Master Pages and Navigation – Demo 1 Transcript

Let’s take a look at Master Pages, very attractive new feature in ASP.NET 2.0. In this sample site I’m going to be showing you, we have two pages. They’re called Content Page 1.aspx and Content Page 2.aspx. I’m going to run each of those pages for you, so you can see what they look like.

What I’ve done here is built something that looks like Microsoft’s home page, at least how it looked at one point in time. It has since changed. On this page you see UI elements like a banner at the top, some links provided by a menu control in this navigation bar, and an ASP.NET menu control over here, providing links to other parts of the site.

Let’s bring up Content Page 2.aspx. It’s very similar to Content Page 1. In fact, it shares a lot of UI elements with it, has the same banner, the same menu bar here, and the same menus over here for navigating about the site. In fact, the only thing that’s different about this content page is the graphic that you see right here in the body of the page.

In a site like this, master pages are extremely useful, because these pages do share a lot of common content. Let me show you how this simple site is architected. For starters, I defined a master page. Now I’ll bring this up, and we’ll first look at it in the designer. What you’ll find here is that I’ve defined in the master page the UI elements that the content pages share in common. For example, you see the banner here at the top, a menu control here providing some overhead links, a menu control here, here, and here for navigating to other parts of the site. Also notice the content placeholder control that I’ve placed right here. This provides a content area that my content pages can plug content into.

If you look at this page in Source View, you’ll see that I’ve used an HTML table to compartmentalize the page and achieve the alignment of the various elements that I wanted. More importantly, notice the At Master directive at the top of the page, identifying this as a master page. Yes, master pages can have CodeBehind files too. The CodeBehind file for this one is Microsoft.Master.VB. There’s no code in here, but that’s because I didn’t have anything that I needed to put in there.

Now let’s look at the content pages themselves. We’ll start with Content Page 1. We’ll begin by looking at it in Design View. Notice the design experience that Visual Studio delivers here. When I bring up this content page, I see the content defined in the content page here. I also see, dimmed out, the content that this page is inheriting from its master page. In the designer it’s obvious to me which of this content is being inherited down from the master. You can also see the content control. Remember that all content in a content page must be encapsulated in content controls. Those content controls then map back to content placeholders in the master page.

If you look at this page in Source View, you’ll see that its content consists of nothing other than a content control. The content control contains a hyperlink displaying the image that you saw in the body of the page. Also note, here’s what connects the page back to its master page. The At Page directive contains a master-page file attribute identifying Microsoft.Master. In the content control, there’s a link there too. Notice that its content placeholder ID is set equal to the ID of the content placeholder control in the master.

Content Page 2 looks very much like Content Page 1, has an At Page directive referencing the master and a content control containing a different hyperlink that’s shown in the body of the page.

That’s Master Pages. You can see, I believe, why they’ll be very useful, because so many real Web sites do have pages that share content. On the site that you’re going to be building as part of this project, because pages do share many common UI elements, you’ll probably find Master Pages very useful in implementing the site quickly and efficiently.
Page 1 of 2

