Master Pages and Navigation – Demo 2 Transcript

In this final demo, I’m going to be showing you portions of the site that you’ll be building as part of this project. You’ve probably seen pictures of this in the specification that you have, but this is what the site looks like live. I want you to see this, not only so you can become somewhat familiar with the finished site, but also because it’s a great example of how we do data-driven site navigation in ASP.NET.

For starters, I want you to notice that several of the pages on the sites share some common UI elements like banners, footers, and navigation bars on the left, probably something you would want to implement with Master Pages, although that’s not strictly a requirement. Also, over here I’ve used a tree view to implement this navigation bar. You can see it doesn’t look much like a tree view, but then again, a tree view can be stylized almost any way you want to. When I click one of the nodes in the tree view, it takes me to a list of the articles in that particular category. I can click one of these Read More buttons to go see the actual article. Also notice that at the top of the page here and near the bottom of the page, we have a breadcrumb element showing the path to the current page. Great way to do this, if you care to, is with a Site Map Path control, and that’s exactly what I’ve done in this reference implementation.

Now, if I log into this site, log in as a member, as I’m about to do here, you’ll see that the tree view changes, and it shows additional elements. Now it shows content that is only accessible by members. For example, if I click Travel, I see a list of the travel articles available to members of this site.

Now let’s take a look inside to see what parts of ASP.NET we use to build this data-driven site navigation UI. Begins with a site map. I built this XML site map right here. You can see I have basically two levels of content divided into the categories you saw in the Tree View control. Because we are using role-based security, you can see that on the Members Only element, for example, I’ve included a Roles attribute that reads Members, Administrators. That means only members and administrators will be able to see that part of the tree view.

Let’s go take a look inside Site.Master now, which is the master page and which happens to be where I have the Tree View control as well as the site map data source defined. Here is the Tree View control being declared. You can see that I didn’t have to do much stylization. The stylization came from a style sheet which is being referenced right here. Also notice, however, that I have a Site Map Data Source control declared. Remember, Site Map Data Source reads the XML site map by connecting the Tree View control to the site map data source here. I’m giving the Tree View access to that content via data binding. By setting Show Expand Collapse on the Tree View to False, I hide the + and – buttons. By setting- let’s see. It’s in the Site Map Data Source control that I set Show Starting Node to False. That prevents the Tree View control from rendering out a node that represents the root element in the site map.

Also in this master page I have two Site Map Path controls declared, rendering out those site maps you see at the top and bottom. Here is one of those. You can see that it didn’t take a lot of work to display that site map on the page. I simple declare the Site Map Path control. It goes out to the site and the current site map provider and grabs information telling it where we currently are on the site.

Now let me show you something here that is very important to realize. I mentioned at the conclusion of the lecture the Resolve Site Map event. If I go back here to this page- let’s run the home page again. Let’s display one of these articles, like this one right here. Notice that when I go to the Articles page, the title of the article is shown right here in the Site Map Path control. In order to make that happen, I have to customize the site map on the fly. This page we’re looking at, Show Item.ASPX is one that is overloaded. It shows any article I want it to, provided I pass in an item ID.

Let me show you, very briefly, how the on-the-fly customization works. In my Global.asax file I’ve written an Application Start method. That method, by virtue of its name and signature, will be executed when the application starts up. That is, when the first request arrives for it. In that event handler I connect a handler for Site Map Resolve events to- I connect my handler named Expand Path for Unmapped Pages, which is a handler for Site Map Resolve events to the Site Map Evolve events right here. That means now every time a request comes into my site and the site map infrastructure wants to find out what node in the site map this page represents, my Expand Path for Unmapped Pages method will be called. Now, where is that method implemented? It’s implemented in a component in my code directory. That component is named Site Map Helper. This is the event handler that you saw being connected up in Global.asax.

If you look through this- and let’s switch out here to gain some more screen real estate. What I’m doing is this. I look in the requests to see what page has been requested. Based on what page has been requested, if it is a page that I want to customize the site map for, then I take action. I do this for several of the pages, including Login.aspx, Recent.aspx, and the Articles Page Show Item.aspx. What do I do to customize the site map? If I, for example, want to, say in the Site Map Path control, show the title of the article that the user is currently viewing on the Articles page, I first go out and get the title of the article that this page is showing. Then I create a new Site Map node to represent this page. This page, after all, does not appear in the XML site map you saw earlier. Then I find the site map node corresponding to the Summary page, and I parent the new site map node I created representing this page to the site map node representing the Summary page. Then I return the new node that I created. I’ve effectively added a new node to the Site Map Path on the fly, and now I’m providing that node to ASP.NET. That node will appear in the Site Map Path control. How do I control the text of what appears in the Site Map Path control for this node? By setting the Title property in the site map node’s constructor. It is the Title property of the resulting site map node that is shown by the Site Map Path control.

With that you can see that we have a completely data-driven UI. You don’t have to implement it this way, of course. You can choose to implement it any way you want to. Using the site map features built into ASP.NET 2.0 does dramatically reduce the amount of time required not only to build you navigation UI, but to make changes to it when the structure of your site changes.

One final item I’d like to show you is something else in Global.ASAX. Once again, switch out to Full Screen View here. One of the requirements in the specification that you’ll be building from is that when your application issues a persistent Forms Authentication cookie, that cookie should have a lifetime of 24 hours. One of the things you should know about ASP.NET forms-authentication infrastructure is that when you use a login control to log someone in and they check the Remember Me Next Time box, if they log in successfully, they are issued a persistent Forms Authentication cookie that’s good for 50 years. That’s too long. You need to take overt action if you want to do what the spec says and shorten the lifetime of that cookie. Unfortunately, there is no declarative option for shortening the lifetime of the cookie, so we have to do it programmatically. That’s why this Global.asax file has an Application End Request method. It will be called at the end of every request. If you examine the code here, you’ll see that what I’m doing is checking to see if the outgoing response has a cookie containing an ASP.NET Forms Authentication ticket. If the answer is yes, then I remove it from the response, create a new Forms Authentication ticket in a cookie that’s identical to the one I removed, but that has a limited lifetime of 24 hours, and I add that one to the response. In effect, I’ve replaced that 50-year authentication cookie with a 24-hour one.

This very same code appears in one of the previous demos that you saw. In the security demo that was in the previous module, look in its Global.asax file. You will also find the code there for limiting the lifetime of that persistent authentication cookie. Again, because ASP.NET does not offer a declarative option for doing that, you will need to do it programmatically.
Page 1 of 3

