[image: image7.png]Wy icrosore

. 2
;. Windows

Tips and Tricks for Windows Portable Device Developers - 9

Tips and Tricks for Windows Portable Device Developers

WinHEC 2005 Update - April 19, 2005

Abstract

This paper provides information useful to developers of Windows portable devices (WPD) for the Microsoft® Windows® family of operating systems. It covers the tools available to both application and driver writers when developing WPD solutions.

This information applies for Microsoft Windows Vista™.

Future versions of this preview information will be provided in the Windows Driver Kit (WDK). Preview versions of the WDK are available through the Windows Vista Beta program. For information about the WDK, see http://www.microsoft.com/whdc/driver/wk/default.mspx.

The current version of this paper is maintained on the Web at http://www.microsoft.com/whdc/.

References and resources discussed here are listed at the end of this paper.

Contents

3Introduction

3Diagnostics

3Built-in Diagnostic Support

3Turning on the Debug Tracing

4Obtaining TMF Files

4Adding Diagnostic Support into a WPD Driver

5WpdInfo Tool

5What It Does

5How to Use It

7WpdMon Tool

7What It Does

8How to Use It

9Debugging

9References

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

The object-based Windows Portable Device Application Programming Interface/Device Driver Interface (API/DDI) enables a new breed of convergent devices, initially focused on smart storage devices such as portable media players, digital still cameras, and mobile phones.

In developing Windows portable device (WPD) solutions for these devices, both application developers and driver writers might need to diagnose various problems, test out newly implemented scenarios, and so on. This paper describes the WPD tools and procedures available to developers for that purpose.

Diagnostics

Built-in Diagnostic Support

All WPD components have adapted Windows software trace preprocessor (WPP). Because WPD uses the WPP software tracing infrastructure, it is beneficial for the reader to be familiar with the WPP information and available tools from MSDN.

Here are some scenarios:

· A user encounters a software problem that involves WPD components. The user turns on debug trace for WPD components and reproduces the scenario. This causes an event trace log (ETL) file to be generated and saved. The user then sends this ETL file along with a description of the problem to the Microsoft support team. The Microsoft development team uses the trace to analyze and pinpoint the issue, without requiring a special (for example, checked) binary.

· Using the same scenario as above, this time the user is a developer who is developing a WPD driver. To know the interaction of the WPD driver with Microsoft WPD components, the developer constructs the trace messages from the raw ETL file to learn the program flow and any special warning or error message.

· An application developer must track a problem with a WPD device. The developer must obtain traces for both the Microsoft WPD components and the vendor’s WPD driver.

Turning on the Debug Tracing

Turning on the trace requires two key values for a target component: the component’s control globally unique identifier (GUID) and the control flag definitions of the target components. Each major WPD component has its unique control GUID, which servers as an identifier. The control flags can be OR’ed and are used to select the types of trace to log. The following tables show this information for WPD components.

Table 1. A list of WPD components and their corresponding control GUIDs

	Components: trace providers
	Binaries
	Control GUIDs

	WPD general: Windows Media device manager (WMDM) legacy components
	Mswmdm.dll, cewmdm.dll, mspmsnsv.dll, and so on
	b809f4ff-3023-473c-971b-ab594429ea57

	WPD class installer
	Wpd_ci.dll
	45350D79-4497-42f1-BD1B-83587575B91A

	WPD Media Transfer Protocol (MTP) drivers
	Wpdmtpdr.dll, wpdmtp.dll, wpdmtpus.dll
	97496DDA-C211-4ffe-B1B1-68E6E98EBC38

	WPD API
	PortableDeviceAPI.dll
	C3C5D8AF-2FD5-4500-A8E7-379C2D0BBE2E

	WPD Types
	PortableDeviceTypes.dll
	58E8F67D-29E9-456C-B23D-C6489E341BB0

	WPD service pack: WMDM application compatibility
	Wpdsp.dll
	17ABF473-982C-4d0e-B502-3A59D89E71DE

	WPD shell extension
	WpdShExt.dll
	A42C7BD1-5AF3-4b32-9BC6-B85EB31D3F4A

Table 2. A list of standard WPD trace flags

	Trace flag bit
	Bit
	Recommendation for general trace

	WPD_TRACE_LEVEL_CRITICAL
	0x00000001
	ON

	WPD_TRACE_LEVEL_ERROR
	0x00000002
	ON

	WPD_TRACE_LEVEL_WARNING
	0x00000004
	ON

	WPD_TRACE_LEVEL_ASSERT
	0x00000008
	OFF

	WPD_TRACE_LEVEL_FUNCTRACE
	0x00000010
	OFF

	WPD_TRACE_LEVEL_INFORMATION
	0x00000020
	OFF

	WPD_TRACE_LEVEL_VERBOSE
	0x00000040
	OFF

	Component dependent control flag
	Not Defined
	OFF

Here are the steps to generate a debug trace:

1. Choose one or more target components and add their corresponding control GUIDs into a control trace log (CTL) file. In addition, you should decide what flags you want to set to log the type of traces.

2. To configure the trace providers, use a trace control program (Tracelog.exe).

3. Create an ETL file by running through a scenario with trace turned on.

4. To construct human readable trace messages, use a trace format tool (Tracefmt.exe) with a path to these components’ TMF file.

Here are some tips to help you get started with WPD trace messages. For debugging purposes, the first key word to look for in a trace is “hr.” This usually indicates an error or warning situation. If you must understand the code path, it is helpful to turn on WPD_TRACE_LEVEL_FUNCTRACE bit.

Obtaining TMF Files

TMF files are required to reconstruct human readable trace messages from a raw ETL file. If you have the parallel database (PDB) file, its corresponding TMF files could be extracted with a trace format generating tool such as TracePdb.exe.

Adding Diagnostic Support into a WPD Driver

If you are a WPD driver developer, you might consider adding the same diagnostic support into your driver. You can follow the instructions from MSDN, along with the following recommendations:

· Generate and use a unique control GUID for your component instead of reusing any of the WPD control GUIDs.

· Add your control GUID as a registry in the DDInstall.HW section of your device’s INF file so the control GUID can be discovered programmatically. For example:

; Add WPP Trace Control GUID
HKR,,"WPPTraceGuid",,"{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}"

· Document the meaning of each control flag bit.

WpdInfo Tool

What It Does

Application developers and driver writers use the WpdInfo tool to test WPD functionality. Developers can use it to view driver capabilities, verify behavior, and manually test programming scenarios.

How to Use It

WpdInfo is a standalone tool that you can copy to any location and then run.

The following screenshot shows a typical view of the contents of a WPD:

[image: image1.png]& wPD Information Tool (unreleased version) - Microsoft WPD Sample Device using new WUDF [_[CIx]
Bl vew guk Hep

= Picturefolder _4l[Resource Name. Size | Access | PROPERTYKEY

8 -) | DEFAULT 182165

9 WPD_RESOURCE_THUMBNAIL 2539 READ {CT7CA07BA-98FA-46B5-0960- 23FEC124CFDELO

0 WEORESOURCEAUDIO.CLP 170 READ {ShC15062 501 45E0 3346 SD3ADOGSELT

n
Pyt Vae e e
WhD. CRECTID . VILPWSTE READ WeD PROPERTY ATRRUTE FORMLUNSPECHED
WPD-COIECT PERSSTENT UNIGUED ParisertUriques.s VELPWSTR READ Wo0.pROPERTY ATHEUTE FORMLUNSPECHED
WPD.CRECLPARENT.D et VTLPSTR READ 'eD.PROPERTY ATIBUTE FORM-UNSPECKED
WPD.CBECTAME g VTAPWSTR READWRITE 'WeD.PROPERTY ATIBUTE FORMUNSPECFED
WPD.CDECTCONTENTIVPE Wob.CONTENLIVE MAGE VICLSD FEAD WePROPERTY ATHIBLIE FORM.UNSPECIED
WPD_OBECTFORMAT WPDCRRCLFGRMAT FiF VICLSD FEAD WeD_PROPERTY ATTIBUIE FORM.UNSPECFED
WPD.CRECTSREADONLY st VTEOM READ WeD.PROPERTY ATBUIE FORM UNSPECRED
WPD_OBECTISHODEN e VTROM READ eD.PROPERIY ATRBUIE FORM-UNSPECRED
WPD.ORECTISATENM e VTROM READ eD.PROPERIY ATRBUIE FORM-UNSPECRED
WPD.OBECTNON CONSUMARLE FALSE VTROM READ eD.PROPERIY ATIBUIE FORM UNSPECRED
WhD_ORECT WD o200 VTUR RRD WPDPROPERTY ATIRBUTCFORM UNSPECHED
WhD.ORRCT BT o (00 VTUR KD WPDPROPERTY ATIBUTCFORM UNSPECHED
WPD COECTOATE CREATED anowste 530150 VIDAT KD WPDPROPERTY ATIRBUTCFORM UNSPECHED
WPD.OBECT ORGNAL PIENAVE magefie ¢pg VILAHSTR RAD WPD.PROPERTY ATIBUTE FORM-UNSPECFED
WhD. OB S o a2 VTUB | RAD WRDPROPERTY ATIRBUTEFORM UNSPECHED
) | 2l

You can use WpdInfo to view the device’s capabilities:

[image: image2.png][Supported Functional Categories, Content Types, Formats and Format Properties [x]

Supported Functonal Categories Functional Dbjects or the selected Category

SAGE
IDERING_INFORMATION

Supported Content Types for the selected Category

[WPD_CONTENT_TvPE_UNSPECIFIED
[WPD_CONTENT_TYPE_FOLDER
[WPD_CONTENT TYPE_ALIDID
D_CONTENT TYPE_MAGE
WPD_CONTENT_TVPE_CONTACT
[WPD_CONTENT_TYPE_ALL

Supported Formas for the selected Cortert Type:

Supported Propettes for the selected Format

B _ORIECY DATE CREATED

WED-ORIEET-FOMET

WED-ORIEET HEIGHT

WPD-ORIEET D

WED-ORIEET 1oHDDEN

WP _ORIEET 1SHEADONLY =l

You can use WpdInfo to transfer objects to the device:

[image: image3.png]e

" Reaquires properties only
& Requires properties and a data file
‘WPD_OBJECT_SIZE 0x1206E (73838)
It Prporis o | InsnPrapri omtemplts | Save Prperiest as onplc

You can use WpdInfo to send any command to the device:

[image: image4.png]- Conmands
FWPD_COMMAND_DRJECT _RESOURCES WAITE |
WPD_COMMAND_DBJECT_RESOURCES CLOSE
\PD-COMMAND DEJECT RESDURCES DELETE

W/PD COMMAND CAPABILITI PRORTED
WPD_COMMAND_CAPAEILITIES_GET_COMMAND_OPTIONS |
\WPD_EOMMAND_CAPABILITIES_GET_SUPPORTED_FUNCTIONAL_CATEGORIES

\WPD DOMMAND CAPABILITIES GET FUNCTIONAL GBJECTS |

© ShowAllCommands & Shaw Supparted Commands Oy

Command Parameters

Fiopery Name

Insett Parameters from ist_| et Patametersfiom template | Save Parameters s s template

Command Resuls-

Fioperly Name Vale
‘WPD_PROPERTY_CAPABILITIES_SUPPORTED_COM... [PotableDeviceKeyColection (41 elemerts]
‘WPD_PROPERTY_COMMON_HRESLLT 00

‘ |

o it
=

WPdInfo has many other features that are not shown here.

Note that WpdInfo translates most constants from their binary value into the more developer-friendly C++ defined names. Vendors can update the data files used to do this conversion to include their own, so that WpdInfo performs the same translation for custom properties, commands, flags, and so on.

WpdMon Tool

What It Does

WpdMon is an application that is used to analyze the traffic between WPD applications and WPD drivers, or between WPD drivers and their input/output (I/O) stacks.

It also captures PnP arrival and removal notifications to help debug connectivity issues.

How to Use It

WpdMon has two components:

· The WpdMon shim (with no user interface) that intercepts the relevant traffic. You must install this component while no WPD drivers are active on the system; otherwise, a reboot is required.

· The WPDMon application (with user interface) that parses and displays the traffic. This is a standalone application that can simply be copied and run.

The following screenshot shows WpdMon displaying API/DDI traffic:

[image: image5.png]E5 WPD Monitor

Ele Edt Options Monitor Record Help
Operation: (Request) WPD_COMMAND_COMMON_SAVE_CLIENT_INFORMATION from Application (3_elements)
WED_PROPER Ty, COMMON_COMMAND_CATEGORY [VT_CLSTD] WPD_CATEGORY_COMMON
WPD_PROPER TY_COMMON_COMMAND_10 [vZuTs] Ox4 (Decimal: 4)
WPD_PROPERTY_COMMON_CLTENT_TNFORMATION [ViZunknow] Tportableevicevalues
WED_CLIENT_NAE [VI_LAWSTR] WpdInfo Applicat
WPD_CLIENT MAJOR_VERSTON [viuze] oxa (pecimal
WPD_CLIENT WINOR_VERSTON [viuls] 0xo (pecimal
WPD_CLIENT REVISTON ERUaT2EN |

Operation: (Response) IPortablenevicevalues from oriver (2 elements)
WRD_PROPER T COMMON.CLIENT. TNFORMATION_CONTEXT [VI_LPNSTR] [9A631E96-8423-40FA-8C
WRD_PROPERTY_COMMON_RRESULT ER =

Operation: (Request) WPD_COMMAND_CAPABILITIES_GET_SUPPORTED_COMMANDS from Application (3 elements)
WED_PROPER Ty, COMMON_COMMAND_CATEGORY [VI_CLSTD] WPD_CATEGORY_CAPABILTT
WPD_PROPER TY_COMMON_COMMAND_10 [viZuTe] ox2 (Decimal: 2)
WPD_PROPER TY_COMMON_CLIENT_ TNFORMATION_CONTEXT = [VILPWSTR] (9A631E96-8423-40FA-8C

Operation: (Response) Irortablenevicevalues from Driver (2 elements)
WRD_PROPERTY_CAPABILITIES. SUPFORTED, COMMANDS [VT_UNKNDWN] TPortableevicekeyColl
[PROPERTYKEY] WPD_COMMAND_OBJECT._ENUMERATION_START_FIND
[PROPERTYKEY] WPD_COMMAND_OBJECT_ENUMERATION_FIND_NEXT
[PROPERTYKEY] WPD_COMMAND_OBJECT_ENUMERATION_END_FIND
[PROPERTYKEY] WPD_COMMAND_OBJECT MANAGEMENT_DELETE_OBJECTS
[PROPERTYKEY] WPD_COMMAND_OBJECT MANAGEMENT CREATE_OBJECT_WITH_PROPERTTES_ONLY.
[PROPERTYKEY] WPD_COMMAND_OBJECT MANAGEMENT CREATE_OBJECT WITH_PROPERTIES_AND_DATA
[PROPERTYKEY] WPD_COMMAND_OBJECT MANAGEMENT WRITE_DBIECT_DATA
[PROPERTYKEY] WPD_COMMAND_OBJECT MANAGEMENT COMMIT_OBJECT
[PROPERTYKEY] WPD_COMMAND_OBJECT MANAGEMENT REVERT OBJECT
[PROPERTYKEY] WPD_COMMAND_OBJECT_PROPERTIES_GET_SUPPORTED
[PROPERTYKEY] WPD_COMMAND_OBJECT_PROPERTIES_GET
[PROPERTYKEY] WPD_COMMAND_OBJECT PROPERTIES GET_ALL
LR Kyl N - CONRAND OB e T RO ERTIESGET-

The following screenshot shows captured PnP messages:

[image: image6.png]&5 WPD Monitor [_[CIx]

Ele Edt Options Monitor Record Hel

Received Pnp message: UNKNOWN, value = (0x7) N
Message Type:
Interface Class:
Interface Nam

Received Pnp message: DBT_DEVICEARRIVAL
Message Type: DET_DEVTYP_DEVICEINTERFACE
Interface Class: (GAC27878-AGFA-4155-BASS_FI8F491D4F33}

Interface Name: \\?\USB#Vid_041etPid_4123#98133e86_-_00815301_-_6800bcoc_—_d64¢
Received Pnp message: DBT_DEVICEARRIVAL

Message Type: DET_DEVTYP_DEVICEINTERFACE

Interface Class: (F33FDCO4-DIAC-4ESE-5A30-19BBD4B108AE}

Interface Name: \\7\USB#Vid_041etPid_4123#98133e86_-_00815301_-_6800bcoc_—_d64¢
Received Pnp message: DBT_DEVICEARRIVAL

Message Type: DBT_DEVTYP_DEVICEINTERFACE

Interface Class: (14380D3F-7A47-4A75-AAEF-B4F56397153}

Interface Name: \\7\USB#Vid_041etPid_4123#98133e86_-_00815301_-_6800bcoc_—_d64¢

Received Pnp message: DBT_DEVICEARRIVAL
Message Type: DBT_DEVIYP_DEVICEINTERFACE
Interface Class: (ASDCBF10-6530-11D2-501F-00CO4FB951ED}
Interface Name: \\7\USB#Vid_041etPid_4123#98133e86_-_00815301_-_6800bcoc_—_d64¢

Received pnp message: UNKNOWN, value = (0x7)
Message Type:
Interface Class
Interface Nam

Received pnp message: UNKNOWN, value
Message Type:
Interface Class
Interface Name:

ox7)

Received Pnp message: DBT_DEVICEREMOVECOMPLETE

Message Type: DBT_DEVTYP_DEVICEINTERFACE
Interface Class: (14380D3F-7A47-4A75-AAEF-B4F56397153} |
Interface Name: \\7\USB#Vid_041etPid_4123#98133e86_-_00815301_-_6800bCoc_—_d64(

Received Pnp message: DBT_DEVICEREMOVECOMPLETE
Message Type: DET_DEVTYP_DEVICEINTERFACE
Interface Class: (F33FDCO4-DIAC-4ESE-5A30-19BBD4B108AE}

Interface Name: \\7\USB#Vid_041etPid_4123#98133e86_

Received Pnp message: DBT_DEVICEREMOVECOMPLETE

Kl |

As well as capturing the WPD API traffic, WpdMon also has a plug-in system that facilitates the parsing of vendor-specific messages between the WPD driver and the I/O stack (that is, the I/O send to and from the device).

Debugging

Because the WPD API is in process to the caller, you can debug applications in the usual way by attaching a debugger to the application or by starting the application under a debugger.

WPD drivers are Windows user-mode driver framework (WUDF) drivers and therefore must be debugged differently because they are hosted in the WUDF driver host process. Follow the WUDF guidelines for debugging user-mode drivers.

References

· For more information, send an e-mail to WpdInfo@microsoft.com.

· For an overview of WPD, refer to the white paper titled “Introduction to Windows Portable Device Infrastructure.”

· See “Windows User-mode Driver Framework” from MSDN.

· WPP information and available tools are available from MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ddtools/hh/ddtools/st_b1797333-3c08-4e78-8bea-fcee159dfdb5.xml.asp.

WinHEC 2005 Update - April 19, 2005

© 2005 Microsoft Corporation. All rights reserved.

[image: image7.png]