Master Pages and Navigation – Presentation Transcript

In this final module, I'd like to introduce you to two features of ASP.NET, both new in Version 2.0, that are of tremendous value in helping build Web sites. One of those features is Master Pages. The other is Site Navigation. We're first going to introduce Master Pages to you. As you'll see, Master Pages are a mechanism for defining common content, or templates if you will, that other pages acquire content from. In terms of site navigation, we're going to talk about how to build data-driven site navigation user interfaces in ASP.NET 2.0. As you'll see, it's something that is very useful on a lot of Web sites, and it makes your site navigation interface very adaptable so that if you make changes to the structure of your site, the UI automatically adapts to those changes. Let's start with Master Pages. One of the features that was missing from ASP.NET 1.0 that developers asked for quite a lot was the ability to define templates that other pages could inherit from.

Think of a typical Web site, for example, that has a banner at the top, a footer at the bottom, and maybe a navigation bar or some other element running down the left-hand side of most or all of the pages. In ASP.NET 1.0, there was no way that we could define that common content in one page and then just have it flow into other pages. In ASP.NET 2.0 we can thanks to Master Pages. In essence, you define a special page called a Master Page. You define the common content that's going to appear on other pages in that Master Page, and you also define placeholders in the Master. Placeholders being areas that subpages, or what we refer to as content pages, can plug content in. Then, you build pages that inherit from that Master. They automatically acquire the content that you defined in the Master, and they have the freedom also to plug content of their own into the placeholders that you defined in the Master page.

Here are the basics of Master Pages from a developer's perspective. Master Pages are files that have the extension .master. Inside them, they have at-master directives that identify them unequivocally to ASP.NET as Master Pages. In the Master Pages, you define the content that you want to flow down to the content pages that derive from that Master, and you also define one or more content placeholder controls. Again, those controls define the areas where content pages can plug in content of their own. Then, you define your content pages. Those content pages reference the Master Page using a Master Page file attribute in their at-page directives that simply tells ASP.NET that this page uses a Master Page, and which page it is. Then, the content in the content pages is encapsulated in content controls. Content controls have properties named Content Placeholder ID that maps them back to a content placeholder in the Master. When you bring that content page up in a browser, you see both the content that was defined in the content page and the content that it acquired from the Master Page. To the end user, it appears that it's just one page with lots of content. The end user will typically have no idea how the page was structured on your Web server. Here's a quick example of a Master Page.

Remember, Master Pages have the file name extension .master. They also have an at-master directive at the top identifying them as Master Pages. In this one, I have some simple HTML content defined. Content that displays a banner at the top of the page. I also have a content placeholder control defined. I give it the ID main now-content pages that use this Master can include content controls that refer back to the content placeholder named domain, and they can plug in content of their own. You're not limited to just one content placeholder control per Master. A given Master Page can have any number of content placeholder controls inside it. In a content page, you use a page directive with a Master Page file attribute like the one you see here to refer to your Master Page. Again, remember that content pages encapsulate all of their content in content controls.

Each of those content controls must map back to one of the content placeholders declared in the Master Page that this content page inherits from. When I say inherits from in the context of Master Pages and content pages, I'm not using inherent in the straight sense of the word. I'm using it figuratively to say that a content page inherits content from its Master. A Master Page file attribute in an at-page directive allows you to specify a Master Page for a given content page. If you have just one Master Page in your site and you want to apply that globally to all the pages without having to put a Master Page file attribute in each and every ASPX file, you can do it this way. This is a Web.config file. You can see the Master Page file directive here accompanying the pages element that globally applies site.master to all the pages on this site.

You should note, by the way, that a site isn't limited to just one Master Page, you can have several different Master Pages. Master Pages can even be nested within one another so that a content page can refer to a Master Page, which in turn, refers to yet another Master Page. One of the options that you have with Master Pages is to define default content. When you declare an empty content placeholder control, as you saw in a previous example, then, if a content page does not add content to that placeholder with a content control, nothing appears there. If you want, you can define default content in your content placeholder controls that will appear on a content page only if that content page doesn't override that content by providing a content control of its own.

This example here you see some text inside my content placeholder control. That text will appear if it's not overridden in the content page. You're not limited to simple text here. If you want to put more complex HTML in a content placeholder control to serve as default content, you have the option of doing that as well. Programmatically, Master Pages are backed up by a model that allows you to, at runtime, find out if a content page has a Master Page, and if it does, who that Master Page is. The page class, system.web.ui.page, that represents pages in ASP.NET has a property named Master Page. You can use that property- rather, I'm sorry. It has a property named Master. You can use that property at runtime to find out who your master is. You can even, if you want, use that property to gain references to controls to finding the Master. Let's say that you have a label control defined in your Master Page. Each content page wants that label control to be assigned a different text string.

What you can do is build a page-load method into the content page, use page.master in that method to get a reference to the Master Page, and then use Find Control, calling it on the Master Page to get a reference to that label control whose text you want to change. If you use Find Control, you're using weak typing inherently, because Find Control returns a generic control reference. If you do plan to, from your content pages, program against controls defined in the Master Pages quite a lot, you may elect to use strong typing. Typically, that's done by building public properties into the Master Page that return strong references to the controls that are referenced in the content pages. With that, I'd like to break and show you Master Pages in action. In this demo, you're going to see a replica, a somewhat functional replica, of Microsoft's home page at Microsoft.com.

I'll be using one Master Page and two content pages so that I don't have to replicate banners, navigation bars, and other UI elements that appear on the content pages two different times. Site navigation is an important element of Web sites, because if your site has lots of different pages, lots of content to view, users need to be able to reach that content easily. In ASP.NET 2.0, we have several new features that aid you in building site navigation UIs, and also in making those UIs data-driven so that changes to the structure of your site are automatically reflected in the navigation UI. These new features center around controls like Tree View and Menu, which provide user interfaces that allow users to jump to different portions of your site. Site Map Data Source is another important control. As you'll see, it has the ability to read site maps, and feed site map information to the navigation controls. There's also a new control called Site Map Path in ASP.NET 2.0, which displays the bread crumb UIs that you see on many Web sites showing the path to the current page, and also providing hyperlinks for navigating to pages higher in the page hierarchy.

Those controls are built on top of the public API that we call the Site Map API. I'll be saying a little bit more about that API shortly. This service, like so many of the services in ASP.NET 2.0, is provider-based. Here schematically is what site navigation looks like. You can see at the top the controls that we have for making site navigation work. Those controls rely on the site map API. To the extent that you can rely completely on the controls to build your navigation UI, you don't have to use the site navigation API directly. But, there can be, and often are, times when you need to drop down to that API and use it to customize the way navigation works on your site. Let's talk for a moment about a tree-view control. Tree-view controls are one way to build navigation bars and other elements for navigating around a Web site in ASP.NET. When you think of a tree view, you typically think of tree views in Windows, collapsable, expandable structures that have leaves or elements. Tree views can look like that in ASP.NET, but, in fact, their UIs are very flexible. You don't have to allow the user to expand and collapse the branches, for example.

A tree view doesn't have to look like a tree view. You can stylize it to look almost any way you want to. Tree-view control is one that you may find very useful, and decide that you're soon going to be building. Here's some information that will help you when you set about that task. This example is an excerpt from an ASP.NET Web page. In this excerpt we declare a tree-view control, and we declaratively add elements to that control. The individual elements or items in the tree view are represented by tree nodes. You can clearly see here the tree node control is being declared inside the tree view. The tree view class is one of the richest control classes in ASP.NET. It has lots and lots of different properties that you can use to customize the way it looks and it behaves.

To try to help you make some sense of that, this slide lists what are probably some of the most commonly used properties of the tree-view control. The show, expand, collapse property, for example, is one you may find useful. It's a bullion property. It defaults to true. If you set it to false, then the little boxes with plus and minus signs allowing users to interactively expand and collapse a tree-view control go away so the tree-view control becomes much more static. The node-style property tends to be a very important one, because it allows you to specify using HTML and styles, if you wish, what each node in that tree view should look like. You can even use the level-styles property if you want to stylize nodes differently based on their level in the tree view's node hierarchy. Styles, or rather properties, like selected-node style and hover-node style even allow you to specify what a node should look like when it is selected and when the cursor hovers over it.

In the example I showed you just a couple of slides back of declaring a tree-view control and initializing it with nodes, we were declaratively adding nodes to the tree view. Sometimes that's what you want. But, if you're using a tree view for the purposes of building site navigation UIs, you would probably prefer to initialize that tree view with nodes through data binding. That's what the site map Data Source Control allows you to do. It's another of the new controls in ASP.NET. It falls into the Data Source Control category, but it's not designed inherently to go out to a database and do a query. Instead, it's designed to read a site map. In Version 1.0 of ASP.NET, a site map is an XML file named Web.site map. But, site map data source is a provider-based control. It's possible and, in fact, not difficult, to build additional provider that allow you to store site maps in other ways. If, for example, you wanted to store a site map right there in the database along with other data that drives your site, by plugging in a third-party or custom-written provider, you could do that.

This is what an XML site map looks like if you're going to use the site map provider that comes with ASP.NET 2.0 to build your site map, then this is what the site map needs to look like. It's a set of XML elements as you can see. It conforms to a schema that is rather rigorous. Essentially, each node in your site map is represented by a site map node element. Those elements can be nested to create a hierarchy of nodes, and site map node attributes, such as title, description, and URL allow you to define the properties of those nodes. If, for example, you set a nodes title to programming.net, then that is the text that will appear for that node in the tree view. If you assign that node a URL property, then clicking that node in the tree view will jump to that URL. As an example, if you take that site map shown in the previous slide and you declare a site map data-source control and a tree-view control in your page or pages, this is what you get.

Notice here that I haven't told the site map data source where to go to get the site map. It automatically looks for an XML file named Web.site map to get that information. Notice here that I'm not declaring any nodes in that tree view. Instead, using the tree view's data source ID property, I've pointed it to the site map data source. When the page loads, the site map data source reads the site map from web.site map and feeds that information through data binding into the tree-view control. At right, you see what that tree view looks like. This tree view because I haven't stylized it otherwise is an expandable, collapsable tree view. One of the things that developers often ask about site maps when they first see them is how do I change the name of that site map file? Suppose I don't want to call it web.site map. How do I make that change? The name of the site map file is actually a property of the site map provider. The one and only site map provider shipped with ASP.NET 2.0, at least in beta 1.0, is the XML site map provider.

In this web.config file, I de-registered that provider, and then re-register it. When I re-register it, I use a site map file attribute to change the file name. If I deploy this web.config file in my application, then the site map data source won't read site map data from web.site map, it will read it from Acme.site map instead. This is a list of the attributes that you can include in a site map node element in an XML site map. You've seen three of these attributes used already: description, title, and URL. There's a fourth one though that may be very important to you. It's called roles. Very often when you build a site, and you build a site map, not all portions of that site should be visible to all users. What the user sees in your navigation UI may depend on whether they're authenticated. If they are authenticated, what role or roles they happen to belong to. Using a roles attribute in your site map node elements, you can tell ASP.NET and its site map infrastructure which node should only be visible to certain roles. Then, combined with a feature named Security Trimming, you can make sure that your navigation UI doesn't show nodes that users wouldn't be allowed to navigate to if they tried. How do I enable security trimming? Or, how do I exercise security trimming?

Step number one is to decorate my site map node elements with roles attributes, like the ones you see here. If I want a particular node to be visible to all users of my site, I include a roles=* attribute. If I want a particular node to only be visible to users who are authenticated and belong to the role named Managers or CEOs, then I can include a roles=managers, CEOs attribute, as you see here. The second step in getting security trimming to work is to enable it. That means that you need to de-register the built-in site net provider, and re-register it, and provide a security trimming enabled=true attribute, like the one you see right here. Security trimming is disabled by default. Simply decorating your site map node elements with role attributes is not sufficient to allow security trimming to happen.

You also need to enable security trimming as I've done right here. Site map data source, itself, has properties that allow its behavior to be changed. Here's a list of the properties that it exposes to you. You probably won't need all of these, but one that does tend to be very important and one that you'll probably want to take advantage of in the site that you build is show starting node. That's a bullion property. It's set to true by default. An XML site map has to have a root node, because XML documents have to have root elements. Very often, you don't want that root note typically representing home on your Web site shown in your site map navigation or in your site navigation UI. By setting Show Starting Node to false in your site map data source control, you can trim out that root node. Here's an example of what I mean. This is the same XML site map we looked at before. If you refer back to that slide, you'll see that there is an element or a node in the tree-view control representing the root node in the site map.

In this example, however, I've set the site map data source control's Show Starting Node property to false. Now, the home node no longer appears in the tree view as you can see on the right. Another element of data-driven site navigation in ASP.NET 2.0 is the site map path control. Many Web sites feature bread crumb elements showing the user where they are on a site and containing hyperlinks that allows them to get back to pages higher in the hierarchy. Rather than code those elements by hand, if you went to include a bread-crumb type UI on your site, you can use the site map path control to do that for you. It automatically integrates with the site map provider to get information about what page the user is currently on, and will automatically render out a UI for you. That UI is extremely flexible. If you don't like the way it looks by default, then you can change it. As long as you can represent what you want to display in HTML, you can configure a site map path control to render it.

Here's an example. If I wanted a simple bread-crumb element on my site, it's as simple as declaring a site map path control as I'm doing right here. Again, it automatically integrates with the site map infrastructure to figure out where in the hierarchy a given page falls and to render out a UI like the one you see right here. That was a pretty simple UI. But, you can change that if you want. You change that through properties of the site map path control. I've listed some of those properties here, the ones that tend to be the most interesting to ASP.NET developers. For example, if you wanted to change the path separator, the arrows shown between nodes in the site map path, to something other than a greater than sign you can do that with the path separator property. You can also use path separator style to stylize the path separators, or use path separator template to completely specify your own HTML defining what a separator should look like. You can do the same for nodes in the site map path using nodes style and nodes style template. Here's an example of how I might go about stylizing a site map path control.

This example, I've declared a site map path as you can see. I've also used the current node style and node style properties to stylize the way nodes look and the way the current nodes look. Specifically, I'm asking ASP.NET to highlight the current node with a background color of yellow. In order to create the stylized separators that you see, the arrows in the little green circles, I've used a path separator template, and simply pointed ASP.NET to an image, arrow.jif that I wanted to use for that separator. As I mentioned earlier, the site map's API and infrastructure is a provider-based service. I've also mentioned that ASP.NET 2.0 currently has just one site net provider. That provider is named XML site map provider. It looks for an XML site map like the ones that you've seen in the examples. Again, because it is a provider-based service, you have an infinite flexibility in where the site map providers are stored.

Several developers have already written custom site map providers that store site map information in a SQL Server database. It's not a difficult provider to write, and I'm sure that if you wanted to write that, soon you'll be able to find good sample code to guide you. I mentioned earlier that there is a site map API that you can utilize in ASP.NET if you want. The controls that we've talked about, controls like site map data source and site map path, do use this API. But, you can further customize the way site navigation UI works by leveraging this API yourself. Here are some simple examples of how you might go about doing that. If, for example, you wanted to write out to a label control the title of the node corresponding to the page that a user is currently viewing, you could do it using the first statement that you see here. Notice that I'm using the static current node property of the site map class to figure out which node we're currently at. Then, I'm reading the title property of that site map node to find what the title text is.

Further down in this example, we're building a hierarchical path that we're displaying to the end user using a label control. Bottom line is with the site map API, you can figure out where you currently are in the site map. You can find out what the parent nodes of that particular node are. You can even walk sideways upwards and downwards in that site map to enumerate other site map nodes. Site map Resolve's site map is an event that you should know about. You will need this in the project that you'll soon be embarking upon. Site map path controls are awesome. But, sometimes they're not flexible enough to do everything that you want them to do.

A classic example is the case where several pages on your site contain hyperlinks to another page, a page they share in common, and they pass query string information to tell that common page what to display. You can't represent that one page very easily in a site map, because in an XML site map every path, every URL on that site map, has to be unique. Using this Resolve site map event, however, you can customize your site map on the fly by adding nodes or changing nodes. If you have a site map path control on the page, it will respond to the changes that you've made to the site map on the fly. I'd like to close out this lecture with a look at data-driven site navigation.

In this demo, we're actually going to look at a reference implementation of the site that you'll be building in this project. If you haven't seen it before, this will be a good first introduction to it. We are specifically going to look at how it handles data-driven site navigation, and how it uses the Resolve site-map event to customize the site map on the fly. That wraps up the training that we've provided for you. I hope this has been helpful to you. I hope you like what you see in ASP.NET Version 2.0. Be sure to study the sample code in the slides that we've provided. We'll also be providing some copies of the demos that I've showed you for you to use as guidance. Good luck with your project.

Page 1 of 7

