[image: image10.png]4% Windows

Plug and Play and Power Management in WDF Drivers - 50

Plug and Play and Power Management in WDF Drivers
April 9, 2007

Abstract

The Windows Driver Foundation (WDF) implements a fully integrated model for Plug and Play and power management in both the user-mode driver framework (UMDF) and the kernel-mode driver framework (KMDF). The model provides intelligent defaults so that some drivers do not require any code to support simple Plug and Play or power management. To support more complex features, drivers implement event callbacks. This paper provides guidelines for implementing Plug and Play and power management support in UMDF and KMDF drivers.

This information applies for the following operating systems:

Windows Server® 2008

Windows Vista®

Microsoft® Windows Server 2003

Microsoft Windows® XP

Microsoft Windows 2000 (KMDF only)
The current version of this paper is maintained on the Web at:

http://www.microsoft.com/whdc/driver/wdf/WDF_pnpPower.mspx
For comprehensive information about writing WDF drivers, see Developing Drivers with the Windows Driver Foundation, by Penny Orwick and Guy Smith, available at http://www.microsoft.com/MSPress/books/10512.aspx.

Contents

4Introduction

5About Plug and Play

5About Power States

7About Power Policy

7Plug and Play and Power Management Support in WDF

7Plug and Play and Power Management Defaults

8I/O Queues and Power Management

8Plug and Play and Power Event Callbacks

10Idle and Wake Support (KMDF Only)

10Power-Pageable and Non-Power-Pageable Drivers

12Callback Sequences for Plug and Play and Power Management

15Device Enumeration and Startup

18Device Power-Down and Removal

21Surprise Removal

22UMDF Surprise-Removal Sequence

22KMDF Surprise-Removal Sequence

23How to Implement Plug and Play and Power Management in WDF Drivers

24Plug and Play and Power Management in Software-Only Drivers

24UMDF Example: Plug and Play in a Software-Only Filter Driver

25KMDF Example: Plug and Play in a Software-Only Filter Driver

27Framework Actions for Software-Only Drivers

27Plug and Play and Power Management in Simple Hardware Drivers

28Device Power-Up Initialization and Power-Down Teardown

29Power Management for Queues in Hardware Function Drivers

30UMDF Example: Plug and Play and Power Code in a Protocol Function Driver

31Power-Managed Queue for a UMDF Driver

31IPnpCallbackHardware Methods

32IPnpCallback Methods

33KMDF Example: Plug and Play and Power Code in a Simple Hardware Function Driver

34KMDF Example: Register Callbacks and Set Up Power-managed Queues

36KMDF Example: D0 Entry and D0 Exit Callbacks

37Framework Actions for a Simple Hardware Function Driver

38Advanced Power Management for KMDF Drivers

39Device Power-Down Idle Support for KMDF Drivers

39Idle Settings and Management in KMDF Drivers

41How to Choose Idle Times and Idle States in KMDF Drivers

42Device Wake Support for KMDF Drivers

43How to Implement Wake from Sx in KMDF Drivers

45How to Implement Wake from S0 in KMDF Drivers

46KMDF Example: Support for Device Idle and Wake

48Framework Actions Supporting Device Idle

49Framework Actions Supporting Device Wake

50Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

Plug and Play and power management encompass a variety of activities involved in the installation, configuration, and operation of devices. The following are just a few situations that require Plug and Play or power management support:

· The user connects a new MP3 player to a running system.

· The user unexpectedly removes a USB flash drive.

· While the system is running, the user plugs in an Ethernet cable to connect the computer to a network.

· While the system is suspended, the user wakes it up by moving the mouse.

· The administrator configures the system to hibernate after it is idle for an extended period.

To properly support Plug and Play and power management, the operating system, drivers, system administration software, device installation software, system hardware, and device hardware must all work together.

Microsoft® Windows® and WDM expose a complicated model for Plug and Play and power management that depends on the driver to keep track of both the state of its device and the state of the system, thus in effect implementing its own informal state machine. WDM drivers must know which Plug and Play and power requests to handle in each state and which operations to perform in response to those requests. Some requests require the driver to perform one operation if the device is powered up and a different operation if it is not. Other requests require no driver action at all, but the driver must nevertheless include code that parses the request and checks the current device and system state to determine whether action is required.

In contrast, the WDF frameworks implement intelligent default behavior and expose a set of state-specific callbacks that drivers can implement to customize the Plug and Play and power behavior. WDF tracks the state of the device and the state of the system and maintains information about the Plug and Play and power capabilities of the driver and device hardware. The frameworks can also manage a driver’s I/O queues with respect to the device’s power state. If an I/O request arrives while the device is not powered on, the framework can power up the device.

A WDF driver can “opt in” to device-specific handling for more complicated situations by implementing callbacks for such events as setup initialization, shutdown cleanup, power on, power off, and so forth. The WDF defaults apply to any event for which the driver does not implement a callback.

WDF provides a wide range of Plug and Play and power management options for drivers. For example:

· By default, both KMDF and UMDF drivers support the fundamental Plug and Play and power management features, including fast resume and suspend.

A driver requires code only to save and restore device context and, in some KMDF drivers, to enable and disable device interrupts.

· KMDF drivers can support automatically suspending an idle device on a running system.

During idle periods, the framework puts the device in a low-power state. For USB devices, the driver can use selective suspend. To support this extra functionality, most drivers require only one additional function call.

· KMDF drivers can support a device wake signal that wakes the device or the system.

The driver identifies the power states at which the device can trigger a wake signal. A KMDF driver can support wake at any system power state other than the off state. Implementing wake typically requires adding just a few callback functions to a driver.

In each of these examples, a driver supplies only the code that is required to manipulate its device. The framework tracks device and system state and calls the driver at its registered callbacks to perform device-specific actions.

About Plug and Play

Plug and Play is a combination of system software, device hardware, and device driver support through which a computer system can recognize and adapt to hardware configuration changes with little or no intervention by an end user. An end user can add devices to and remove devices from the system without doing technical, hardware-level configuration. For example, a user can plug in a USB flash drive to transfer files or can dock a portable computer and use the docking station’s keyboard, mouse, and monitor without making manual configuration changes.

If the device hardware and driver support Plug and Play, Windows recognizes the new devices, loads the proper drivers, and starts the devices to make them available for the user. The PnP manager is the kernel subsystem that recognizes hardware during initial system installation, recognizes hardware changes that occur between system boots, and responds to hardware events such as docking or undocking and device insertion or removal.

The bus driver detects and enumerates devices and requests resources for those devices. The PnP manager gathers resource requests from all of the bus drivers and assigns resources to the devices. Resources are not dynamically configurable for legacy devices, so the PnP manager assigns resources to legacy devices first. If the user adds a new device that requires resources that are already in use, the PnP manager reconfigures resource assignments.

At device object initialization, the bus driver indicates which of the following Plug and Play features its device supports:

· The device can be ejected from its slot.

· The device is a docking station.

· The device can be removed while the system is running.

· A user can remove the device without using the Unplug or Eject Hardware application.

· The device can be locked in its slot to prevent ejection.

· The device can be hidden in Device Manager.

About Power States

A power state describes the level of power consumption for the system or for an individual device. System power states are named S0 for the working state and Sx, where x is a state number between 1 and 5, for the sleep states. Device power states are named D0 and Dx, where x is a state number between 1 and 3. The state number is inversely related to power consumption: higher numbered states use less power.

The term “highest-powered state” means the state that uses the most power, and conversely for “lowest-powered state.” Therefore, D0 is a higher-powered state than D1, and D3 is a lower-powered state than D2.

For the system, state S0 is the highest powered, most functional, fully-on working state. State S4 is the hibernation state. State S5 is the off state. States S1, S2, and S3 are sleep states, with progressively lower levels of power consumption.

For a device, D0 is the fully-powered working state and D3 is the powered-down (off) state. All devices must support these two states. The exact definitions of the intermediate power states are bus and device specific, unlike the system states where S4 and S5 are universally defined. Not all devices support intermediate power states. Many devices support only the D0 and D3 states.

Note For PCI devices, the PCI specification defines the D3hot and D3cold states. In Windows, D3hot means that the device is in D3 and its parent bus is in D0. D3cold means that the device is in D3 and its parent bus is in Dx.

A device can transition from D0 to any lower-power state (Dx) and from any lower-power state to D0. However, a device cannot transition from one sleep state (Dx) to another; it must return to D0 before it can enter a different sleep state. In addition, the device must be in D0 when the driver arms or disarms the wake signal. The reason is that access to the device hardware is prohibited when the device is in a sleep state, so the driver must return the device to the working state before performing any hardware-related activity.

The power state of a device is related to the system state but is not required to match it. For example, many devices can be in the off state (D3) when the system is in the working state (S0). Usually, a device’s power state is no higher than that of the system because many devices get their power from the system. Devices that are enabled to wake a suspended system are exceptions; such devices are typically in a sleep state (D1 or D2) when the system is in a sleep state.

UMDF Drivers and Device Power Capabilities

For UMDF drivers, the underlying bus driver sets the power capabilities of the device and the UMDF driver cannot change them.

KMDF Drivers and Device Power Capabilities

A KMDF driver can set power capabilities in the same way that it sets Plug and Play capabilities. Typically a bus driver sets the capabilities of the devices that are attached to the bus, but a function or filter driver can override the bus driver’s settings. The settings include the following:

· The power states that the device supports in addition to D0 and D3.

· The power states from which the device can respond to a wake signal.

· The highest-powered Dx state that the device supports for each system Sx state.

· The highest-powered Dx state from which the device can trigger a wake signal to the system.

· The lowest-powered Sx state at which the device can trigger a wake signal.

· Approximate latency time for the device to return to D0 from each sleeping state.

· The “ideal” Dx state that the device should enter when its wake signal is not enabled and the system is entering a sleep state.

When the system enters an Sx state, the framework transitions the device to either the ideal Dx state or the lowest-powered Dx state that the device can support at the given Sx state—whichever is higher powered.

The driver reports the power capabilities to the framework, and the framework, in turn, reports them to the system. The drivers in the device stack cooperatively set power capabilities, so it is possible for another driver higher in the stack to override the values that a KMDF driver sets.

About Power Policy

The power policy for a device determines which power state the device should be in at any given time. One driver in each device stack is responsible for controlling the device’s power policy, and that driver is called the power policy owner for the device stack:

· A UMDF driver must explicitly indicate that it is the power policy owner.

· KMDF assumes, by default, that the FDO is the power policy owner for the device. If the device is controlled by a raw PDO, KMDF assumes that the raw PDO is the power policy owner.

The function driver is responsible for the device’s functional operation and is therefore most likely to have the necessary information about the best way to manage device power. A KMDF filter driver can indicate that it is the power policy owner for its device by notifying the framework during initialization.

The power policy owner is not necessarily the driver that manipulates the device hardware to change the power state. It is simply the driver that specifies when the device power state transitions should occur.

Drivers that claim power policy ownership must ensure, through some means outside standard operating system control, that they are indeed the only power policy owner in their stack. Usually, this mechanism is a documented policy that indicates which driver is the power policy manager.

Plug and Play and Power Management Support in WDF

WDF implements Plug and Play and power management with several internal state machines. Both KMDF and UMDF use the same state machines. An event is associated with the specific actions that a driver might be required to perform at a particular time, and the driver implements the event callbacks to perform the actions that its device requires. The callbacks are called in a defined order and each conforms to a “contract,” so that both the device and the system are guaranteed to be in a particular state when the driver is called to perform an action.

Plug and Play and Power Management Defaults

Although WDF provides great flexibility so that a driver can control detailed aspects of its device’s Plug and Play capabilities, WDF also implements defaults that enable many filter drivers and software-only drivers to omit any Plug and Play code whatsoever. By default, WDF supports all of the Plug and Play features that such drivers need.

By default, WDF assumes the following:

· The device supports D0 and D3.

· The device and driver do not support idle or wake.

· The I/O queues for an FDO or a PDO are power managed.

I/O Queues and Power Management

The frameworks implement power management for I/O queues, so that the queue automatically starts and stops when the device enters and leaves the working state. Such a queue is “power managed.” The framework dispatches I/O requests from a power-managed queue to the driver only when the device hardware is accessible and in the working power state. The driver is not required to maintain device state or to check device state each time it receives an I/O request from a power-managed queue.

By default, the I/O queues of FDOs and PDOs are power managed. A driver can easily change this default to create a non-power-managed queue or to configure power-managed queues for a filter DO. If an I/O request arrives while the device is in a low-power idle state, the framework can restore device power before it delivers the request if the driver is the power policy owner or is layered below the power policy owner in the device stack. However, a driver should not use power-managed queues if it is layered above the power policy owner in the device stack.

Plug and Play and Power Event Callbacks

Most of the Plug and Play and power callbacks are defined in pairs: one event occurs upon entry to a state and the other occurs upon exit from the state. Generally, one member of the pair performs a task that the other reverses. A driver can implement one, both, or neither of a pair. In a UMDF driver where both methods are defined on a single interface, the driver must implement the entire interface on the device callback object but can supply minimal implementations of the methods that it does not require.

The frameworks are designed to work with drivers on an opt-in basis. A driver implements callbacks for only the events that affect its device. For example, some drivers must save device state immediately before the device leaves the D0 power state and restore device state immediately after the device reenters the D0 power state. As another example, a device might have a motor or fan that the driver must start when the device enters D0 and stop before the device leaves D0. A driver can implement callback functions that are invoked at those times. If the device does not require service at those particular times, its driver does not implement the callbacks.

Table 1 summarizes the types of Plug and Play and power features that a driver might require and the UMDF interfaces and KMDF event callbacks that the driver implements to support those features.

Table 1. Plug and Play and Power Callbacks for WDF Drivers

	If your driver…
	Implement this UMDF interface and its methods on the device callback object…
	Implement this KMDF event callback …

	Uses self-managed I/O
	IPnpCallbackSelfManagedIo::
 Xxx
	EvtDeviceSelfManagedIoXxx

	Requires service immediately before the device is initially powered up and after it powers down during resource rebalancing or device removal
	IPnpCallbackHardware::

 OnPrepareHardware

 OnReleaseHardware
	EvtDevicePrepareHardware and EvtDeviceReleaseHardware

	Requires service immediately after the device enters D0 and before it leaves D0
	IPnpCallback::

 OnD0Entry

 OnD0Exit
	EvtDeviceD0Entry and EvtDeviceD0Exit

	Requires the opportunity to evaluate and veto each attempt to stop or remove the device
	IPnpCallback::

 OnQueryStop

 OnQueryRemove
	EvtDeviceQueryStop and EvtDeviceQueryRemove

	Requires additional service at surprise-removal beyond the normal device removal processing
	IPnpCallback::

 OnSurpriseRemoval
	EvtDeviceSurpriseRemoval

Because KMDF drivers have greater access to device hardware than UMDF drivers do, KMDF supports additional features, such as system wake. Table 2 lists additional callbacks that apply only to KMDF drivers.

Table 2. Additional KMDF Plug and Play Callbacks

	If your driver…
	Implement this KMDF event callback…

	Manages device resource requirements
	EvtDeviceResourceRequirementsQuery
EvtDeviceResourcesQuery
EvtDeviceRemoveAddedResources
EvtDeviceFilterAddResourceRequirements
EvtDeviceFilterRemoveResourceRequirements

	Manages the device’s wake signal
	EvtDeviceArmWakeFromSx and EvtDeviceDisarmWakeFromSx
EvtDeviceArmWakeFromS0 and EvtDeviceDisarmWakeFromS0
EvtDeviceEnableWakeAtBus and EvtDeviceDisableWakeAtBus

EvtDeviceWakeFromSxTriggered and EvtDeviceWakeFromS0Triggered

	Performs hardware-related tasks around interrupts
	EvtInterruptEnable and EvtInterruptDisable
EvtDeviceD0EntryPostInterruptsEnabled and EvtDeviceD0ExitPreInterruptsDisabled

If you’re familiar with WDM drivers, you probably remember that any time the system power state changes, the WDM power policy owner must determine the correct power state for its device and then send power management requests to put the device in that state at the appropriate time. The WDF state machine automatically translates system power events to device power events and notifies the driver to do the following:

· Transition the device to low power when the system transitions to Sx.

· Return the device to full power when the system returns to S0.

· Enable the device’s wake signal so that it can be triggered while the device is in a Dx state and the system is in the working state. (KMDF only)

· Enable the device’s wake signal so that it can be triggered while the device is in a Dx state and the system is in a sleep state. (KMDF only)

KMDF automatically provides for the correct behavior in device parent/child relationships for bus drivers. If both a parent and a child device are powered down, KMDF ensures that the parent is powered up before it transitions the child to the D0 state.

Idle and Wake Support (KMDF Only)

To manage idle devices, the framework notifies the driver to transition the device from the working state to the designated low-power state when the device is idle and to return the device to the working state when requests need to be processed. The driver supplies callbacks that initialize and deinitialize the device, save and restore device state, and enable and disable the device wake signal.

By default, a user who has the appropriate privileges can control both the behavior of the device while it is idle and the ability of the device to wake the system. KMDF implements the required WMI provider, and Device Manager displays a property page through which the user can configure the settings. The power policy owner for the device can disable this feature by specifying the appropriate enumeration value when it initializes certain power policy settings.

Power-Pageable and Non-Power-Pageable Drivers

Most devices can be powered down without affecting the system’s ability to access the paging file or to write a hibernation file. The drivers for such devices are considered “power pageable”:

· All UMDF drivers are power pageable.

· Most KMDF drivers are power pageable.

A device that is in the hibernation path, however, must remain in D0 during some power transitions so that the system can write the hibernation file. A device that is in the paging path remains in D0 until the system has written the hibernation file, at which point the entire machine shuts off. The device stacks for the hibernation and paging devices are considered non-power pageable. A KMDF driver indicates that it can support the paging, hibernation file, or system dump file by calling WdfDeviceSetSpecialFileSupport and providing a callback for notification if the device is actually used for such a file.

For example, drivers in the video and storage stacks are non-power pageable because the system uses these devices during power-down. The monitor must remain on so that Windows can display information to the user. During transitions to S4, the target disk for the hibernation file and the disk that contains the paging file must remain in D0 so that the system can write the hibernation file. For the disks to retain power, every device that they depend on must also retain power—such as the disk controller, the PCI bus, the interrupt controller, and so on. All of the drivers in all of these device stacks must thus be non-power pageable.

Most drivers should use the framework’s defaults, which are as follows:

· FDOs by default are power pageable.

· PDOs by default inherit the setting of the driver that enumerated them.

If the PDO is power pageable, all the device objects that are attached to it must also be power pageable. For this reason, a bus driver typically marks its FDO as non-power pageable so that its PDOs inherit the same attribute. The device objects that load above the PDO can then be either power pageable or non-power pageable.

· Filter DOs use the same setting as the next lower driver in the stack. A driver cannot change the setting for a filter DO.

If the default is inappropriate, a function or bus driver can explicitly call the WdfDeviceInitSetPowerPageable or WdfDeviceInitSetPowerNotPageable method during device object initialization to change the default. These methods set and clear the DO_POWER_PAGABLE value in the Flags field of the underlying WDM device object for an FDO or PDO, but have no effect for filter DOs.

The framework can change the value of the DO_POWER_PAGABLE flag for any device object if the system notifies the driver that the device is used for a hibernation, paging, or dump file.

If you are certain that none of the drivers in the device stack must be non-power pageable, your driver can call WdfDeviceInitSetPowerPageable. This might be the case if you wrote all of the drivers in the stack or if the requirements for the device stack are clearly documented. A PDO must not be power pageable unless the device stacks of all of the child devices are also power pageable.

KMDF provides the following special handling for drivers that are non-power pageable:

· The framework disables—but does not disconnect—the device’s interrupt when the device leaves the D0 state. The framework cannot disconnect the interrupt because the required IoDisconnectInterruptXxx system call is pageable.

· The framework implements a watchdog timer on all callbacks for power and wake events. If the driver causes paging I/O after the paging file’s device has left D0, a deadlock occurs, thus hanging the system. When the timer expires, the system crashes so that the user can determine which driver caused the deadlock. You can use the !wdfextendwatchdog debugger extension to extend the time-out during debugging. KMDF does not provide a way to extend the time-out programmatically.

· A driver can determine whether it is currently in a nonpageable power state by calling WdfDevStateIsNP(WdfDeviceGetDevicePowerState()) from within a power or power policy callback function.

WdfDeviceGetDevicePowerState returns an enumeration value of the WDF_DEVICE_POWER_STATE type, which identifies the detailed state of the framework’s state machine. For example, WdfDevStatePowerD0 and WdfDevStatePowerD0NP are two distinct values that represent the pageable D0 state and the nonpageable D0 state, respectively.

WdfDevStateIsNP returns TRUE if the driver is currently in a nonpageable power state and FALSE otherwise. This value is valid only while the current callback function is running. After the callback returns, the power state can change. Therefore, if the driver must perform actions that involve paging, the driver should do so immediately upon determining that the device power state permits these actions.

Callback Sequences for Plug and Play and Power Management

Plug and Play and power management handle the activities that are required to bring a newly inserted device to full operation and to remove an operational device from the system. When the user plugs in a new device, the system must determine the type and capabilities of the device, assign resources to the device, work with the device’s drivers to power up and initialize the device, and do whatever else is required to ready the device for operation. When the user unplugs the device, the system reverses this process. The core activities related to device arrival and startup follow a fixed sequence, as do the core activities related to shutdown and removal.

At each point in the sequence, the device stack is in a well-defined state. The WDF state machines track the device stack through the transitions from one state to another, and WDF defines callbacks that correspond to many of the state transitions. When such a state change occurs, the framework invokes the callback, if any, that applies to the new state.

For example, a key activity in the startup sequence is to initialize the device and driver when the device powers up. In most device stacks, the bus driver is responsible for ensuring that the device has power, but the function driver handles initialization. Depending on the type of device, the driver might perform initialization before power is applied, after power is applied, or both. WDF defines callbacks for each of these states. If the device generates interrupts, the driver can further request a callback after power is applied but before the interrupt is connected or immediately after the interrupt is connected.

A device stack can change state for numerous reasons. The following are among the most common:

· The device is added to the system.

· The device is removed from the system, either in an orderly way or by surprise.

· The system is powering up.

· The system is either hibernating or standing by.

· The system is shutting down.

· An idle device is being powered down to conserve energy.

· An idle device is being re-powered because I/O has arrived for it or because an external wake signal was triggered.

· Another device has been added to the system, requiring Windows to rebalance resources.

· A driver is being upgraded or reinstalled.

The reason for the change determines exactly which callbacks the framework calls. For example, if the system is shutting down, the framework calls all of the driver’s callbacks involved in stopping all device I/O and powering down the device. However, if an idle device is powering down, only the callbacks to stop some device I/O and power down the device are required. The framework retains the device object and the device’s resources for use when the device resumes operation.

From the perspective of the driver, however, the reason for the state change is not important. The driver’s callbacks perform discrete tasks at clearly defined times—such as initializing the device after the hardware is powered up. Whether the device is powering up as part of initial installation or because it triggered a wake signal is irrelevant to the driver. For the driver, the important point is that the framework always invokes the callbacks in the same sequence and according to the contract for that state.

State Changes and the Callback Sequence

The framework invokes the relevant callbacks in a fixed sequence as the device is inserted and made fully operational and in the reverse order as the device is powered down and removed. However, devices are not often installed and removed. More typically, the system transitions to an Sx state when the user closes the lid of a laptop or the driver for a network card transitions its device to a Dx state when the cable is unplugged. In these situations, the entire sequence of callbacks is unnecessary. Instead, the framework calls only the part of the sequence that is required to put the device in the desired state.

During power-down, the framework stops the sequence at one of four points, depending on whether the device is:

· Transitioning to a lower-power state.

· Stopping to rebalance resources.

· Disabled or removed but still physically present—for example, if the user disabled the device in Device Manager.

· Physically removed.

With each subsequent callback, and at each subsequent stopping point, less device and driver functionality is available. When the framework returns the device to the working state, it starts the sequence of callbacks at the same point at which it stopped, but in the reverse order. If the device is removed unexpectedly (that is, “surprise removed”), the sequence differs somewhat, as described in “Surprise Removal” later in this paper.

After the device has left the working state and transitioned to a lower-powered state, the framework always returns the device to the working state before it changes the device power state again. For example, assume that a device is idling in state D2 when the user shuts down the system. The framework resumes the shutdown callback sequence at the stopping point and calls the callbacks in the reverse order to return the device to D0. Then it starts the sequence again, starting with the device in the operational state, to perform the activities that are required for shutdown. Although it might seem counterintuitive, this approach ensures that the drivers for the device can perform any additional tasks that are required before the system shuts down. A driver might save less state information when it transitions to D2 than it requires for D3, so the interim transition to D0 lets the driver recover whatever additional information it requires before the device enters D3.

Framework Startup and Shutdown Sequences

To ensure that your driver implements the appropriate callbacks and that each one performs the right tasks, you must understand the order in which the framework invokes the callbacks.

Figure 1 lists the steps in the framework’s startup and shutdown sequences. The startup actions in the left column correspond to the shutdown actions in the right column. Not all steps apply to every type of driver or device object, and whether some steps apply depends on the reason for the startup or shutdown. For example, the framework does not call the driver to enable the device wake signal when the device is stopping so that the PnP manager can rebalance system resources. A surprise removal triggers the shutdown and removal sequence even though the hardware has already been physically removed.

The specific callbacks that the framework invokes to perform each of these actions are listed later in this paper.

[image: image1.emf]Device physically arrives.

Device is operational and in the working state

Enable generic wake signal at bus, if a

wake request is still pending (KMDF PDO).

Enable generic wake signal at bus if driver

supports it (KMDF PDO).

Enable self-managed I/O, if driver

supports it.

Suspend self-managed I/O, if driver

supports it.

Start power-managed queues. Stop power-managed queues.

Disarm device-specific wake signal, if it is

armed (KMDF FDO, filter DO).

Arm device-specific wake signal, if driver

supports it (KMDF FDO, filter DO).

Request information about child devices

(KMDF FDO and PDO).

Enable DMA, if driver supports it (KMDF). Disable DMA, if driver supports it (KMDF).

Connect interrupts (KMDF). Disconnect interrupts (KMDF).

Notify driver of state change for D0 entry. Notify driver of state change for D0 exit.

Disable generic wake signal at bus, if it is

enabled (KMDF PDO).

Disable generic wake signal at bus, if it is

enabled and if the device is being removed

(KMDF PDO).

Device is in low-power state.

Prepare hardware for power. Release hardware.

Change resource requirements

(KMDF FDO, filter DO).

Device is stopped to rebalance resources.

Purge power-managed I/O queues.

Flush I/O buffers, if driver supports self-

managed I/O.

Purge non-power-managed I/O queues.

Clean up I/O buffers, if driver supports self-

managed I/O.

Delete device object's context area.

Create device object.

Report resource requirements (PDO).

Enumerate child devices (PDO).

Device is physically removed.

Device is disabled or removed but is still physically present.

S

h

u

t

d

o

w

n

a

n

d

r

e

m

o

v

a

l

E

n

u

m

e

r

a

t

i

o

n

a

n

d

s

t

a

r

t

u

p

Figure 1. Steps in framework startup and shutdown sequences

Callback Function Failures

If the callback at any of the steps returns a failure status, the framework tears down the device stack.

If the failure occurs during power-up, the framework calls the driver’s release-hardware callback—if the driver implements one—but does not call any other callbacks.

If the failure occurs during power-down, the framework continues to call the driver’s callbacks. Therefore, the callback methods in the power-down sequence must be able to tolerate failures that are caused by unresponsive hardware.

Device Enumeration and Startup

Whenever Windows boots, the loader, the PnP manager, and the drivers cooperatively enumerate all the devices on the system and build devnodes to represent them. The same procedure also occurs when a device is added to a running system, although on a smaller scale.

During device enumeration, the PnP manager loads the drivers and builds the device stack for each device that is attached to the system. To prepare a device for operation, the PnP manager sends a sequence of requests to each device stack to get the information about the resources that the device requires, the capabilities of the device, and so on. The drivers in the device stack respond to these requests one at a time from the bottom up, starting with the driver that is closest to the hardware. Thus, the PDO powers on the device before the FDO receives a request to perform its power-on tasks. Power-down occurs in the opposite order. In short, the higher level drivers depend on the functionality of the drivers below them, so they start later and stop earlier.

The frameworks participate in this sequence on behalf of their drivers. The frameworks respond immediately to the PnP manager’s requests when they can and invoke driver callback functions to supply information and perform tasks for which driver input or actions are required. For framework drivers:

· All UMDF drivers can implement the same set of callback interfaces.

The IDriverEntry interface is implemented on the driver callback object. The IPnpCallback, IPnpCallbackHardware, and IPnpSelfManagedIo interfaces are implemented on the device callback object. The IQueueCallbackXxx interfaces are implemented on the queue callback objects.

· For KMDF drivers, most of the event callbacks apply to any type of device object.

However, the framework invokes some callbacks only for PDOs and other callbacks only for FDOs and filter DOs.

Figures 2 and 3 show the sequence of callbacks for UMDF drivers and for KMDF FDO and filter DOs that are involved in bringing a device to the fully operational state, starting from the Device Arrived state at the bottom of the figure.

In these figures, the broad horizontal lines mark the steps for starting a device. The column on the left side of the figure describes the step, and the column on the right lists the event callbacks that accomplish the step. If the device is stopped because the PnP manager is rebalancing system resources or if the device is physically present but not in the working state, not all of the steps are required, as the figures show.

[image: image2.emf]Enable self-managed I/O, if driver

supports it.

Start power-managed queues.

(Called only if UMDF earlier invoked

IQueueCallbackIoStop::OnIoStop

during power-down.)

Notify driver of state change.

Prepare hardware for power.

Create device object.

Device Operational

Device Arrived

IPnpCallbackSelfManagedIo::OnSelfManagedIoInit

or OnSelfManagedIoRestart

IQueueCallbackIoResume::OnIoResume

IPnpCallback::OnD0Entry

IPnpCallbackHardware::OnPrepareHardware

IDriverEntry::OnDeviceAdd

Restart from here if device is in low-power state.

Restart from here if rebalancing resources.

Figure 2. Device enumeration and startup sequence for a UMDF driver

At the bottom of Figure 2, the device is not present on the system. When the user plugs in the device, the framework begins by calling the driver’s IDriverEntry::OnDeviceAdd callback so that the driver can create a device callback object and a framework device object to represent the device. The framework continues calling the driver’s callback routines by progressing up through the sequence until the device is operational.

Figure 3 shows the callbacks for a KMDF FDO or filter DO that is involved in bringing a device to the fully operational state.

[image: image3.emf]Request information about child devices. EvtChildListScanForChildren

Enable self-managed I/O, if driver

supports it.

EvtDeviceSelfManagedIoInit

or EvtDeviceSelfManagedIoRestart

Start power-managed queues.

(Called only if EvtIoStop was previously

called during power-down.)

Disarm wake signal, if it was armed.

(Called only during power-up;

not called during resource rebalance.)

Enable DMA, if driver supports it.

Connect interrupts.

Notify driver of state change.

Restart from here if device is in low-power state.

EvtIoResume

EvtDeviceDisarmWakeFromSx

EvtDeviceDisarmWakeFromS0

EvtDmaEnablerSelfManagedIoStart

EvtDmaEnablerEnable

EvtDmaEnablerFill

EvtDeviceD0EntryPostInterruptsEnabled

EvtInterruptEnable

EvtDeviceD0Entry

Prepare hardware for power.

Change resource requirements.

EvtDevicePrepareHardware

EvtDeviceRemoveAddedResources

EvtDeviceFilterAddResourceRequirements

EvtDeviceFilterRemoveResourceRequirements

Restart from here if rebalancing resources.

Create device object. EvtDriverDeviceAdd

Device Operational

Device Arrived

Figure 3. Device enumeration and startup sequence for KMDF FDO or filter DO

At the bottom of Figure 3, the device is not present on the system. When the user inserts the device, KMDF begins by calling the driver’s EvtDriverDeviceAdd callback so that the driver can create a device object to represent the device. KMDF continues calling the driver’s callback routines by progressing up through the sequence until the device is operational. Remember that the event callbacks are listed in bottom-up order as shown in Figure 3, so EvtDeviceFilterRemoveResourceRequirements is called before EvtDeviceFilterAddResourceRequirements and so forth.

Figure 4 shows the callbacks for a bus driver (PDO) that is involved in bringing a device to the fully operational state.

[image: image4.emf]Request information about child devices. EvtChildListScanForChildren

Device Operational

Device Arrived

Enable wake signal, if a wake request

from the previous power-down is still

pending.

Enable self-managed I/O, if driver

supports it.

Start power-managed queues.

(Called only if EvtIoStop was called

during power-down.)

Enable DMA, if driver supports it.

Connect interrupts.

Notify driver of state change.

Disable wake signal, if it was enabled.

(Called only during power-up; not called

during resource rebalance.)

Restart from here if device is in low-power state.

EvtDeviceEnableWakeAtBus

EvtDeviceSelfManagedIoInit

or EvtDeviceSelfManagedIoRestart

EvtIoResume

EvtDmaEnablerSelfManagedIoStart

EvtDmaEnablerEnable

EvtDmaEnablerFill

EvtDeviceD0EntryPostInterruptsEnabled

EvtInterruptEnable

EvtDeviceD0Entry

EvtDeviceDisableWakeAtBus

Prepare hardware for power. EvtDevicePrepareHardware

Restart from here if rebalancing resources

or if device was disabled or removed but remains physically present .

Create device object. EvtDriverDeviceAdd

Report resource requirements. EvtDeviceResourceRequirementsQuery

EvtDeviceResourcesQuery

Enumerate child devices. EvtChildListCreateDevice

Figure 4. Device addition/startup sequence for PDO

The framework retains the PDO until the corresponding device is physically removed from the system or the bus that enumerated the device is disabled. For example, if a user disables the device in Device Manager but does not physically remove it, KMDF retains the PDO. This requirement is imposed by the underlying WDM model. Thus, the three steps at the bottom of Figure 4 occur only during Plug and Play enumeration—that is, during initial boot, when the user plugs in a new device, and when the bus to which the device is attached enumerates its child devices.

Device Power-Down and Removal

During device power-down, the sequence of callbacks depends on the role of the device object just as it does during device startup. In general, the power-down and removal sequence involves calling the corresponding “undo” callbacks in the reverse order from which the framework called the methods that it invoked to make the device operational. Drivers perform power-down operations from the top down, so the driver at the top of the device stack performs its power-down tasks first, and the PDO performs its power-down tasks last.

Figure 5 shows the sequence of UMDF callbacks in power-down and removal. The sequence starts at the top of the figure with a device that is in the working power state (D0).

[image: image5.emf]IPnpCallbackHardware::OnReleaseHardware

Device Operational

Device Removed

Suspend self-managed I/O,

if driver supports it.

IPnpCallbackSelfManagedIo::OnSelfManagedIoSuspend

Stop power-managed queues. IQueueCallbackIoStop::OnIoStop

Notify driver of state change. IPnpCallback::OnD0Exit

Stop here if transitioning to low-power state.

Stop here if rebalancing resources.

Purge power-managed queues. IQueueCallbackIoStop::OnIoStop

Flush I/O buffers, if driver

supports self-managed I/O.

IPnpCallbackSelfManagedIo::OnSelfManagedIoFlush

Purge non-power-managed

queues.

IQueueCallbackIoStop::OnIoStop

Clean up I/O buffers, if driver

supports self-managed I/O.

IPnpCallbackSelfManagedIo::OnSelfManagedIoCleanup

Release hardware.

(Not called if target device state

is WdfPowerDeviceD3Final.)

Figure 5. Device power-down and orderly removal sequence for a UMDF driver

Figure 6 shows the sequence of callbacks in power-down and removal for a KMDF FDO or filter DO.

[image: image6.emf]Device Operational

Device Removed

Suspend self-managed I/O, if driver

supports it.

Stop power-managed queues.

Arm wake signal, if driver supports it.

(Called only during transitions to low

power, not during resource rebalance

or device removal.)

Disable DMA, if driver supports it.

Disconnect interrupts.

Notify driver of state change.

EvtDeviceSelfManagedIoSuspend

EvtIoStop

EvtDeviceArmWakeFromSx and

EvtDeviceArmWakeFromS0

EvtDmaEnablerSelfManagedIoStop

EvtDmaEnablerDisable

EvtDmaEnablerFlush

EvtDeviceD0ExitPreInterruptsDisabled

EvtInterruptDisable

EvtDeviceD0Exit

Stop here if transitioning to low-power state.

Release hardware. (Not called if target

device state is WdfPowerDeviceD3Final.)

EvtDeviceReleaseHardware

Stop here if rebalancing resources.

Purge power-managed queues.

Flush I/O buffers, if driver supports

self-managed I/O.

Purge non-power-managed queues.

Clean up I/O buffers, if driver supports

self-managed I/O.

Delete device object’s context area.

EvtIoStop

EvtDeviceSelfManagedIoFlush

EvtIoStop

EvtDeviceSelfManagedIoCleanup

EvtCleanupContext

EvtDestroyContext

Figure 6. Device power-down and orderly removal sequence for KMDF FDO and filter DO

Figure 7 shows the callbacks in the power-down and removal sequence for a PDO.

[image: image7.emf]Device Operational

Enable wake signal, if driver supports it.

(Called only during transitions to low

power, not during resource rebalance

or device removal.)

Suspend self-managed I/O, if driver

supports it.

Stop power-managed queues.

Disable DMA, if driver supports it.

Disconnect interrupts.

Notify driver of state change.

Disable wake signal, if it is enabled.

(Called only during device removal.)

EvtDeviceEnableWakeAtBus

EvtDeviceSelfManagedIoSuspend

EvtIoStop

EvtDmaEnablerSelfManagedIoStop

EvtDmaEnablerDisable

EvtDmaEnablerFlush

EvtDeviceD0ExitPreInterruptsDisabled

EvtInterruptDisable

EvtDeviceD0Exit

EvtDeviceDisableWakeAtBus

Stop here if transitioning to low-power state.

Release hardware. (Not called if target

device state is WdfPowerDeviceD3Final.)

EvtDeviceReleaseHardware

Stop here if rebalancing resources.

Purge power-managed I/O queues.

Flush I/O buffers, if driver supports

self-managed I/O.

EvtIoStop

EvtDeviceSelfManagedIoFlush

Stop here if device is still physically present .

Purge non-power-managed I/O queues.

Clean up I/O buffers, if driver supports

self-managed I/O.

Delete device object’s context area.

Device Removed

EvtIoStop

EvtDeviceSelfManagedIoCleanup

EvtCleanupContext

EvtDestroyContext

Figure 7. Device power-down and orderly removal sequence for PDO

As previously mentioned in “Device Enumeration and Startup” earlier in this paper, the framework does not delete the PDO until the device is physically removed from the system or the bus that enumerated the device is disabled. For example, if a user disables the device in Device Manager or uses the Safely Remove Hardware utility to stop the device but does not physically remove it, KMDF retains the PDO. If the device is later reenabled, KMDF uses the same PDO and begins the startup sequence by calling the EvtDevicePrepareHardware callback, as previously shown in Figure 4.

Surprise Removal

If the user removes a device without warning, by simply unplugging it without using Device Manager or the Safely Remove Hardware utility, the device is considered “surprise removed.” When surprise removal occurs, WDF follows a slightly different removal sequence from that used with orderly removal and shutdown. WDF also follows the surprise-removal sequence if any driver in the kernel-mode stack invalidates the device state even if the device is still physically present. A KMDF driver can invalidate the device state by calling WdfDeviceSetDeviceState.

Drivers for all removable devices must ensure that the callbacks in both the shutdown and startup paths can handle failure, particularly failures that are caused by hardware removal.

UMDF Surprise-Removal Sequence

In the surprise-removal sequence, UMDF calls the IPnpCallback::OnSurpriseRemoval callback to notify the driver that the device has been unexpectedly removed. This callback is not guaranteed to occur in any particular order with the other callbacks in the removal sequence.

Generally, the driver should avoid accessing the hardware in the remove path. The reflector times out the driver if an attempt to access the hardware waits indefinitely. Figure 8 shows the surprise-removal sequence for a UMDF driver.

[image: image8.emf]Device Surprise-Removed

Removal Processing Complete

Suspend self-managed I/O.

Stop power-managed queues.

Notify driver of state change.

Release hardware.

Purge power-managed queues.

Flush I/O buffers, if driver supports

self-managed I/O.

Purge non-power-managed

queues.

Clean up I/O buffers, if driver

supports self-managed I/O.

IPnpCallbackSelfManagedIo::OnSelfManagedIoSuspend

IQueueCallbackIoStop::OnIoStop

IPnpCallback::OnD0Exit

IPnpCallbackHardware::OnReleaseHardware

IQueueCallbackIoStop::OnIoStop

IPnpCallbackSelfManagedIo::OnSelfManagedIoFlush

IQueueCallbackIoStop::OnIoStop

IPnpCallbackSelfManagedIo::OnSelfManagedIoCleanup

Start here if device is in the working state.

Start here if device is not in the working state.

Figure 8. Surprise-removal sequence for a UMDF driver

KMDF Surprise-Removal Sequence

The framework can call the EvtDeviceSurpriseRemoval callback at any time before, during, or even after the power-down sequence. For example, if the user unplugs the device during an idle power-down, the framework can call the EvtDeviceSurpriseRemoval callback in the middle of the sequence. There is no guarantee on the order in which EvtDeviceSurpriseRemoval is called in relation to the other power-down callbacks.

KMDF destroys the device object after the EvtDeviceSurpriseRemoval callback has returned and the last handle to the WDF device object has been closed.

Any attempts to access the hardware should not block indefinitely, but should be subject to time-outs or a watchdog timer.

Figure 9 shows the surprise-removal sequence for a KMDF driver.

[image: image9.emf]Start here if device is in the working state.

Device Surprise-Removed

Removal Processing Complete

Suspend self-managed I/O.

Stop power-managed queues.

Disable DMA, if driver supports it.

Disconnect interrupts.

Notify driver of state change.

Release hardware.

Purge non-power-managed queues.

EvtDeviceSelfManagedIoSuspend

EvtIoStop

EvtDmaEnablerSelfManagedIoStop

EvtDmaEnablerDisable

EvtDmaEnablerFlush

EvtDeviceD0ExitPreInterruptsDisabled

EvtInterruptDisable

EvtDeviceD0Exit

EvtDeviceReleaseHardware

EvtIoStop

Clean up I/O buffers, if driver supports

self-managed I/O.

Delete device object’s context area.

EvtDeviceSelfManagedIoCleanup

EvtCleanupContext

EvtDestroyContext

Start here if device is not in the working state.

Figure 9. Surprise-removal sequence for a KMDF driver

How to Implement Plug and Play and Power Management in WDF Drivers

The rest of this paper provides sample code that shows how to implement Plug and Play and power management in several types of drivers:

· Software-only drivers.

· Simple function drivers, such as UMDF protocol function drivers and KMDF hardware function drivers that do not support idle or wake.

· KMDF hardware function drivers that support idle and wake.

The Plug and Play and power management implementation is more complex in each successive example, and each example builds upon the information in the previous examples. You can add the Plug and Play and power code to your own driver in a similar incremental way. Even if your device supports advanced capabilities such as idle or wake, you can start by implementing the simple features. When these features work correctly, you can implement additional callbacks to support the more complex features.

For each type of driver, the discussion covers:

· The type of driver and the Plug and Play and power management features that the driver implements.

· The framework methods that the driver calls and the event callbacks that the driver implements to support the Plug and Play and power management features.

· Sample code that shows the implementation of those features.

· The actions that the framework takes in response to various example Plug and Play and power events for this driver type.

In each sample listing, the significant lines of code are in bold.

Plug and Play and Power Management in Software-Only Drivers

A software-only driver is a driver that does not control any hardware, either directly or through a protocol such as USB. For example, a root-enumerated function driver is a software-only driver and some filter drivers are software-only drivers. The devnode for a root-enumerated function driver is enumerated from the root of the device tree, and the driver is not associated with any hardware. Software-only drivers can be written for either user mode or kernel mode.

A root-enumerated, software-only KMDF driver creates an FDO and thus is by default considered the power policy owner for its stack. However, because the driver does not control physical hardware, it does not perform any specific power policy actions—the WDF defaults are sufficient to manage power policy.

Filter drivers are rarely power policy owners for their stacks. However, if a filter driver is the power policy manager for its stack, the driver notifies the framework as part of device object initialization so that WDF can initialize the device object appropriately. If the framework’s defaults are otherwise adequate for the driver, the driver does not require any additional Plug and Play or power callbacks. The framework can manage Plug and Play and power for the driver, just as for the software-only function driver. If the framework’s defaults are not adequate, a filter driver can implement Plug and Play and power callbacks to satisfy its requirements.

By default, the framework implements power management for all I/O queue objects that are children of FDOs and PDOs. Queues associated with filter DOs are not power managed. Because device hardware is not accessible when the device is in a state other than D0, the framework dispatches requests from a power-managed queue to the driver only when the device is in the D0 state.

Software-only drivers, by definition, do not access any device hardware. Therefore, such drivers should typically disable power management for all of their queues. Disabling power management for the queues means that the framework dispatches requests to the driver regardless of the state of the underlying device hardware. The driver can then process the request as usual and forward it, if necessary, to the next lower driver. A driver disables power management for a queue object when it creates the queue.

UMDF Example: Plug and Play in a Software-Only Filter Driver

The USB Filter sample requires no special code to handle plug and play or power management. Instead, the driver simply:

· Initializes the device object as a filter.

· Indicates that the device object does not own power policy. This call is not required because UMDF by default assumes that the driver is not the power policy owner.

· Creates non-power-managed queues.

All of these tasks are part of IDriverEntry::OnDeviceAdd processing. In the USB Filter sample driver, this processing includes the Initialize method, which is implemented on the device callback object in Device.cpp, as Listing 1 shows.

Listing 1. Sample PnP initialization in a UMDF filter driver

HRESULT CMyDevice::Initialize(

 __in IWDFDriver * FxDriver,

 __in IWDFDeviceInitialize * FxDeviceInit

)

{

 IWDFDevice *fxDevice;

 HRESULT hr;

 FxDeviceInit->SetLockingConstraint(None);

 FxDeviceInit->SetFilter();
 FxDeviceInit->SetPowerPolicyOwnership(FALSE);

 {

 IUnknown *unknown = this->QueryIUnknown();

 hr = FxDriver->CreateDevice (FxDeviceInit, unknown, &fxDevice);

 unknown->Release();

 }

 if (SUCCEEDED(hr)) {

 m_FxDevice = fxDevice;

 fxDevice->Release();

 }

 return hr;

}

The Initialize function in Listing 1 initializes and creates the framework’s device object. The significant steps here are in bold. The call to IWDFDeviceInitialize::SetFilter tells the framework that the driver acts as a filter, so the framework should change its default for request types that the driver does not handle. Instead of failing such requests, the framework passes them to the next lower driver. The call to IWDFDeviceInitialize::SetPowerPolicyOwnership indicates to the framework that the driver does not own power policy for the device. This call is not required in this driver, but is included for demonstration purposes.

The only other required step in a UMDF filter driver is to create non-power-managed queues. The driver does this when it calls IWDFDevice::CreateIoQueue, as the following shows:

hr = FxDevice->CreateIoQueue(unknown,

 TRUE, // bDefaultQueue

 WdfIoQueueDispatchParallel,

 FALSE, // bPowerManaged

 TRUE, // bAllowZeroLengthRequests

 &fxQueue

);

In this call, the important item is the fourth parameter (bPowerManaged), which indicates whether the framework should manage power for the queues. A software-only driver passes FALSE for this parameter so that the framework dispatches requests to the driver whether or not the device is in the working power state.

KMDF Example: Plug and Play in a Software-Only Filter Driver

As described earlier, the framework automatically handles Plug and Play and power management tasks for software-only drivers by default.

Listing 2, which is adapted from the Toaster Filter sample, shows a basic EvtDriverDeviceAdd function for a software-only KMDF filter driver. This function sets up two Plug and Play or power management features, which are highlighted in this listing:

· An optional cleanup event callback for the device object.

· A non-power-managed I/O queue.

Listing 2. Sample PnP initialization in a KMDF software-only filter driver

NTSTATUS FilterEvtDriverDeviceAdd(

 IN WDFDRIVER Driver,

 IN PWDFDEVICE_INIT DeviceInit)

{

 NTSTATUS status = STATUS_SUCCESS;

 PFDO_DATA fdoData;

 WDF_IO_QUEUE_CONFIG queueConfig;

 WDF_OBJECT_ATTRIBUTES fdoAttributes;

 WDFDEVICE hDevice;

 WdfFdoInitSetFilter(DeviceInit);

 // Initialize the object attributes for our WDFDEVICE.

 WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&fdoAttributes, FDO_DATA);

 fdoAttributes.EvtCleanupCallback = FilterEvtDeviceContextCleanup;
 // Create a framework device object.

 status = WdfDeviceCreate(&DeviceInit, &fdoAttributes, &hDevice);

 if (!NT_SUCCESS(status)) {

 return status;

 }

 status = WdfDeviceCreateDeviceInterface(hDevice,

 &GUID_DEVINTERFACE_FILTER,

 NULL);

 if (!NT_SUCCESS (status)) {
 return status;

 }

 // Initialize the default queue.

 WDF_IO_QUEUE_CONFIG_INIT_DEFAULT_QUEUE(&queueConfig,

 WdfIoQueueDispatchParallel);

 queueConfig.PowerManaged = FALSE;
 // Specify event processing callbacks.

 queueConfig.EvtIoWrite = FilterEvtIoWrite;

 // Create the queue

 status = WdfIoQueueCreate(hDevice,

 &queueConfig,

 WDF_NO_OBJECT_ATTRIBUTES,

 NULL);

 if (!NT_SUCCESS (status)) {
 return status;

 }

 return STATUS_SUCCESS;
}

The EvtDriverDeviceAdd function in Listing 2 is called with a pointer to the WDF driver object and a pointer to a WDFDEVICE_INIT structure. The WDFDEVICE_INIT structure is used to initialize a variety of characteristics that are applied when the device object is created.

To indicate that the device object represents a filter driver, the driver passes the WDFDEVICE_INIT pointer to WdfFdoInitSetFilter. As a result, the framework changes its default processing for any I/O queues that are children of the device object. Instead of failing request types that the driver does not handle, the framework passes them to the next lower driver. In addition, the framework creates I/O queues that are not power managed.

The driver registers the device object’s context type (FDO_DATA) as part of the WDF_OBJECT_ATTRIBUTES structure. By filling in the EvtCleanupCallback member of this same structure, the driver registers to be called at its FilterEvtDeviceContextCleanup function when the device object is deleted. A driver should implement this callback if, for example, it has allocated memory other than that provided by the standard WDF object context structures and must free that memory when the device object is deleted.

The driver then creates the device object and the device interface by calling WdfDeviceCreate and WdfDeviceCreateDeviceInterface, respectively.

Following this, the driver initializes a WDF_IO_QUEUE_CONFIG structure for its default queue, providing a callback for handling write requests. It sets the PowerManaged field of the WDF_IO_QUEUE_CONFIG structure to FALSE to indicate that the I/O queue being created should not be power managed. The driver passes this structure as input to WdfIoQueueCreate to create a single default queue to handle requests for the driver.

Creating a non-power-managed queue means that the framework calls the driver whenever a write request arrives, regardless of the power state of the device.

Framework Actions for Software-Only Drivers

In software-only and filter drivers, the framework handles nearly all Plug and Play and power management operations. Because the driver does not control any hardware, it is not required to provide any additional event callbacks. The framework automatically processes all power management requests properly.

The UMDF driver’s only Plug and Play callback function is IDriverEntry::OnDeviceAdd, and the KMDF driver’s only Plug and Play callback is EvtDriverDeviceAdd. Although the KMDF example also provides an optional EvtCleanupCallback, nothing in the example driver code above actually requires implementing this callback.

The sample drivers disable power management for their queues. As a result, the framework does not automatically hold and release the queue based on arriving Plug and Play and power management events. Instead, the driver continues to receive I/O requests regardless of the Plug and Play and power state of the device.

Plug and Play and Power Management in Simple Hardware Drivers

A driver that supports hardware—such as a UMDF protocol function driver or a KMDF hardware function driver—differs from a software-only driver in the following ways:

· A driver that supports hardware must initialize its device to a known state every time the device enters D0, including during system startup.

This known state is typically fully “reset.” If the device supports interrupts or DMA, interrupts are disabled and DMA is stopped.

· Most drivers that interact directly with their device’s hardware create one or more power-managed I/O queues.

The framework automatically stops dispatching I/O requests from the power-managed queues whenever the device hardware is not accessible, such as when the device is powered down.

A simple hardware driver, as described in this section, manages its device hardware through power-up initialization and power-down teardown and uses power-managed queues.

Most KMDF hardware drivers manage hardware resources and device interrupts from their devices and thus must support callback functions to process resources, to enable and disable interrupts, and to handle interrupts when they occur.

Advanced features, such as device idle and wake, are supported only by KMDF and are described in “Advanced Power Management for KMDF Drivers” later in this paper.

Device Power-Up Initialization and Power-Down Teardown

The framework provides hardware function drivers the opportunity to perform device initialization whenever the device enters the D0 state and to perform teardown whenever the device leaves the D0 state. Each time a device enters D0, the framework calls the driver’s D0 entry callback:

· For a UMDF driver, the framework calls IPnpCallback::OnD0Entry.

· For a KMDF driver, the framework calls EvtDeviceD0Entry.

For a KMDF driver, EvtDeviceD0Entry is called before the driver’s EvtInterruptEnable callback. Therefore, interrupts have not yet been enabled for the device and the device is not yet connected to the driver’s EvtInterruptIsr callback. During EvtDeviceD0Entry, drivers must not enable interrupts on their device or do anything that causes their device to interrupt. This is important to avoid potential “interrupt storms.” The same is true for the EvtDevicePrepareHardware callback. If the device requires initialization after its interrupt is connected, the driver should register EvtDeviceD0EntryPostInterruptsEnabled.

The framework calls these callbacks after the bus driver has powered up the device, so the device hardware is accessible to the driver. Every device is powered up implicitly whenever the device is first detected, such as during system startup, and after the PnP manager stops the device to rebalance resources. Therefore, the framework always calls the D0 entry callbacks during startup, after calling the prepare-hardware callbacks.

Within the D0 entry callback, a driver performs any required hardware-related tasks each time the device enters the D0 state. Such tasks might include downloading firmware to the device and initializing the device to a known state or restoring the state previously saved during power-down.

Each time a device is about to leave D0, the framework calls the device’s driver at its D0 exit callback:

· For a UMDF driver, the framework calls IPnpCallback::OnD0Exit.

· For a KMDF driver, the framework calls EvtDeviceD0Exit.

For a KMDF driver, the framework calls EvtDeviceD0Exit after it calls EvtInterruptDisable, so device interrupts have been disabled and disconnected from the driver’s EvtInterruptIsr callback. As with D0 entry, if the device requires teardown before its interrupts are disabled, the driver should register EvtDeviceD0ExitPreInterruptsDisabled.

During D0 exit processing, a driver performs tasks that are related to power-down, such as saving internal device state. The device hardware is still accessible in these callbacks because the device is still in the D0 power state.

Power Management for Queues in Hardware Function Drivers

By default, the framework manages power for the I/O queue objects that are children of FDOs and PDOs. As previously described, when the framework manages power for a queue, it dispatches requests from the queue to the driver’s I/O callback functions only when the device hardware is accessible and in the D0 state. Letting the framework manage power for a queue means that the driver is not required to maintain device state or to check device state each time it receives an I/O request from the queue. Instead, it can process the request and access device hardware as required until the request has been completed.

Of course, not all I/O requests that a driver receives require access to device hardware. For example, a driver can often handle some device I/O control requests without accessing the hardware. Such a driver should create two queues—one power-managed queue and one non-power-managed queue. The driver configures the non-power-managed queue to receive all of the device I/O control requests from the framework. The framework dispatches requests from this queue regardless of the power state of the device. The driver inspects each request, handles the request if possible, and—if the device is not in the working state—forwards any requests that it cannot handle to the power-managed queue.

Drivers typically create and configure their I/O queues during add-device processing—that is, in a UMDF driver’s IDriverEntry::OnDeviceAdd callback or a KMDF driver’s EvtDriverDeviceAdd callback.

To disable power management for a queue:

· A UMDF driver sets the bPowerManaged parameter of the IWDFDevice::CreateIoQueue method to FALSE when it creates the queue.

· A KMDF driver sets the PowerManaged field of the WDF_IO_QUEUE_CONFIG structure to WdfFalse when it creates the queue.

Drivers that handle some I/O requests that require hardware access and other requests that do not require hardware access should create multiple queues and sort their requests on this basis. The UMDF Fx2_Driver and KMDF Osrusbfx2 samples create both power-managed and non-power-managed queues.

UMDF Example: Plug and Play and Power Code in a Protocol Function Driver

A UMDF function driver that manages device hardware is different from a software-only driver in several ways:

· The driver typically creates one or more power-managed queues.

· The driver implements the IPnpCallback and IPnpCallbackHardware interfaces as required on the device callback object to perform tasks related to the Plug and Play and power state of the device.

· The driver must determine whether it should be the power policy owner for the device stack.

A UMDF driver cannot be the power policy owner for a USB device stack. If the USB device stack includes a UMDF driver, WinUSB.sys is always the power policy owner.

If your UMDF driver operates in a device stack other than USB, a kernel-mode driver is typically the power policy owner because kernel-mode drivers can support idle and wake whereas UMDF drivers cannot. However, if the device does not require idle or wake support, you should consider making the UMDF driver the power policy owner.

Tables 3 and 4 summarize the methods in the IPnpCallback and IPnpCallbackHardware interfaces.

Table 3. IPnpCallbackHardware Methods

	Name
	Description
	When called

	OnPrepareHardware
	Prepares the device and driver to enter the working state after enumeration or resource rebalance.
	After IDriverEntry::OnDeviceAdd returns and before the device enters the working power state.

	OnReleaseHardware
	Prepares the device and driver before system shutdown or resource rebalance.
	After the device exits from the working power state but before its queues are purged.

The methods in IPnpCallbackHardware provide for driver actions when its device is added to or removed from the system and when system resources are rebalanced.

Table 4. IPnpCallback Methods

	Name
	Description
	When called

	OnD0Entry
	Performs required tasks for device to begin operation.
	Immediately after the device enters the working power state.

	OnD0Exit
	Performs required tasks for device to end operation.
	Immediately before the device exits the working power state.

	OnSurpriseRemoval
	Cleans up after device is unexpectedly removed.
	Immediately after the device is removed unexpectedly.

	OnQueryRemove
	Provides the opportunity for the driver to veto a request to remove the device.
	While the device is in the working state, before the device is physically removed.

	OnQueryStop
	Provides the opportunity for the driver to veto a request to stop the device to rebalance resources.
	While the device is in the working state, before it is stopped to rebalance resources.

The IPnpCallback interface includes methods that are required to support the most common Plug and Play and power events, such as doing any initialization that is required after the device is powered on and the corresponding teardown that is required before the device powers down.

The Fx2_Driver sample is a UMDF protocol function driver that implements both IPnpCallback and IPnpCallbackHardware on the device callback object. The driver creates a default power-managed queue for read and write requests and a separate power-managed queue that receives only device I/O control requests.

Power-Managed Queue for a UMDF Driver

To create a power-managed queue, a UMDF driver calls passes TRUE for the bPowerManaged parameter to IWDFDevice::CreateIoQueue, as follows:

hr = FxDevice->CreateIoQueue(unknown,

 TRUE, // bDefaultQueue

 WdfIoQueueDispatchParallel,

 TRUE, // bPowerManaged

 TRUE, // bAllowZeroLengthRequests

 &fxQueue

);

The driver typically creates I/O queues in its IDriverEntry::OnDeviceAdd callback.

IPnpCallbackHardware Methods

The framework calls the methods in the IPnpCallbackHardware interface on the device object before the device enters D0 and after the device leaves D0.

In the OnPrepareHardware method, the driver prepares to communicate with device hardware. It opens a handle to the device and calls internal functions to get information about the USB interfaces and endpoints.

Listing 3 shows the OnPrepareHardware method that the Fx2_Driver sample implements on the device callback object in the Device.cpp source file. To conserve space, error-handling statements have been omitted.

Listing 3. Sample IPnpCallbackHardware::OnPrepareHardware method

HRESULT CMyDevice::OnPrepareHardware(

 __in IWDFDevice * /* FxDevice */
)

{

 HRESULT hr;

 . . . //Code omitted

 // Create USB I/O targets and configure them.

 hr = CreateUsbIoTargets();
 if (SUCCEEDED(hr)) {

 ULONG length = sizeof(m_Speed);

 hr = m_pIUsbTargetDevice->RetrieveDeviceInformation (DEVICE_SPEED,

 &length,

 &m_Speed);
 if (FAILED(hr)) {

 // Generate trace message.

 }

 }

 . . . //Code omitted

 hr = ConfigureUsbPipes();

 // Initialize power-management settings on the device.

 if (SUCCEEDED(hr)) {

 hr = SetPowerManagement();
 }

 if (SUCCEEDED(hr)) {

 . . . //Code omitted

 }

 if (FAILED(hr)) {

 ClearTargets();

 }

 return hr;

}

The OnPrepareHardware method performs tasks that are required to ready the device for I/O before it enters the working state. These tasks include creating and configuring the USB I/O targets for the driver. The OnPrepareHardware method uses the framework’s IWDFUsbTargetDevice interface to get information about the USB hardware.

Before the USB device can enter D0, the driver sets its power policy. The SetPowerManagement helper function uses USB-specific methods in the IWDFUsbTargetDevice interface to set power policy.

Listing 4 shows the Fx2_Driver sample’s OnReleaseHardware method.

Listing 4. Sample IPnpCallbackHardware::OnReleaseHardware method

HRESULT CMyDevice::OnReleaseHardware(

 __in IWDFDevice * /* FxDevice */

)

{

 ClearTargets();

 return S_OK;

}

The OnReleaseHardware method performs cleanup tasks that are required when the device leaves the working state. The Fx2_Driver sample releases all of the driver’s references on the I/O target objects, which is the only task of the ClearTargets helper function. The hardware does not require any additional service before power-down. For example, the driver does not save any hardware context information.

IPnpCallback Methods

When the OSR USB Fx2 device powers up, the Fx2_Driver sample starts its USB I/O target pipes. When the device powers down, the driver stops the target pipes. To perform these tasks, the driver implements the OnD0Entry and OnD0Exit methods of the IPnpCallback interface. In addition, if the user unexpectedly removes the device, the driver removes the targets and therefore implements the OnSurpriseRemoval method. In this driver, the other methods of the IPnpCallback interface are token implementations.

In the sample, the only tasks that the three methods perform involve its I/O targets, which the driver stops and restarts when the device enters or leaves the working state. The driver does not actually manipulate device hardware in any of these functions. Instead, it prepares to begin and end handling I/O requests.

Listings 5 through 7 show the code from the Device.cpp source file that implements the OnD0Entry, OnD0Exit, and OnSurpriseRemoval methods.

Listing 5. Sample IPnpCallback::OnD0Entry method

HRESULT STDMETHODCALLTYPE

CMyDevice::OnD0Entry(

 __in IWDFDevice * /* FxDevice */,

 __in WDF_POWER_DEVICE_STATE /* PreviousState */

)

{

 StartTarget(m_pIUsbInterruptPipe);

 return InitiatePendingRead();

}

In the OnD0Entry method, the driver starts one of the I/O targets that it created in IPnpCallbackHardware::OnPrepareHardware and initiates a read request for the target. The StartTarget and InitiatePendingRead helper functions handle the details of these two tasks.

Listing 6. Sample IPnpCallback::OnD0Exit method

HRESULT STDMETHODCALLTYPE

CMyDevice::OnD0Exit(

 __in IWDFDevice /* FxDevice */,
 __in WDF_POWER_DEVICE_STATE /* NewState */
)

{

 if (WdfIoTargetStarted == GetTargetState(m_pIUsbInterruptPipe)){

 StopTarget(m_pIUsbInterruptPipe);

 }

 return S_OK;

}

The OnD0Exit method stops the I/O target, as Listing 6 shows. The driver calls the GetTargetState internal helper function to determine the state of the target because, if the device has been surprise-removed, the OnSurpriseRemoval method has already run and removed the target, as Listing 7 shows.

Listing 7. Sample IPnpCallback::OnSurpriseRemoval method

VOID STDMETHODCALLTYPE

CMyDevice::OnSurpriseRemoval(

 __in IWDFDevice * /* FxDevice */
)

{

 RemoveTarget(m_pIUsbInterruptPipe, TRUE); //bSurpriseRemove

 return;

}

If the user unexpectedly unplugs a device, the framework calls OnSurpriseRemoval before it calls any of the other callbacks in the shutdown sequence, as described in “UMDF Surprise-Removal Sequence” earlier in this paper. In the Fx2_Driver sample, this function removes the I/O target.

KMDF Example: Plug and Play and Power Code in a Simple Hardware Function Driver

A simple KMDF hardware function driver that manages a device through startup and shutdown requires only a few more callback functions than a software-only driver requires.

The code in this section is adapted from the Osrusbfx2 sample. It includes support for the following features in addition to those required for a software-only driver:

· EvtDevicePrepareHardware callback.

· EvtDeviceD0Entry and EvtDeviceD0Exit callbacks.

· Four I/O queues, three of which are power managed.

By providing these few functions, this driver fully supports Plug and Play and power management for its device.

KMDF Example: Register Callbacks and Set Up Power-managed Queues

Listing 8 shows how the Osrusbfx2 driver registers the fundamental Plug and Play and power management callbacks and creates power-managed I/O queues. This function appears in the Device.c source file.

Listing 8. EvtDriverDeviceAdd for simple hardware function driver

NTSTATUS OsrFxEvtDeviceAdd(

 IN WDFDRIVER Driver,

 IN PWDFDEVICE_INIT DeviceInit

)

{

 WDF_PNPPOWER_EVENT_CALLBACKS pnpPowerCallbacks;

 WDF_OBJECT_ATTRIBUTES attributes;

 NTSTATUS status;

 WDFDEVICE device;

 WDF_DEVICE_PNP_CAPABILITIES pnpCaps;

 WDF_IO_QUEUE_CONFIG ioQueueConfig;

 PDEVICE_CONTEXT pDevContext;

 WDFQUEUE queue;

 UNREFERENCED_PARAMETER(Driver);

 WDF_PNPPOWER_EVENT_CALLBACKS_INIT(&pnpPowerCallbacks);
 pnpPowerCallbacks.EvtDevicePrepareHardware = OsrFxEvtDevicePrepareHardware;
 pnpPowerCallbacks.EvtDeviceD0Entry = OsrFxEvtDeviceD0Entry;
 pnpPowerCallbacks.EvtDeviceD0Exit = OsrFxEvtDeviceD0Exit;
 WdfDeviceInitSetPnpPowerEventCallbacks(DeviceInit, &pnpPowerCallbacks);
 WdfDeviceInitSetIoType(DeviceInit, WdfDeviceIoBuffered);

 WDF_OBJECT_ATTRIBUTES_INIT_CONTEXT_TYPE(&attributes, DEVICE_CONTEXT);

 // Create a framework device object.

 status = WdfDeviceCreate(&DeviceInit, &attributes, &device);

 if (!NT_SUCCESS(status)) {

 return status;

 }

 pDevContext = GetDeviceContext(device);

 // Set SurpriseRemovalOK in the Device Capabilities so

 // that a user-mode popup does not appear on Windows 2000 when

 // the user surprise-removes the device.

 WDF_DEVICE_PNP_CAPABILITIES_INIT(&pnpCaps);
 pnpCaps.SurpriseRemovalOK = WdfTrue;
 WdfDeviceSetPnpCapabilities(device, &pnpCaps);
 // Create a default queue.

 . . . //Code omitted

 // Create a separate sequential queue for read requests.

 WDF_IO_QUEUE_CONFIG_INIT(&ioQueueConfig, WdfIoQueueDispatchSequential);

 ioQueueConfig.EvtIoRead = OsrFxEvtIoRead;

 ioQueueConfig.EvtIoStop = OsrFxEvtIoStop;
 status = WdfIoQueueCreate(device,

 &ioQueueConfig,

 WDF_NO_OBJECT_ATTRIBUTES,

 &queue // queue handle

);

 if (!NT_SUCCESS (status)) {

 return status;

 }

 status = WdfDeviceConfigureRequestDispatching(
 device,
 queue,
 WdfRequestTypeRead
);

 if(!NT_SUCCESS (status)){

 return status;

 }

 // Create another sequential queue for write requests.

 . . . //Code omitted

 // Create a manual I/O queue. We retrieve requests from this

 // queue only when the device sends an interrupt.

 WDF_IO_QUEUE_CONFIG_INIT(&ioQueueConfig, WdfIoQueueDispatchManual);

 ioQueueConfig.PowerManaged = WdfFalse;
 status = WdfIoQueueCreate(device,

 &ioQueueConfig,

 WDF_NO_OBJECT_ATTRIBUTES,

 &pDevContext->InterrputMsgQueue

);

 if (!NT_SUCCESS(status)) {

 . . . //Additional code omitted

 }

 return status;

}

In the example, the first highlighted lines are related to the PnP and power management callbacks. The driver initializes a WDF_PNPPOWER_EVENT_CALLBACKS structure and fills in pointers to its EvtDevicePrepareHardware, EvtDeviceD0Entry, and EvtDeviceD0Exit callback functions. This driver manages a USB device, so it implements only an EvtDevicePrepareHardware callback without a corresponding EvtDeviceReleaseHardware callback. In a USB driver, the EvtDevicePrepareHardware callback selects interfaces and retrieves other information about the USB device before the device enters the working power state. However, no corresponding teardown is required, so the driver does not implement EvtDeviceReleaseHardware. Drivers for device types other than USB typically implement both of these callbacks.

The driver then sets the WDF_PNPPOWER_EVENT_CALLBACKS structure into the WDFDEVICE_INIT structure by calling WdfDeviceInitSetPnpPowerEventCallbacks. The WDFDEVICE_INIT structure—and thus the callbacks just described—is associated with the device object when the driver calls WdfDeviceCreate.

The second group of highlighted lines sets the device’s Plug and Play capabilities. After creating the device object, the driver initializes the WDF_DEVICE_PNP_CAPABILITIES structure by setting the SurpriseRemovalOK field to WdfTrue and then calls WdfDeviceSetPnpCapabilities to pass this information to the framework. This setting indicates that users can safely remove the device without using the Safely Remove Hardware utility.

The sample driver creates four I/O queues, three of which are power managed. The PowerManaged field in the WDF_IO_QUEUE_CONFIG structure indicates whether a queue is power managed. If the driver does not set this field, KMDF uses the default value and therefore creates power-managed queues based on the device object’s role as the FDO for the device stack. To create a queue that is not power managed, the driver must explicitly set this field to WdfFalse.

The next highlighted line of code registers an EvtIoStop callback for one of the power-managed queues by setting the EvtIoStop field of the WDF_IO_QUEUE_CONFIG structure. The framework invokes EvtIoStop for a power-managed queue before the device leaves the working state. This function handles any pending I/O requests as appropriate for the device and the driver.

The final highlighted line of code shows how the driver sets the PowerManaged field in the WDF_IO_QUEUE_CONFIG structure for its non-power-managed queue.

KMDF Example: D0 Entry and D0 Exit Callbacks

The framework calls the driver’s EvtDeviceD0Entry callback immediately after the driver enters the D0 state and calls the EvtDeviceD0Exit callback immediately before the driver exits the D0 state.

EvtDeviceD0Entry must perform any operations that are required before the device can be used. The framework calls this callback every time the hardware must be initialized or reinitialized. Listing 9 shows the EvtDeviceD0Entry function from the Osrusbfx2 sample driver.

Listing 9. EvtDeviceD0Entry callback for simple hardware function driver

NTSTATUS OsrFxEvtDeviceD0Entry(

 IN WDFDEVICE Device,

 IN WDF_POWER_DEVICE_STATE PreviousState

)

{

 PDEVICE_CONTEXT pDeviceContext;

 NTSTATUS status;

 PAGED_CODE();

 pDeviceContext = GetDeviceContext(Device);

 status = WdfIoTargetStart(

 WdfUsbTargetPipeGetIoTarget(pDeviceContext->InterruptPipe)

);

 return status;

}

The Osrusbfx2 driver’s EvtDeviceD0Entry callback simply starts the driver’s I/O targets, as Listing 9 shows.

The EvtDeviceD0Exit callback performs any operations that are required before the device leaves the D0 state, such as saving hardware state. The device is still in D0 when EvtDeviceD0Exit runs, so the driver can touch the hardware. The Osrusbfx2 driver’s EvtDeviceD0Exit callback is shown in Listing 10.

Listing 10. EvtDeviceD0Exit callback for simple hardware function driver

NTSTATUS OsrFxEvtDeviceD0Exit(

 IN WDFDEVICE Device,

 IN WDF_POWER_DEVICE_STATE TargetState

)

{

 PDEVICE_CONTEXT pDeviceContext;

 PAGED_CODE();

 pDeviceContext = GetDeviceContext(Device);

 WdfIoTargetStop(WdfUsbTargetPipeGetIoTarget(pDeviceContext->InterruptPipe),

 WdfIoTargetCancelSentIo

);

 return STATUS_SUCCESS;

}

The sample driver’s EvtDeviceD0Exit callback simply undoes the actions of EvtDeviceD0Entry. Therefore, it stops the I/O targets and returns STATUS_SUCCESS.

Framework Actions for a Simple Hardware Function Driver

As in the software-only driver examples, the frameworks implement almost all of the Plug and Play and power management support for the sample drivers just described. Because these are function drivers, the framework automatically creates and manages Plug and Play, power management, and power policy state machines. The driver requires code only to manage the device hardware.

The framework calls the driver’s prepare-hardware callback after the PnP manager discovers a device supported by the driver and after the driver’s add-device callback returns:

· For both UMDF and KMDF drivers, this function performs any initialization that is required before the device enters the D0 state.

The prepare-hardware callbacks of USB drivers, such as the Fx2_Driver and Osrusbfx2 samples, should call methods that return information about the device and should also configure the interfaces on the device.

· For a KMDF driver, the parameters to the prepare-hardware callback include a handle to the hardware resources that have been assigned to the driver.

A driver that manages device resources can use KMDF helper functions to access and manipulate the resource lists.

Just before the device enters D0, the framework calls the driver’s D0 entry callback. One of the parameters to this function for both UMDF and KMDF drivers is the previous power state from which the device is transitioning. Drivers typically ignore this value and initialize the device in the same way regardless of the previous power state. The value for this parameter is one of the following enumeration constants of the WDF_POWER_DEVICE_STATE type:

WdfPowerDeviceUnspecified
WdfPowerDeviceD0
WdfPowerDeviceD1
WdfPowerDeviceD2
WdfPowerDeviceD3
WdfPowerDeviceD3Final
WdfPowerDevicePrepareForHibernation

If the device is powering up for the first time, the framework passes WdfPowerDeviceUnspecified.

The framework also passes a device power state to the driver’s D0 exit callback. In this case, the device state indicates the power state to which the device is transitioning upon exit from D0. Two of the possible target states might be unfamiliar to you:

· WdfPowerDeviceD3Final

· WdfPowerDevicePrepareForHibernation (KMDF only)

The framework passes WdfPowerDeviceD3Final as the target device power state to indicate that this is a transition to D3 as part of system shutdown or device removal. In this case, the driver must do whatever unique activities are necessary to prepare for shutdown, such as saving state to a disk or other nonvolatile medium.

Before a device leaves the D0 state, the framework stops any power-managed I/O queues associated with that device. After the device reenters the D0 state, the framework resumes the power-managed I/O queues.

KMDF drivers for certain storage devices might receive WdfPowerDevicePrepareForHibernation as the target state if the device is in the hibernation path and the system is preparing to hibernate. The hibernation path includes the device to which the system writes the hibernation file and any other devices along the path from the root to that device, which are required to maintain power to that device.

The framework passes WdfPowerDevicePrepareForHibernation only if the driver has both called WdfDeviceSetSpecialFileSupport and received notification that it is in the hibernation path—and then only if the target power state for the system is S4.

When a KMDF driver’s EvtDeviceD0Exit callback is called with the WdfPowerDevicePrepareForHibernation target state, the driver should prepare the device for hibernation by doing everything necessary to put the device into D3 except powering it off. This includes saving any state that the driver requires to return the device to the D0 state after the system resumes from hibernation. The driver must not power off the device. The system uses the device when it saves the hibernation file to disk immediately before entering the S4 state.

Advanced Power Management for KMDF Drivers

As the examples in the previous section show, the framework handles most of the work in implementing Plug and Play and power management, even for a driver that supports a hardware device. This section describes how to go beyond the basics to add support for two advanced KMDF features:

· Device idle support

A driver can power down its device when the device becomes idle and the system remains in the working state (S0).

· Device wake support

Some devices can bring themselves, and perhaps the system, into a fully powered working state from a lower-powered state. Properly supporting wake requires specific capabilities in both the device hardware and the driver.

Device Power-Down Idle Support for KMDF Drivers

In many circumstances, powering down a device when it is idle—but while the system remains in the S0 state—has significant advantages:

· Idle support saves power.

· Idle support can help reduce environmental factors such as thermal load and noise.

If your device hardware can power down while it is idle, the driver should support this feature. Adding device idle support to a KMDF driver requires only a few extra callbacks beyond those required for basic Plug and Play support.

Idle Settings and Management in KMDF Drivers

To configure idle support, a driver sets idle characteristics in the WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS structure within its EvtDriverDeviceAdd or EvtDevicePrepareHardware function.

After the driver creates the device object, the driver uses the WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS_INIT macro to initialize the structure. This macro takes two arguments:

· A pointer to the WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS structure to initialize.

· An enumeration value that indicates whether the driver supports idle and whether the device and driver support wake when the system is in S0.

Possible values are listed in the IdleCaps row of Table 5. A driver that supports idle but does not support wake from S0 should specify IdleCannotWakeFromS0. A driver for a USB device that supports selective suspend should specify IdleUsbSelectiveSuspend in its call to the initialization macro.

If the driver specifies IdleUsbSelectiveSuspend or IdleCanWakeFromS0, the framework uses the reported power capabilities for the device as the default DxState.

If the driver specifies IdleCannotWakeFromS0, the framework sets PowerDeviceD3 as the default DxState.
After calling the macro, the driver can also set other fields in the WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS structure. These fields are listed in Table 5.

Table 5. KMDF Device Idle Settings

	Field name
	Description
	Possible values

	Enabled
	Whether to enable device power-down on idle.
	WdfTrue
WdfFalse
WdfDefault (enabled unless explicitly disabled by a user with administrator privileges)

	IdleCaps
	Whether the driver supports idle and whether the device and driver support wake in S0.

For a USB driver, whether the device supports USB selective suspend. USB drivers must not specify IdleCanWakeFromS0.
	IdleCannotWakeFromS0
IdleCanWakeFromS0
IdleUsbSelectiveSuspend

	DxState
	The device power state to which the framework transitions the idle device.
	PowerDeviceD0
PowerDeviceD1
PowerDeviceD2
PowerDeviceD3 (default if IdleCaps is set to IdleCannotWakeFromS0)

	IdleTimeout
	The amount of time, in milliseconds, that must elapse without receiving an I/O request before the framework considers the device idle.
	ULONG or
IdleTimeoutDefaultValue (currently set to 5000 milliseconds or 5 seconds)

	UserControlOfIdleSettings
	Whether the framework provides a property page in Device Manager to allow administrators to control the idle policy for the device.
	IdleDoNotAllowUserControl
IdleAllowUserControl

After the WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS structure has been initialized, the driver calls WdfDeviceAssignS0IdleSettings, passing the handle to the device object and a pointer to the initialized WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS structure.

As mentioned earlier, a driver can call WdfDeviceAssignS0IdleSettings any time after it creates the device object. Although most drivers call this method from the EvtDriverDeviceAdd callback, this may not always be possible or even desirable. If a driver supports multiple devices or device versions, the driver might not know whether the device is capable of wake from S0 until it interrogates its hardware. Such drivers can postpone calling WdfDeviceAssignS0IdleSettings until the EvtDevicePrepareHardware callback. The driver must indicate whether the device supports wake from S0 the first time that it calls WdfDeviceAssignS0IdleSettings. The framework does not recognize changes in wake from S0 support in subsequent calls to WdfDeviceAssignS0IdleSettings.

Note Whether an individual device can support wake from S0 depends on the capabilities of both the device and the slot or system to which the device is attached. Therefore, a call to WdfDeviceAssignS0IdleSettings that specifies IdleCanWakeFromS0 can fail with STATUS_POWER_STATE_INVALID on hardware configurations where wake from S0 is not supported. You must ensure that this error does not result in a failure to load your driver. If one of the initialization callbacks—such as EvtDriverDeviceAdd or EvtDevicePrepareHardware—returns this value to the framework, the framework disables the device.

Any time after its initial call to WdfDeviceAssignS0IdleSettings, the driver can change the idle time-out value, the device state in which the device idles, and whether device idle support is enabled. To change one or more settings, the driver simply initializes another WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS structure as described earlier and calls WdfDeviceAssignS0IdleSettings again.

Sometimes, a device should not be powered down even if no I/O requests are present within the time-out period. A driver can prevent the framework from powering down an idle device in such situations by calling WdfDeviceStopIdle to prevent the device from idling and calling WdfDeviceResumeIdle when it is again acceptable for the device to be powered down for idle.

For example, the Serial sample does not power down its idle device if a handle is open. The Serial sample calls WdfDeviceStopIdle when it receives an open request and calls WdfDeviceResumeIdle when it receives a close request. The same is true for USB drivers. This behavior, however, is not appropriate for many other drivers, because most drivers always have an open handle.

These two methods manage a reference count on the device, so if your driver calls WdfDeviceStopIdle several times, the device will not go idle until the driver has called WdfDeviceResumeIdle the same number of times.

If the device is already in its low-power idle state, WdfDeviceStopIdle causes the framework to return the device to the D0 state. If the device is in the D0 state, WdfDeviceResumeIdle does not cause the framework to restart the device; instead, WdfDeviceResumeIdle restarts the idle time-out timer.

WdfDeviceStopIdle does not prevent the framework from transitioning the device to a sleep state when the system changes to an Sx sleep state. Its only effect is to prevent transitions to Dx sleep states while the system is in the S0 working state.

The framework integrates its idle power-down handling with the driver’s other Plug and Play and power management activities. The framework transitions the device to the power state that the driver specified in its last call to WdfDeviceAssignS0IdleSettings when all of the following conditions are met:

· Idle support is enabled.

· The driver has not deactivated idling by calling WdfDeviceStopIdle.

· The time-out period expires.

· No I/O requests are active on the device.

The framework returns the device to D0 whenever one of the following occurs:

· A new I/O request arrives at any of the device’s power-managed queues.

· The driver calls WdfDeviceStopIdle.

· The driver disables idle support by calling WdfDeviceAssignS0IdleSettings, passing a WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS structure in which Enabled is set to WdfFalse.

· The system transitions to a system power state that is incompatible with the device power state.

How to Choose Idle Times and Idle States in KMDF Drivers

A few words on how to choose appropriate idle times and device power states are appropriate here. In general the latency differences between returning a device to D0 from D1, D2, and D3 are on the order of a few milliseconds. There are a few exceptions. Video display devices, for example, can demonstrate differences in latency of several seconds. However, for nearly all other devices the difference in latency between a device in D1 and a device in D3 is so short that an end user is unlikely to perceive the difference. Consequently, considering the greater power savings achieved by idling a device in its power-off state, the framework by default transitions idle devices to D3.

Formerly, some vendors hesitated to implement idle support for their devices because they believed that users perceived any latency in their devices as decreased performance. However, this approach prevents these devices from achieving the power, heat, and noise savings that idle support can provide. Microsoft studies have shown that users perceive almost any latency as acceptable if it occurs only when the machine—or perhaps the device—is completely idle. A KMDF driver can prevent its device from prematurely entering the idle state by increasing the IdleTimeout value and calling WdfDeviceAssignS0IdleSettings each time the device becomes busy.

Device Wake Support for KMDF Drivers

The system power states in which a device can trigger a wake signal depend on the design of the device and the design of the system. Three different models for using the wake signal on a device are in common use:

· Wake from S0: Triggering the wake signal from S0

If the system is in S0 and the device is idle and in a sleep state, an external stimulus causes the device to trigger a wake signal, which in turn causes the framework and the driver to put the device back in the working state. The stimulus could be the click of a mouse button or the insertion of an Ethernet cable for a NIC.

· Wake from Sx: Triggering the wake signal from S1, S2, S3, or S4
If the system is in a sleep state, the driver can trigger a wake signal to return the system to the working state.

As with wake from S0, the stimulus to trigger the wake signal arrives externally, but the conditions that cause a wake signal are often different. For example, you probably would not want your machine to wake if you insert a network cable, but you might want it to wake if a special packet arrives over the network. For this reason, the framework supports different callbacks for arming a device to wake from S0 and Sx.

· Wake from S5: Triggering the wake signal from S5
Some devices can trigger the wake signal from S5, which causes the machine to power on from the “entirely off” state.

This capability is often used for remote management over the network. However, this feature is outside the scope of drivers and Windows because it requires BIOS integration. Waking the system from S5 is not considered wake from a software perspective because the machine is not asleep—it’s off. As a hardware developer, you must implement wake from S5 in the context of the BIOS, not in the operating system and drivers.

Wake from Sx is, perhaps, the most common wake category. Consider the following example. While the system is powered down to S3 and the devices connected to the system are similarly powered down, a “magic packet” arrives via Ethernet. As a result of receiving this packet, the network adapter hardware—which was appropriately configured before entering its low-power state—triggers a wake event (that is, PME# on the PCI bus) that causes the system to transition to S0. As a result, the system and its connected devices wake and return to the fully operational working state.

Unlike wake from Sx, wake from S0 is tied to device support for power-down idle. When the device becomes idle, it enters a low-power state while the system remains in S0. Wake from S0 simply means that the device can trigger a wake signal from its low-powered idle state. Wake support and idle support are related in the following ways:

· Devices that support idle power-down while the system is in S0 do not necessarily support wake from S0.

· Devices that support wake from S0 also implicitly support power-down idle.

· Devices that support wake from Sx do not necessarily support power-down idle, but they might.

The wake setting that your driver should support depends on the scenarios you choose to support for the device. For example, a mouse, a network adapter, and a serial port might support wake as follows:

· A mouse triggers a wake signal when a user moves it or clicks a button. This can occur in S0 or in Sx, depending on system power policy.

· A network adapter goes idle when a cable is not present and triggers wake in S0 when the user plugs in a cable. A NIC can also trigger wake in Sx when a “magic packet” arrives. On a system with a specially designed BIOS, a network adapter could trigger wake from S5 when a custom management application starts the system remotely for servicing.

· The driver has no way to know what type of device is plugged into a serial port. Therefore, whenever the system is in S0 and a handle is open to the serial port, the serial port must be in D0. A serial port can trigger wake from Sx if the “Ring Indicate” pin is triggered, indicating that a modem is plugged into the port and the associated phone is ringing.

The following sections describe how to implement both wake from Sx and wake from S0 in a KMDF driver.

How to Implement Wake from Sx in KMDF Drivers

To enable support for wake from Sx, a driver uses these two structures:

· WDF_POWER_POLICY_EVENT_CALLBACKS

This structure contains pointers to callback functions for the following device power policy events:

EvtDeviceArmWakeFromS0
EvtDeviceDisarmWakeFromS0
EvtDeviceWakeFromS0Triggered
EvtDeviceArmWakeFromSx
EvtDeviceDisarmWakeFromSx
EvtDeviceWakeFromSxTriggered
The structure is filled into the DEVICE_INIT structure before the creation of the device object.

· WDF_DEVICE_POWER_POLICY_WAKE_SETTINGS

This structure contains settings for device wake, including the power state from which device wakes the system and user control of wake.

The driver fills in this structure by calling WdfDeviceAssignSxWakeSettings after the creation of the device object.

Power Policy Event Callbacks for Wake from Sx
The driver initializes the WDF_POWER_POLICY_EVENT_CALLBACKS structure in its EvtDriverDeviceAdd callback. This structure is input to the WDFDEVICE_INIT structure and so must be set up before the driver creates the device object.

To initialize the structure, the driver uses the WDF_POWER_POLICY_EVENT_CALLBACKS_INIT macro, which supplies pointers to its EvtDeviceArmWakeFromSx, EvtDeviceDisarmWakeFromSx, and EvtDeviceWakeFromSxTriggered callbacks in the fields of the same names.

The framework calls the driver’s EvtDeviceArmWakeFromSx callback function to request that the driver enable—or arm—its device to wake from Sx. Within this function, the driver performs the device-specific processing to complete this task. If the driver is not required to perform any device-specific tasks—such as reconfiguring an internal interrupt signal on the device—to arm its device for wake, the driver is not required to supply this callback.

The EvtDeviceDisarmWakeFromSx callback function should reverse any actions in the EvtDeviceArmWakeFromSx function. The framework calls it to request that the driver disable—or disarm—its device to wake from Sx. As with EvtDeviceArmWakeFromSx, if no device-specific processing is required to disarm the device, the driver does not register for this callback.

When the driver’s device triggers a wake signal, the framework calls the EvtDeviceWakeFromSxTriggered callback function. Because the framework handles all aspects of waking the system, this callback is merely informative. Consequently, most drivers do not register for this callback.

Note The framework calls EvtDeviceWakeFromSxTriggered and EvtDeviceWakeFromS0Triggered only if the system’s BIOS and the motherboard are implemented correctly and work perfectly—which is sometimes not the case. If correct operation of the driver depends on knowing when the device triggered the wake signal, the device itself must supply this information and the EvtDeviceDisarmWakeXxx callbacks should read it from the device.

After the driver fills in the fields that apply to its implementation, it calls WdfDeviceInitSetPowerPolicyEventCallbacks to register the callbacks in the WDFDEVICE_INIT structure. It can then perform additional initialization tasks or create a device object.

Power Policy Sx Wake Settings
After the driver creates the device object, it can initialize the WDF_DEVICE_POWER_POLICY_WAKE_SETTINGS structure. This structure contains information about the device’s wake from Sx policy and is input to WdfDeviceAssignSxWakeSettings to register this support with the framework. Table 6 lists the fields in this structure.

Table 6. Device Sx Wake Settings

	Field name
	Description
	Possible values

	Enabled
	Whether the device can wake the system from a low-powered state.
	WdfTrue
WdfFalse
WdfDefault (enabled unless explicitly disabled by a user with administrator privileges)

	DxState
	The device power state to which the framework transitions the device when the system enters a wakeable low-power state.
	PowerDeviceD1
PowerDeviceD2
PowerDeviceD3

	UserControlOfWakeSettings
	Whether the framework provides a property page in Device Manager to allow administrators to control the device’s ability to wake the system.
	WakeDoNotAllowUserControl
WakeAllowUserControl

To initialize the WDF_DEVICE_POWER_POLICY_WAKE_SETTINGS structure, the driver uses the WDF_DEVICE_POWER_POLICY_WAKE_SETTINGS_INIT macro. It then sets values for its device into the individual fields of the structure.

The driver fills in the DxState field with the device power state into which the framework should put the device when it is armed for wake from Sx. By default, the framework uses the value supplied in the device power capabilities.

The driver also fills in the UserControlOfWakeSettings field to indicate whether appropriately privileged users can control the wake policy of the device. If the value of this field is WakeAllowUserControl, the framework automatically creates a Device Manager property page for the driver that allows a user with administrator privileges to enable or disable device wake. If both wake and idle are supported by the device and both allow user control of their policies, the wake and idle options appear together on a single Device Manager property page for the device, by default. The property page modifies the IdleInWorkingState and WakeFromSleepState registry values, which are stored in the Parameters\Wdf subkey for the devnode. Users and drivers must not access these registry values directly.

The driver can disable user control of wake policy by setting this field to WakeDoNotAllowUserControl. Most drivers, however, should allow users to control wake policy because some hardware configurations support wake poorly.

When the WDF_DEVICE_POWER_POLICY_WAKE_SETTINGS structure is fully initialized, the driver calls WdfDeviceAssignSxWakeSettings, passing a pointer to this structure and the handle of the WDFDEVICE object.

How to Implement Wake from S0 in KMDF Drivers

Implementing support for device wake from S0 is similar to implementing support for wake from Sx. Initialization typically occurs in the driver’s EvtDriverDeviceAdd function. However, because support for wake from S0 is related to device idle support, the driver must implement idle support and indicate that it supports wake from S0 when it enables idle support.

To indicate its support for wake from S0, a driver uses these structures:

· WDF_POWER_POLICY_EVENT_CALLBACKS

· WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS

The WDF_DEVICE_POWER_POLICY_WAKE_SETTINGS structure is not used to configure wake from S0 support.

Power Policy Event Callbacks for Wake from S0

The driver initializes the WDF_POWER_POLICY_EVENT_CALLBACKS structure in its EvtDriverDeviceAdd callback. This structure is input to the WDFDEVICE_INIT structure and so must be set up before the driver creates the device object.

As previously described, the driver uses the WDF_POWER_POLICY_EVENT_CALLBACKS_INIT macro to initialize the structure. It sets pointers to the EvtDeviceArmWakeFromS0, EvtDeviceDisarmWakeFromS0, and EvtDeviceWakeFromS0Triggered callbacks in the fields of the same names.

The EvtDeviceArmWakeFromS0 and EvtDeviceDisarmWakeFromS0 callback functions perform device-specific actions that arm and disarm the device to wake when the system is in S0, such as waking a network adapter when the user plugs in a cable. These functions are required only if the driver and device require such actions:

· If the device requires the same actions both to arm the device for wake from S0 and to arm the device for wake from Sx, the driver can specify the same callback function in both the EvtDeviceArmWakeFromS0 and EvtDeviceArmWakeFromSx fields of the WDF_POWER_POLICY_EVENT_CALLBACKS structure.

· If no device-specific actions are required to prepare the device to wake the system from S0, for example, the EvtDeviceArmWakeFromS0 callback function is not necessary. This is likewise true for EvtDeviceDisarmWakeFromS0.

EvtDeviceWakeFromS0Triggered, like EvtDeviceWakeFromSxTriggered, is an informational callback and certain caveats apply, as the previous section points out.

When the WDF_POWER_POLICY_EVENT_CALLBACKS structure is fully initialized, the driver calls WdfDeviceInitSetPowerPolicyEventCallbacks to register the callbacks in the WDFDEVICE_INIT structure.

If a driver supports both wake from S0 and wake from Sx, it fills in WDF_POWER_POLICY_EVENT_CALLBACKS with the necessary callbacks to support both wake from S0 and wake from Sx before calling WdfDeviceInitSetPowerPolicyEventCallbacks.

Power Policy Idle Settings for Wake from S0

After the driver creates the device object, it initializes a WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS structure by using the WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS_INIT macro. As discussed earlier, this macro takes an argument that indicates whether the device and driver support wake in S0. A driver that supports wake from S0 must specify IdleCanWakeFromS0—or IdleUsbSelectiveSuspend for a USB device—in its call to the initialization macro. The driver then sets other fields in the structure and calls WdfDeviceAssignS0IdleSettings, as described in “Device Power-Down Idle Support” earlier in this paper.

KMDF Example: Support for Device Idle and Wake

This example continues the hardware function driver in “KMDF Example: Plug and Play and Power Code in a Simple Hardware Function Driver” earlier in this paper. You can see the code for the driver’s EvtDriverDeviceAdd callback in Listing 8 in that section.

The Osrusbfx2 driver adds support for device idle and USB selective suspend by initializing the WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS structure and calling WdfDeviceAssignS0IdleSettings. Before the driver can initialize idle and wake support, it must determine whether the device supports these features. To find out, the driver interrogates the device from its EvtDevicePrepareHardware callback, which is shown in Listing 11. This function appears in the Driver.c source file.

Listing 11. Sample USB driver’s EvtDevicePrepareHardware callback

NTSTATUS OsrFxEvtDevicePrepareHardware(

 IN WDFDEVICE Device,

 IN WDFCMRESLIST ResourceList,

 IN WDFCMRESLIST ResourceListTranslated

)

{

 NTSTATUS status;

 PDEVICE_CONTEXT pDeviceContext;

 WDF_USB_DEVICE_INFORMATION deviceInfo;

 ULONG waitWakeEnable;

 UNREFERENCED_PARAMETER(ResourceList);

 UNREFERENCED_PARAMETER(ResourceListTranslated);

 pDeviceContext = GetDeviceContext (Device);

 // Create a USB device handle to communicate with the

 // underlying USB stack.

 status = WdfUsbTargetDeviceCreate (Device,
 WDF_NO_OBJECT_ATTRIBUTES,
 &pDeviceContext->UsbDevice);
 if (!NT_SUCCESS(status)) {

 return status;

 }

 status = SelectInterfaces(Device);

 if (!NT_SUCCESS(status)) {

 return status;

 }

 // Retrieve USBD information

 WDF_USB_DEVICE_INFORMATION_INIT(&deviceInfo);

 status = WdfUsbTargetDeviceRetrieveInformation (pDeviceContext->UsbDevice,
 &deviceInfo);
 waitWakeEnable = deviceInfo.Traits
 & WDF_USB_DEVICE_TRAIT_REMOTE_WAKE_CAPABLE;
 // Enable wake and idle timeout if the device supports it.

 if(waitWakeEnable){
 status = OsrFxSetPowerPolicy(Device);
 if (!NT_SUCCESS (status)) {
 return status;
 }
 }

 status = OsrFxConfigContReaderForInterruptEndPoint (pDeviceContext);

 return status;

}

Listing 11 shows how a driver might determine whether its device supports wake. In this sample, the driver creates a USB target device object and then calls WdfUsbTargetDeviceRetrieveInformation to get the capabilities of the device and the underlying port driver. These capabilities are returned as a set of bit flags in the Traits field of a WDF_USB_DEVICE_INFORMATION structure. The driver tests the value of the WDF_USB_DEVICE_TRAIT_REMOTE_WAKE_CAPABLE bit and, if it is true, calls the OsrFxSetPowerPolicy internal helper function to enable idle and wake support.

Listing 12 shows the code for OsrFxSetPowerPolicy. This function also appears in Device.c.

Listing 12. Initializing wake and idle support in a KMDF USB driver

NTSTATUS OsrFxSetPowerPolicy(

 IN WDFDEVICE Device

)

{

 WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS idleSettings;

 WDF_DEVICE_POWER_POLICY_WAKE_SETTINGS wakeSettings;

 NTSTATUS status = STATUS_SUCCESS;

 // Initialize the idle policy structure.

 WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS_INIT(&idleSettings,

 IdleUsbSelectiveSuspend);
 idleSettings.IdleTimeout = 10000; // 10-sec
 status = WdfDeviceAssignS0IdleSettings(Device, &idleSettings);
 if (!NT_SUCCESS(status)) {

 return status;

 }

 // Initialize the wait-wake policy structure.

 WDF_DEVICE_POWER_POLICY_WAKE_SETTINGS_INIT(&wakeSettings);
 status = WdfDeviceAssignSxWakeSettings(Device, &wakeSettings);
 if (!NT_SUCCESS(status)) {

 return status;

 }

 return status;

}

The OsrFxSetPowerPolicy function is called from the driver’s EvtDevicePrepareHardware callback to enable idle and wake for the USB device.

In the example, the driver calls WDF_DEVICE_POWER_POLICY_IDLE_SETTINGS_INIT, specifying IdleUsbSelectiveSuspend. The driver sets IdleTimeout to 10,000 milliseconds (10 seconds) and accepts the framework defaults for DxState and UserControlOfIdleSettings. As a result, the framework transitions the device to the D3 state when it is idle and creates a Device Manager property page that allows users with administrator privilege to enable or disable device idle support. The driver then calls WdfDeviceAssignS0IdleSettings to enable idle support and register these settings with the framework.

For USB devices that support selective suspend, the underlying bus driver prepares the device hardware to wake. Consequently, the function driver should supply an EvtDeviceArmWakeFromS0 callback only if additional device-specific programming is required. The framework sends a selective suspend request to the USB bus driver when the idle time-out expires.

Framework Actions Supporting Device Idle

The framework counts the I/O activity on all power-managed queues that each device object owns. If the driver supports idle for the device object, the framework starts a timer whenever the I/O count reaches zero. The timer is set to expire at the number of milliseconds specified in the IdleTimeout field most recently passed to WdfDeviceAssignS0IdleSettings.

If an I/O request arrives at a power-managed queue that belongs to the device or if the driver calls WdfDeviceStopIdle before the IdleTimeout period expires, the framework cancels the timer.

If instead the timer expires, the framework takes the required steps to transition the device out of D0 and into the device power state that the driver specified in the DxState field most recently passed to WdfDeviceAssignS0IdleSettings.

Regardless of the reason for the transition, the framework always handles the transition out of the D0 state in the same way. Thus, when a device transitions from D0 to Dx, the framework invokes the driver’s callback functions according to the power-down sequences described in “Device Power-Down and Removal” earlier in this paper.

If the device is idling in its low-power state, the framework automatically returns the device to D0 whenever the count of I/O activity on any of the device’s power-managed queues becomes nonzero or when the driver calls WdfDeviceStopIdle. Again, the transition to D0 is always handled according to the power-up sequences described in “Device Enumeration and Startup” earlier in this paper.

Framework Actions Supporting Device Wake

If a driver supports wake for its device, the framework calls the driver’s EvtDeviceArmWakeFromSx callback during a system transition to a lower power state other than S5 (the fully-off state), if the driver supports wake from the new system state. For example, assume the system is transitioning to S3. If the driver supports wake from S3, the framework calls the driver’s EvtDeviceArmWakeFromSx callback. However, if the driver supports wake only from S1, the framework does not call the driver to arm the wake signal.

The following is the prototype for the EvtDeviceArmWakeFromSx callback function:

NTSTATUS EvtDeviceArmWakeFromSx(WDFDEVICE Device)

The framework calls this function before taking any action to transition the device to its Dx state, such as calling EvtDeviceD0Exit. Within the EvtDeviceArmWakeFromSx function, the driver arms the device for wake from Sx. If the driver cannot successfully arm the device, the callback returns an error and the framework continues the transition to the Dx state without the device being armed for wake. If the system and device are later powered up again and then put to sleep, the framework by default again calls the driver’s EvtDeviceArmWakeFromSx callback. That is, the framework does not “remember” that the driver failed to arm the device during a previous power-down.

The driver can disable further requests to arm the device for wake from Sx by returning the WDFSTATUS_ARM_FAILED_DO_NOT_RETRY status from the EvtDeviceArmWakeFromSx callback.

If the device triggers the system to wake, the framework calls the driver’s EvtDeviceWakeFromSxTriggered callback. Because the framework handles all the work that is necessary to wake the system, this callback is strictly informative for the driver.

When the system returns to S0, the framework calls the driver’s EvtDeviceDisarmWakeFromSx function after the device returns to operation, that is, after the framework calls EvtDeviceD0Entry. The EvtDeviceDisarmWakeFromSx callback disarms the device for wake and reverses any other device-specific actions that were taken in its EvtDeviceArmWakeFromSx function.

Supporting wake from S0 is almost the same as supporting wake from Sx. The only difference is that the framework invokes the driver’s EvtDeviceArmWakeFromS0 and EvtDeviceDisarmWakeFromS0 event callbacks when the device is ready to transition to or from the idle state, respectively. As with EvtDeviceArmWakeFromSx and EvtDeviceDisarmWakeFromSx, these callbacks are invoked before other driver callbacks that involve leaving or entering D0.

Resources

Windows Driver Foundation (WDF) on the WHDC Web site
http://www.microsoft.com/whdc/driver/wdf/default.mspx
Plug and Play - Architecture and Driver Support on the WHDC Web site
http://go.microsoft.com/fwlink/?LinkId=82116
Windows Driver Kit (WDK)
http://www.microsoft.com/whdc/DevTools/ddk/default.mspx
Debugging Tools for Windows
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
Books

Developing Drivers with the Windows Driver Foundation, by Penny Orwick and Guy Smith

http://www.microsoft.com/MSPress/books/10512.aspx
White Papers

Architecture of the User-Mode Driver Framework
http://www.microsoft.com/whdc/driver/wdf/UMDF-arch.mspx
Architecture of the Kernel-Mode Driver Framework
http://www.microsoft.com/whdc/driver/wdf/kmdf-arch.mspx
Samples in the WDK

Fx2_Driver

%wdk%\Src\Umdf\Usb\Fx2_Driver

Osrusbfx2

%wdk%\Src\Kmdf\Osrusbfx2

Toaster Filter

%wdk%\Src\Kmdf\Toaster\Filter

USB Filter

%wdk%\Src\Umdf\Usb\Filter

WDK documentation

PnP and Power Management in Framework-Based Drivers

http://go.microsoft.com/fwlink/?LinkId=82110
Supporting PnP and Power Management in UMDF Drivers

http://go.microsoft.com/fwlink/?LinkId=82112
USB Power Management

http://go.microsoft.com/fwlink/?LinkId=82114

April 9, 2007
© 2007 Microsoft Corporation. All rights reserved.

[image: image10.png]