note the call here to famousquotes.getquotes. I then take the list that is returned, insert it into the application cache by calling cache.insert. I then call a method named register.startupscript to display a message box indicating to the user that the cache was refreshed. This statement isn’t necessary. I just use this as a diagnostic tool so I can see when the file is actually being read and when the content is being retrieved from the cache. This is a much smarter implementation of the page, because now I only read the contents of quotes.text one time in the entire lifetime of the application. If the data file changes, however, I still dealt with serving up stale data to my end users, because note that when I call cache.insert here, I pass a cache dependency in the third parameters. I’m creating a dependency between this cached list and the data file that the content came from. If that data file changes, ASP.NET automatically evicts the list from the cache. The next time this code executes, I’ll attempt the cache read, I’ll get back nothing, so I’ll go read the file one more time. Again, this is a better way to implement this page, because I’m reducing to an absolute minimum the amount of IO I’m doing with the file system. If I were grabbing these quotations from a database instead of from a file, then instead of using a cache-dependency object, I would use a SQL-cache dependency instead. Then if, for example, I were storing all these quotations in a single database table, when anything in that table changed, the cache data would be automatically evicted from the cache.

That is what the application cache looks like. You can see that using it is very, very easy. This is a wonderful tool for building high-performance ASP.NET applications.

Page 2 of 2

