[image: image31.jpg]

	Microsoft
Technical
Document
	 Technical White Paper
	

Getting Started with the MultiPoint SDK Version 1.1
February 10, 2009
Contents

3Introduction

4Getting Started with the SDK

4Installing the SDK

5Referencing the Required Libraries

5Initializing MultiPoint

6Running Your Application

7Handling Mouse Connection and Disconnection

9Building a MultiPoint User Interface

9Adding a MultiPoint Control

10Handling MultiPoint Mouse Clicks

10Determining Which Mouse Was Clicked

12Customizing MultiPoint

12Assigning Custom Pointers to Mouse Devices

16Freezing the Mouse Devices

18Appendix A: Building WPF Applications

18Appendix A: Building WPF Applications

19Appendix B: Overview of the MultiPoint SDK

Disclaimer

This document supports a preliminary release of a software product that may be changed substantially prior to final commercial release, and is the confidential and proprietary information of Microsoft Corporation. It is disclosed pursuant to a non-disclosure agreement between the recipient and Microsoft. This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in this document, including URL and other Internet Web site references, is subject to change without notice. The entire risk of the use or the results from the use of this document remains with the user. Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item developed based on these specifications. Microsoft disclaims all express and implied warranties, including but not limited to the implied warranties or merchantability, fitness for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in connection with the use of these specifications, including liability for lost profit, business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental damages; the above limitation may not apply to you.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2009 Microsoft Corporation. All rights reserved.

Microsoft, C#, C++, Expression Blend, MultiPoint, .NET, Visual Basic, Visual Studio, Windows, and Windows Vista are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.
Introduction

The Microsoft® MultiPoint™ SDK version 1.1 is a development framework that allows developers to build applications that enable up to 250 individual mouse devices
 to work simultaneously on one computer. As a developer, you can use the MultiPoint SDK to create educational applications for schools with limited technological infrastructure, thus increasing the amount of time any one student can spend on a computer. Initial pilot programs conducted in India by Microsoft Research show that for certain subjects, collaborative learning technologies like MultiPoint enhance learning when compared to a 1:1 computing scenario
.

MultiPoint should not be confused with applications that allow multiple people to control multiple mouse devices to perform standard operations. In those cases, the system traditionally cannot identify which mouse has made which changes, and there is normally no option for controlling the permissions of the various devices. MultiPoint is a development framework that enables developers to build applications to take advantage of multiple mouse devices, including the ability to handle mouse clicks from different users independently and to assign different permissions to each mouse. For example, the mouse belonging to a teacher in a learning application might need additional permissions to control the activity).

This document will help you get started with the MultiPoint SDK by providing an overview of such items as namespaces, classes, useful properties and functions, and by discussing common issues and considerations for building applications using MultiPoint.

Getting Started with the SDK

This section outlines the steps required to get started building applications with the MultiPoint SDK. It assumes that the reader is comfortable with building Windows Presentation Foundation (WPF) applications on the .NET framework, and will concentrate only on aspects related to implementing MultiPoint functionality. For more information about building applications with WPF, see Appendix A.

The MultiPoint SDK is primarily written for programming in Visual C#®; thus, most applications developed with it are written in Visual C#. However, using Visual Studio®, it is possible to develop MultiPoint applications with either Visual C++® or Visual Basic®.
Hardware Requirements

Hardware requirements are shaped by the resources needed to run the programming environment. Here are some additional suggestions:

· Computer (a computer with a Pentium 4 processor has been tested successfully; computers with slower processors have not yet been tested)
· Two to four mouse devices for testing

· USB ports on the computer

· 128 megabytes (MB) of RAM (256 MB or higher is recommended)

· 16-MB of video RAM (32 MB or higher is recommended)

· 800x600 resolution set in video card (32-bit color is recommended)

Software Requirements

The recommended programming environment is Microsoft Expression Blend™ with Visual Studio 2005 or 2008. Expression Blend is a graphical user interface (GUI) for designing interfaces. Visual Studio provides a similar functionality, which, although not as rich in features as Expression Blend, should be sufficient to develop applications with the MultiPoint SDK.

· Windows Vista® is recommended. The MultiPoint SDK will also run on Windows® XP SP2 (or greater)
· .NET Framework version 3.0 or higher (Install from http://msdn.microsoft.com/en-us/netframework/aa569263.aspx
· Microsoft Expression Blend (Install a trial version from http://www.microsoft.com/expression/products/Overview.aspx?key=blend)

· Visual Studio 2005 with WPF extensions installed (Visual Studio without WPF extensions is not supported by MultiPoint), or Visual Studio 2008 (install the Express Edition from http://www.microsoft.com/express/product/default.aspx)

Note: The MultiPoint SDK will install the appropriate template for your version of Visual Studio. The MultiPoint SDK does not support Windows form UI development.

Installing the SDK

The MultiPoint SDK can be downloaded from the Microsoft Download Center at http://www.microsoft.com/downloads/details.aspx?FamilyID=A137998B-E8D6-4FFF-B805-2798D2C6E41D&displaylang=en.

Note: DLL files should be included in the references section of the project solution.
After you install the SDK, a new folder called “Windows MultiPoint SDK” Appears on the Start menu. The folder includes the following items:

· MultiPoint Tic-Tac-Toe Sample, a basic sample that illustrates a two-player game

· MultiPoint Map Sample, a map-based learning sample in which students compete to locate cities as quickly as possible

· MultiPoint Quiz Sample, a quiz learning sample in which students are allocated a region on the screen where they have to answer as many questions as possible in a set amount of time

· A ReadMe link that leads to an outline of the SDK, and provides information on system requirements, samples, and known issues

· MultiPoint SDK documentation, which provides a reference for developing applications with the SDK

· A Samples folder that contains the source code for all three sample applications, as well as source code for a sample MultiPoint control (MultiPointCheckBox)

The following additional folders are added to the installation location (for example, C:\Program Files\Microsoft MultiPoint SDK):

· Bin – Contains all of the MultiPoint binary files. You will need to reference these to use the SDK in a MultiPoint-enabled application.

· Docs – Contains the MultiPoint SDK documentation.

· License – Contains license terms of use for the SDK.

· Samples –Contains all of the source code for the sample applications and the sample MultiPoint control.

Referencing the Required Libraries

To build a MultiPoint application, your project must reference the following libraries, which are located in the MultiPoint SDK Bin folder:

· Microsoft.MultiPoint. SDK.dll

· Microsoft.MultiPoint. CommonTypes.dll

· Microsoft.MultiPoint. Controls.dll

· Microsoft.MultiPoint. InputFilter.dll

· Microsoft.MultiPoint. MousePlugIn.dll

· Microsoft.MultiPoint. Provider.dll

For a summary of the libraries and the classes they contain, including useful methods and properties, see the Overview of the SDK section below.

Initializing MultiPoint

Before an application can accept input from multiple mouse devices, the MultiPoint SDK must be initialized. To do this, the application must initialize the MultiPointSDK object by associating it with a WPF window. This is best done as part of the Window.Loaded event of the primary window of your application, using the following steps:
1.
Declare and set up a Window.Loaded event handler. Because the initialization steps should only be performed after the window has been loaded, it is recommended that they are placed in the Window.Loaded event handler.

2.
Call the Initialize method on the MultiPointSDK object, passing in the current window. Behind the scenes, MultiPoint carries out the following steps:
Registers the current window to tell the SDK which window to monitor for MultiPoint mouse events. Because the SDK needs to know which parent window is responsible for the visuals, this must be done before any device visuals are drawn for the mouse devices.

Registers mouse devices. This registration enumerates through all input devices attached to the computer, and builds a list of registered mouse devices available to the application.

Note: MultiPoint does not recognize trackpads in a laptop computer as mouse devices. Therefore, in order to develop and test MultiPoint applications, it is recommended that you use USB mouse devices.
Draws a mouse device visual for each attached mouse device, and assigns a default MultiPoint pointer to each.

Hides the system pointer. In a MultiPoint application, the system pointer is not used for any of the attached devices, so it is hidden to avoid confusion.
The following code shows the initialization procedure.

 SHAPE * MERGEFORMAT

Running Your Application
At this point, the application should run, and a pointer should appear on the screen for each mouse device connected to the PC. It might be difficult to exit the application because MultiPoint mouse devices cannot click on standard controls, such as the Close button in the top right-hand corner of a window. It is a good idea to add a keyboard event handler that can be used to exit the application when a certain key (for example, the Esc key) is pressed. Do this by adding a KeyEventHandler declaration in the constructor for the main application window, as follows:
 SHAPE * MERGEFORMAT

After adding the KeyEventHandler declaration, create an event handler as follows:

[image: image3]
Handling Mouse Connection and Disconnection

As part of building an application that allows multiple mouse devices, you should include functionality that enables devices to be added and removed while the application is running. MultiPoint exposes events that are raised when devices are added and removed. You can handle these events to assign different pointers to each mouse device that is connected. If you do not manually handle these events, the SDK automatically handles them, assigning a default SDK pointer to each new device.

First, declare a handler for the device arrival event. This should be declared when the application is initialized, either in the constructor or in the Window.Loaded event handler for the main application window.

[image: image4]
Next, set up the event handler function (as declared in parentheses in the previous code sample) to trigger the event:

[image: image5]
To determine whether the device that was added is a mouse device, query the DeviceType property of the DeviceInfo object. You can reach this via the DeviceNotifyEventArgs argument that the handler passes to the function:

[image: image6]
If the device is a mouse, assign a pointer to the new mouse device.

[image: image7]
Notice the passing in of the MouseDeviceList.Count to the GetCursorImage() function. Because this is a very basic example, this approach suffices here. It is recommended that you find another way to maintain pointer assignments in other cases; for example, when creating a collection of pointer assignments where the application keeps track of which pointers are currently assigned to which mouse devices.
The DeviceRemovalEvent can also be handled in your code. However, the SDK automatically removes the mouse and its associated pointer. If you do not need to perform any custom operations when a mouse device is removed, you can safely omit this step.

Building a MultiPoint User Interface

The way that MultiPoint intercepts low-level Windows messages in order to allow simultaneous use of multiple mouse devices means that most of the standard WPF controls will not respond to MultiPoint mouse devices. MultiPoint ships with its own control that should be used to trap mouse events. This section demonstrates how to use this control to build a MultiPoint-enabled user interface.

Adding a MultiPoint Control

To add a control to the new window that can accept and act on MultiPoint click events, you will add a control that implements the IMultiPointMouseEvents interface. The Microsoft.MultiPoint.Controls namespace provides MultiPointButton and MultiPointTextBox controls to use. By implementing the IMultiPointMouseEvents interface, these controls gain the ability to listen to and handle events generated by the MultiPoint mouse devices.

First, add a reference in your project to the Microsoft.MultiPoint.Controls binary file (available in the Bin folder of the SDK installation folder), and import the namespace in your Window1 code behind, as follows:

[image: image8]
Next, add a reference to this namespace in the Window1.xaml file, as follows:

[image: image9]
Because the system cursor is not completely disabled, but rather just hidden, it is recommended that you set the WindowState to “Maximized” to prevent the system pointer from being able to inadvertently click on other windows when it is outside of the application window area.

Now, add a MultiPointButton to the window by adding the following code to the Window1.xaml file:

[image: image10]
Handling MultiPoint Mouse Clicks

Now that there is a control (button) capable of handling MultiPoint device clicks, you can declare an event handler to do the work. In the following code, declare an event handler called mpButton_Click to handle mouse clicks on the new mpButton, by first adding the declaration to the constructor, as follows:

[image: image11]
Then, create the actual handler, as follows:

[image: image12]
Determining Which Mouse Was Clicked

To add code that determines which mouse clicked the button and display that mouse pointer’s ID on the button, do the following:

First, get an instance of the button that was clicked. Cast the ‘sender’ object to a MultiPointButton and assign it to a local MultiPointButton object:

[image: image13]
To get information about the mouse device that was clicked, cast the RoutedEventArgs object that the handler received to a MultiPointMouseEventArgs:

[image: image14]
The as operator is used here to prevent InvalidCastExceptions if the cast fails. For example, if the button was clicked by a keyboard event, the cast would fail, and multipointargs would be null. Now test that multipointargs is not null before performing the required action:

[image: image15]
To determine which mouse was clicked, view the ID property in the DeviceInfo object:

[image: image16]
You can output this information to the button as follows:

[image: image17]
Customizing MultiPoint

Earlier in this document, you saw how to handle mouse devices being added and removed. By default, new mouse devices are allocated the default mouse cursor. This can become very confusing because it is difficult to distinguish between the devices. You can customize MultiPoint by assigning your own custom pointers.

Assigning Custom Pointers to Mouse Devices

Because the default cursors assigned by MultiPoint all look the same, it can be difficult for users to know which mouse belongs to them on the screen. However, the mouse devices can be differentiated – either by assigning a different pointer image to each mouse, or by changing the pointer properties (color, etc).

Assigning Custom Colors

We have created a custom CustomizeCursors() function and called it from the Window1_Loaded handler, after the call to initialize MultiPoint.

In the CustomizeColors() function, iterate through the list of connected mouse devices to assign colors to them. The list of devices is located in a collection called MouseDeviceList, which is a property of the MultiPointSDK object. The code below shows how to iterate through the MouseDeviceList:

[image: image18]
To get a specific member of the collection, you can refer to it by its index. Because the MouseDeviceList contains a collection of MouseDevice objects that are not relevant to our current requirements, cast them to DeviceInfo objects, as follows:

[image: image19]
After creating a mouseObject, you will have access to multiple properties, including DeviceVisual. To gain access to the MultiPoint-specific properties of DeviceVisual, cast it to a MultiPointMouseDevice, as follows:

[image: image20]
The MultiPointMouseDevice object contains multiple properties, including CursorColor. To set this property, we have created a helper function, GetColorCursor, which receives an integer identifier as a parameter, and returns a color. The call to the helper function to set the pointer color is as follows:

[image: image21]
The helper function code is as follows:

[image: image22]
This simple function results in cursors being assigned in the following way: If there are two mouse devices attached, there will be two pointers (blue and green) when the application runs. If there are four mouse devices attached, there will be four pointers (blue, green, red, and hot pink). If there are more than four mouse devices attached, all of the additional devices will be hot pink.

To prevent this problem, either add more colors to the GetCursorColor() function, create a function that generates random colors based on the integer being passed in (thereby ensuring that no color gets used twice), or limit the number of mouse devices allowed.

To limit the number of mouse devices allowed, you first need to know how many are connected. To do so, use the Count property from the MouseDeviceList collection. If there are too many devices, disable the additional ones by setting their Visible property to false:

[image: image23]
Call this function from the Window1_Loaded event handler, passing in the maximum number of mouse devices needed for the application. It is possible to do the same for a minimum number to ensure that there are at least x number of mouse devices connected. Setting the maximum (max) value to 3 will avoid the appearance of any hot pink pointers.

Assigning Custom Images

It is possible to assign bitmap images to pointers instead of colors. First, find or create pointer images to use – these can be in .jpg, .gif, or .png format – and add them as resources to the project.

[image: image24.png]Resources.resx*

[l Images - 1)

- 1) Add Resourc
e + X Remove
Resource | (3 - | Access Modifen I
er Internal

[) &b
ry
o

boy.03

boy 04

boy 05

To access these resources as Bitmap objects, import the System.Drawing namespace:

[image: image25]
Create a new lookup function called GetCursorImage, passing in the ID. This function returns an image instead of a color:

[image: image26]
Lastly, since the CursorImage property on the MultiPointMouseDevice expects a BitmapImage object, you need to cast the Bitmap object. The following helper function does this:

[image: image27]
The conversion function receives a System.Drawing.Bitmap object and returns a System.Windows.Media.Imaging.BitmapImage object. You can now get a pointer Bitmap, convert it to a BitmapImage, and assign it to the mouse devices using the following call (from within the loop outlined in the Assign Custom Colors section above):

[image: image28]
When the application is run, pointer images should display for each connected mouse.

Freezing the Mouse Devices

In some classroom scenarios, the teacher might want to be able to freeze the students’ mouse pointers; for example, to get their attention.

To enable this functionality, set the DisableMovement property of the MultiPointMouseDevice object to True. To freeze all mouse devices, iterate through the list of devices, freezing each one. The ToggleMiceFrozen function references a Boolean value (areMiceFrozen) that can be reused to freeze and unfreeze the devices as required. The areMiceFrozen value is declared in the constructor for the window and maintains the current state of the mouse devices, so the value should be updated when an action is performed:

[image: image29]
Because the teacher is most likely to be the only user with a keyboard, assign the function to a keyboard action. The teacher will probably use this functionality at moments when he or she needs to regain control of a number of children as quickly as possible, so assign it in the KeyDown_Event handler to the most prominent key possible to avoid delay:

[image: image30.jpg]

Finally, to prevent the space bar from triggering the mpButton_Click event when the button has keyboard focus (that is, after a mouse has clicked it), set the mpButton to be non-focusable:

[image: image31.jpg]
Summary

The MultiPoint SDK enables developers to build applications to take advantage of multiple mouse devices in innovative ways.

This white paper covered getting started with the SDK including instantiating and initializing MultiPoint, and handling mouse connection and disconnection events. We also covered building a MultiPoint user interface by adding a control, handling multiple mouse clicks, and determining which mouse clicked. Lastly, we demonstrated how to customize MultiPoint by assigning custom pointers and adding the ability to freeze the mouse devices.

MultiPoint can create opportunities for many different types of users, especially in the field of education. You can use this paper to aid you in creating your own applications within the framework.

Appendix A: Building WPF Applications

The following is a list of resources for getting started with the Windows Presentation Foundation (WPF):
· Introduction to Windows Presentation Foundation: http://msdn.microsoft.com/en-us/library/aa970268.aspx
· Getting Started (WPF): http://msdn.microsoft.com/en-us/library/ms742119.aspx
· The Official Microsoft WPF and Windows Forms Site: http://windowsclient.net/
· Learn WPF: http://learnwpf.com/
Appendix B: Overview of the MultiPoint SDK

Following is a list of namespaces, classes, properties, and methods in the MultiPoint SDK. For more extensive material, see the MultiPoint SDK documentation that comes packaged with the SDK installer. These lists are a brief summary of the most practical features for getting started with the SDK.

Namespace: Microsoft.SDK

Contains classes that help users initialize the environment, draw visuals for mouse devices, and handle the system cursor.
CurrentWindow

Specifies the current window for the application. The MultiPoint mouse devices will work only in the window declared as the CurrentWindow.

DeviceArrivalEvent

Fired when a device is plugged in.

DeviceRemoveCompleteEvent

Fired when a device is removed.
DrawDevices()

Used to draw the DeviceVisual for all registered devices – this results in the MultiPoint cursors being drawn to the screen.

Instance

Returns a single instance of the SDK.
HideSystemCursor()

Hides the system cursor.
MouseDeviceList

Collects DeviceInfo objects of Mouse device type. This list is populated by the RegisterMouseDevice() and RegisterInputDevices() methods.

RegisterMouseDevice

Helps the user register mouse devices.
Namespace: Microsoft.CommonTypes
Includes common types used by the MultiPoint framework.

DeviceInfo

Defines specific information for the mouse devices.

DeviceID

Unique string ID value assigned to the device. This is usually a 10-digit number encoded as a string.

DeviceName

The value assigned for the device by the operating system. This value is of limited use in developing MultiPoint applications.

DeviceType

Type of the device; for example, “Mouse.”
DeviceVisual

The visual object for the device. Some of the properties and methods appropriate for MultiPoint development are as follows:

CursorColor

Gets or sets the color assigned to the cursor. Accepts a System.Windows.Media.Color value.
CursorImage

Gets or sets the image assigned to the cursor. Accepts a System.Windows.Media.Imaging.BitmapImage value.
DeviceID

Unique string ID value assigned to the device, usually a 10-digit number encoded as a string. The value is the same as the one stored on the DeviceInfo object.
DisableLeftMouseButton(), DisableRightMouseButton()
Enables mouse buttons to be disabled.
DisableMouse

Enables the mouse to be disabled.
DisableMovement

Enables the mouse to be frozen at its current position on the screen.
Visible

Gets or sets the visibility of the mouse device.
ID
Friendly ID value assigned to the device by the SDK. The ID is an integer value that starts at 0 and increments as devices are attached. It will not reuse previously disconnected ID values. For example, if three mice are attached when the application starts, they are assigned ID values of 0, 1, and 2. If one of those mice is disconnected and then reconnected, the newly connected mouse device receives an ID of 4. For this reason, it is not safe to refer to specific instances of MouseDevice objects in a MouseDeviceList collection by their index in the collection.
// 1. Set up the Window Loaded Event Handler,

// and Initialize the SDK

private void Window1_Loaded(object sender, EventArgs e)

{

 // 2. Initialize the MultiPoint SDK

 MultiPointSDK.Instance.Initialize(this);

}

// Declare KeyEventHandler to handle keyboard events

this.KeyDown += new KeyEventHandler(KeyDown_Event);

// Handle keyboard events

private void KeyDown_Event(object sender, KeyEventArgs e)

{

 if (e.Key == Key.Escape)

 {

 App.Current.Shutdown();

 }

}

MultiPointSDK.Instance.DeviceArrivalEvent +=

 new EventHandler<DeviceNotifyEventArgs>(MultiPointObject_DeviceArrivalEvent);

private void MultiPointObject_DeviceArrivalEvent(object sender, DeviceNotifyEventArgs e)

{

 // add code to handle the arrival of the device here

}

if (e.DeviceInfo.DeviceType == DeviceType.Mouse)

DeviceInfo mouseObject = e.DeviceInfo;

MultiPointMouseDevice mpMouseDevice =

 (MultiPointMouseDevice)mouseObject.DeviceVisual;

Bitmap cursorBitmap = � GetCursorImage(MultiPointSDK.Instance.MouseDeviceList.Count);

mpMouseDevice.CursorImage =

 ConvertBitmapToBitmapImage(cursorBitmap);

using Microsoft.MultiPoint.Controls;

<Window x:Class="MultiPoint_Basic_App.Window1"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:mp="clr-namespace:Microsoft.MultiPoint.Controls;assembly=Microsoft.MultiPoint.Controls"

 Title="Window1" WindowState="Maximized">

 <Grid>

 <mp:MultiPointButton Name="mpButton"

 Content="Click Me"

 Click="mpButton_Click"/>

 </Grid>

// Declare MultiPoint mouse button handler

mpButton.MultiPointClick += �	new RoutedEventHandler(mpButton_Click);

// Handle Clicks on the mpButton MultiPointButton

private void mpButton_Click(object sender, RoutedEventArgs e)

{

 mpButton.Content = "Click";

}

MultiPointButton btn = (MultiPointButton)sender;

MultiPointMouseEventArgs multipointargs =

 e as MultiPointMouseEventArgs;

if (multipointargs != null)

{

 // perform required action

}

int current = multipointargs.DeviceInfo.ID;

mpButton.Content =

 String.Format("Mouse #{0} Clicked me", current.ToString());

for (int i = 0; i < MultiPointSDK.Instance.MouseDeviceList.Count; i++)

{

 // Act on each individual MouseDevice here

}

DeviceInfo mouseObject =

 (DeviceInfo)MultiPointObject.MouseDeviceList[i];

MultiPointMouseDevice mpMouseDevice =

 (MultiPointMouseDevice)mouseObject.DeviceVisual;

mpMouseDevice.CursorColor =

 GetCursorColor(i); // eg: Cursor.Green

private System.Windows.Media.Color GetCursorColor(int id)

{

 switch (id)

 {

 case 0:

 return Colors.Blue;

 case 1:

 return Colors.Green;

 case 2:

 return Colors.Red;

 default:

 return Colors.HotPink;

 }

}

private void EnforceMouseLimit(int max)

{

 // Too many mice - disable extras

 if (MultiPointSDK.Instance.MouseDeviceList.Count > max)

 {

 // Disable extra mice.

 for (int i = max;

 i < MultiPointSDK.Instance.MouseDeviceList.Count;

 i++)

 {

 DeviceInfo mouseObject =

 (DeviceInfo)MultiPointSDK.Instance.MouseDeviceList[i];

 MultiPointMouseDevice mpMouseDevice =

 (MultiPointMouseDevice)mouseObject.DeviceVisual;

 mpMouseDevice.Visible = false;

 }

 }

}

 using System.Drawing;

private Bitmap GetCursorImage(int id)

{

 switch (id)

 {

 case 0:

 return Properties.Resources.boy_01;

 case 1:

 return Properties.Resources.boy_02;

 case 2:

 return Properties.Resources.boy_03;

 case 3:

 return Properties.Resources.boy_04;

 default:

 return Properties.Resources.boy_05;

 }

}

public static BitmapImage ConvertBitmapToBitmapImage(System.Drawing.Bitmap b)

{

 BitmapImage bmpimg = new BitmapImage();

 System.IO.MemoryStream memStream =

 new System.IO.MemoryStream();

 bmpimg.BeginInit();

 b.MakeTransparent(System.Drawing.Color.White);

 b.Save(memStream, System.Drawing.Imaging.ImageFormat.Png);

 bmpimg.StreamSource = memStream;

 bmpimg.EndInit();

 return bmpimg;

}

mpMouseDevice.CursorImage =

 ConvertBitmapToBitmapImage(GetCursorImage(i));

private void ToggleMiceFrozen()

{

 for (int i = 0;

 i < MultiPointSDK.Instance.MouseDeviceList.Count;

 i++)

 {

 DeviceInfo mpDeviceInfo =

 (DeviceInfo)MultiPointSDK.Instance.MouseDeviceList[i];

 MultiPointMouseDevice mpMouseDevice =

 (MultiPointMouseDevice)mpDeviceInfo.DeviceVisual;

 mpMouseDevice.DisableMovement = !areMiceFrozen;

 }

 areMiceFrozen = !areMiceFrozen;

}

 <mp:MultiPointButton Name="mpButton"

 Content="Click Me"

 Click="mpButton_Click"

 Focusable="False"/>

if (e.Key == Key.Space)

{

 ToggleMiceFrozen();

}

� This limitation is a theoretical limit imposed by the Windows MultiPoint SDK. This limit has not been verified through empirical testing.

� MSR Research reports and findings on the effects of collaborative technologies can be found on the MultiPoint website: www.microsoft.com/multipoint

Microsoft Confidential. © 2009 Microsoft Corporation.
[image: image30.jpg]

[image: image32.jpg]

[image: image33.jpg]

