[image: image3.png]Windows Hardware and Driver Central

Scalable Networking: Eliminating the Receive Processing Bottleneck—Introducing RSS - 17

Scalable Networking: Eliminating the Receive Processing Bottleneck—Introducing RSS
WinHEC 2004 Version – April 14, 2004
Abstract

This paper provides information about a new Network Driver Interface Specification (NDIS) 6.0 technology called Receive-Side Scaling (RSS). RSS enables packet receive-processing to scale with the number of available computer processors. This paper provides an overview of RSS for NDIS driver developers and also discusses the implications of RSS for driver development.

The information in this paper applies to the next client version of the Microsoft® Windows® operating system, codenamed “Longhorn.” This preview information is covered more fully in the Longhorn Driver Development Kit. Please see the section “Networking Devices and Protocols: Preliminary Network Documentation: NDIS 6.0”
The current version of this paper is maintained on the Web at:
http://www.microsoft.com/whdc/
Contents

3Introduction

3NDIS 5.1 Packet Receive-Processing Deficiencies

4NDIS 6.0 RSS Advantages

4Receive-Side Scaling (RSS) Algorithm

4NDIS 6.0 RSS vs. Current Receive Processing

6RSS Initialization

7Selection of the Default RSS Hash Function

8Toeplitz Hash Function Specification

9Mapping Packets to Processors

10RSS Data Reception

10RSS Implementation

11RSS Implementation Options

14Launching Interrupts and DPCs

14Examining Option 1a in More Detail

15Handling Insufficient Hardware Resources

15RSS Limitations

16Next Steps and Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

In the current world of high-speed networking, where multiple CPUs reside within a single system, the ability of the networking protocol stack of the Microsoft® Windows® operating system to scale well on a multi-CPU system is inhibited because the architecture of Network Driver Interface Specification (NDIS) 5.1 and earlier versions limits receive protocol processing to a single CPU. Receive-Side Scaling (RSS) resolves this issue by allowing the network load from a network adapter to be balanced across multiple CPUs.

This paper is for the technical community that wants to have a deeper insight into how RSS operates. It provides specific insights into implementation issues for independent hardware vendors (IHVs), as well as for advanced system administrators who want to understand how the technology works.

NDIS 5.1 allows a single deferred procedure call (DPC) for each network adapter. NDIS 6.0, utilizing RSS, enables multiple DPCs on different CPUs for each instance of a network adapter miniport driver, while preserving in-order delivery of messages on a per-stream basis. RSS also supports dynamic load balancing, a secure hashing mechanism, parallel interrupts, and parallel DPCs.

The information in this paper applies to the next client version of the Microsoft Windows operating system, codenamed “Longhorn.” The RSS implementation options that are presented in this paper are only examples intended to help IHVs understand various RSS implementation issues. Additional implementation options are also possible.

RSS is a result of Microsoft’s Scalable Networking initiative, which will introduce a family of architectural innovations in future releases of the Windows family of operating systems. For an overview of the technologies involved, see the white paper “”Microsoft Windows Scalable Networking Initiative.” In addition to RSS, the Scalable Networking white paper introduces the chimney architecture, including the following specific chimneys:
TCP Chimney. Offloading the TCP/IP protocol stack. For detailed technical information, see the white paper “Scalable Networking: Network Protocol Offload—Introducing TCP Chimney.”
RDMA Chimney. Offloading Remote Direct Memory Access (RDMA) protocols to the miniport driver (requires TCP Chimney).

IPsec Chimney. Offloading Internet Protocol Security to the miniport driver.

NDIS 5.1 Packet Receive-Processing Deficiencies

NDIS 5.1 and earlier versions do not allow multiple processors to simultaneously process receive indications from a single-network adapter. An NDIS 5.1 packet received from the network on a particular network adapter manifests itself as an interrupt to the host processor from the specific network adapter and eventually causes a deferred procedure call (DPC) to be queued on one of the system processors. The DPC will run to completion, typically on the processor that hosted the interrupt, and additional interrupts from the network adapter are disabled until the DPC completes its cycle.

Many scenarios, such as large file transmissions, require the host protocol stack to perform significant work in the context of receive interrupt processing (for example, sending new data out). In these scenarios, a lack of parallelism in NDIS 5.1 packet receive processing results in an overall lack of scaling.

In addition, current Intel Pentium 4 and Itanium-based systems route all interrupts from a single device to one specific processor, which results in a similar lack of parallelism. Consequently, scaling issues will increase because one CPU handles all device interrupts.

NDIS 6.0 RSS Advantages

NDIS 6.0 resolves single-CPU processing issues by implementing Receive-Side Scaling (RSS). RSS is a Microsoft Scalable Networking initiative technology that enables receive processing to be balanced across multiple processors in the system while maintaining in-order delivery of the data. RSS enables parallel DPCs and, if the computer and network adapter support it, multiple interrupts.

RSS provides the following benefits:

· Parallel Execution. Receive packets from a single network adapter can be processed concurrently on multiple CPUs, while preserving in-order delivery.

· Dynamic Load Balancing. As system load on the host varies, RSS will rebalance the network processing load between the processors.

· Cache Locality. Because packets from a single connection are always mapped to a specific processor, state for a particular connection never has to move from one processor’s cache to another processor’s cache, thereby eliminating cache thrashing and also promoting improved performance.

· Send Side Scaling. Transmission Control Protocol (TCP) is often limited as to how much data it can send to the remote peer. The reasons can include the TCP congestion window, the size of the advertised receive window, or TCP slow-start. When an application tries to send a buffer larger than the size of the advertised receive window, TCP sends part of the data and then waits for an acknowledgment before sending the balance of the data. When the TCP acknowledgement arrives, additional data is sent in the context of the DPC in which the acknowledgement is indicated. Thus, scaled receive processing can also result in scaled transmit processing.

· Secure Hash. The default generated RSS signature is cryptographically secure, making it much more difficult for malicious remote hosts to force the system into an unbalanced state.

Receive-Side Scaling (RSS) Algorithm

This section defines the RSS algorithm and contrasts it with the current NDIS 5.1 packet processing algorithm. In general, RSS enables packets from a single network adapter to be processed in parallel on multiple CPUs while preserving in-order delivery to TCP connections.

NDIS 6.0 RSS vs. Current Receive Processing

The current NDIS 5.1 architecture for processing incoming packets, supported by the Microsoft Windows Server™ 2003 operating system, is typically implemented by a network adapter vendor by leveraging a receive descriptor queue between the network adapter and the miniport adapter to pass per-packet information. The packets are processed in the following sequence:
1. At the network adapter, as packets arrive off the wire, the packet contents are transferred into host memory using Direct Memory Access (DMA), and a receive descriptor is transferred into the receive descriptor queue (again through DMA). An interrupt will eventually be posted to the host to indicate that new data is present. Exactly when the interrupt fires depends on the vendor’s interrupt moderation scheme.

2. Depending on the system’s interrupt architecture, either the interrupt will be distributed to one of the host processors (based on a vendor-specific heuristic), or it will always be routed to the same processor.

3. At the network adapter, if additional packets arrive, then data and descriptors are transferred to host memory using DMA. An interrupt is not fired.

4. The interrupt service routine (ISR) runs on the host processor that the interrupt was routed to, which disables further interrupts from the network adapter. The ISR then schedules the miniport adapter’s deferred procedure call (DPC) to run on a specific processor—usually the same processor used to run the ISR, unless the DPC is explicitly set to run on another processor.

5. When the DPC runs, it processes the receive descriptor queue. Either the DPC creates an array of packets to hand to the NDIS interface, or it signals each packet to the NDIS interface, one at a time. In either case, no other processor can perform network adapter interrupt processing because interrupts from the network adapter are disabled.

6. The protocol stack processes each indicated packet. For TCP, this involves updating internal state, potentially sending new data if the TCP window allows it to do so, and potentially indicating or completing data to the application.

7. Once all receive descriptors have been consumed or some maximum amount of processing has been done, the DPC reenables interrupts on the network adapter and returns, allowing another interrupt to be triggered on another (potentially different) host processor.

RSS enables parallelism by changing steps 5 and 7 to allow one of the following algorithms to be implemented:

Fire a single ISR that eventually results in the queuing of not just one DPC to a specific processor, but one DPC to potentially every processor. As shown in step 4, interrupts from the card remain disabled, and are only re-enabled after every DPC has executed in Step 7.

Fire multiple ISRs to specific processors that cause multiple DPCs to be scheduled in parallel. As shown in step 4, a specific interrupt remains disabled, and is reenabled only after a single DPC (or group of DPCs for a given ISR) has executed in Step 7.

The sequence of events just described enables parallel processing of received packets; however, if in-order delivery is not preserved, performance will probably be degraded. For example, if packets for a group of connections are processed on different CPUs and one CPU is lightly loaded while the other is heavily loaded, older packets could actually be processed first. Because TCP acknowledgement generation and processing is highly optimized for in-order processing, performance will be degraded unless RSS supports in-order delivery of TCP segments.

RSS enables in-order packet delivery by ensuring that packets for a single TCP connection are always processed by one processor. This RSS feature requires that the network adapter examine each packet header and then use a hashing function to compute a signature for the packet. To ensure that the load is balanced evenly across the CPUs, the hash result is used as an index into an indirection table. Because the indirection table contains the specific CPU that is to run the associated DPC and the host protocol stack can change the contents of the indirection table at any time, the host protocol stack can dynamically balance the processing load on each CPU.

Figure 1 shows the RSS processing sequence. As shown on the right side of Figure 1, incoming network packets arrive for processing. The hash function is applied to the header to produce a 32-bit hash result. The hash type controls which incoming packet fields are used to generate the hash result. The hash mask is applied to the hash result to get the number of bits that are used to identify the CPU number in the indirection table. The Indirection Table result is then added to BaseCPUNumber to enable RSS interrupts to be restricted from some CPUs.

The RSS processing sequence generates two variables: the scheduled CPU that runs the deferred procedure call (DPC) and the 32-bit hash result. Both are passed to the protocol driver on a per-packet basis. Lines A and B in Figure 1 are possible implementation options that are discussed in “RSS Implementation,” later in this paper.

[image: image1]
Figure 1 RSS receive-processing sequence
RSS Initialization

The Receive-Side Scaling (RSS) parameters are selected when the miniport adapter is initialized, and they can be changed while the miniport adapter is operational. During initialization, NDIS requests the set of predefined hashing functions and hashing types that the miniport adapter supports by calling a specific NDIS object identifier (OID) for RSS capability discovery. NDIS then uses another NDIS OID to inform the miniport adapter of the RSS configuration values that were selected.

All network adapters are required to implement the default hash function, referred to as the Toeplitz hash. For more information about the Toeplitz hash, see "Toeplitz Hash Function Specification" and "Next Steps and Resources" later in the paper.

The following variables are set during RSS initialization. Note that tuple is a common term in networking, and is used to indicate the number of parameters used. For example, 4-tuple means four parameters are used, and 2-tuple means that two parameters are used.

· Hash function. The default hash function is the Toeplitz hash. No other hash functions are currently defined.

· Hash type. The fields that are used to hash across the incoming packet. Depending on what the miniport adapter advertises that it can support, the host protocol stack can enable any combination of the following set of flags:

1. 4-tuple of source TCP Port, source IP version 4 (IPv4) address, destination TCP Port, and destination IPv4 address. This is the only required hash type to support.

2. 4-tuple of source TCP Port, source IP version 6 (IPv6) address, destination TCP Port, and destination IPv6 address.

3. 2-tuple of source IPv4 address, and destination IPv4 address.

4. 2-tuple of source IPv6 address, and destination IPv6 address.

5. 2-tuple of source IPv6 address, and destination IPv6 address, including support for parsing IPv6 extension headers.

See the RSS DDK documentation for additional information about combining hash field flags.

· Hash bits (or mask). The number of hash-result bits that are used to index into the indirection table. All network adapters must support seven bits. The host protocol stack will set the actual number of bits to be used during initialization. The number will be between 1 and 7, inclusive. This range effectively defines the size of the indirection table.

· Indirection table. The values for the indirection table. The host protocol stack will periodically rebalance the network load by changing the indirection table.

· BaseCPUNumber. The lowest number CPU to use for RSS. BaseCPUNumber is added to the result of the indirection table lookup.

· Secret hash key. The size of the key is dependent upon the hash function. For the Toeplitz hash, the size is 40 bytes for IPv6 and 16 bytes for IPv4.

Once RSS is initialized, data transfer can begin. Over a period of time, the host protocol stack will call the configuration OID to modify the indirection table to rebalance the processing load. Normally, all parameters in the OID will be the same except for the values contained in the indirection table; however, after RSS is initialized, the host protocol stack may change other RSS initialization parameters. This occurrence will be extremely rare, so it is acceptable to require a hardware reset to change the hash algorithm, the secret hash key, the hash type, the base CPU number, or the number of hash bits used.

Selection of the Default RSS Hash Function

The default RSS hash function was chosen after significant research into hash algorithms, using the following criteria to evaluate candidate hash functions:

· How evenly distributed the hash was for different hash inputs and different hash types, including TCP/IPv4, TCP/IPv6, IPv4, and IPv6 headers. For each hash algorithm, simulations were performed to analyze the resulting hash randomness. Various inputs to the hash functions were used, including empirical data from different classes of servers and a function that produced random numbers.
· How evenly distributed the hash was when a small number of buckets were present (for example, two or four).

· How randomly distributed the hash was when a large number of buckets were present (for example, 64 buckets).

· How computationally intensive the hash calculation was for software.

· How easy it was to implement the hash in hardware. This was determined through discussions with network adapter vendors.

· How difficult it would be for a malicious remote host to send packets that would all hash to the same bucket, thus eliminating the advantages of RSS.

The Toeplitz hash was selected as the base algorithm that all RSS implementers must support, with a programmable number of buckets that can vary from two to 128.

Toeplitz Hash Function Specification

The following four pseudocode (p-code) examples show how to calculate the NdisHashFunctionToeplitz hash value for the different packet fields.

To simplify the examples, a generalized algorithm that processes an input byte-stream is used. Specific formats for the byte streams are defined in each example. The overlying driver provides a secret key (K) to the miniport adapter that is used in the hash calculation. The key is 40 bytes (320 bits) long for the Toeplitz hash on IPv6 (16 bytes for IPv4). The Device Developers Kit (DDK) for NDIS 6.0 contains sample data to enable vendors to verify their implementation.

Given an input array that contains n bytes, the byte stream is defined as follows:

input[0] input[1] input[2] … input[n-1]

The leftmost byte is input[0], and the most significant bit of input[0] is the leftmost bit. The rightmost byte is input[n-1], and the least significant bit of input[n-1] is the rightmost bit.

Given the preceding definitions, the p-code for processing a general input byte stream is defined as follows:

ComputeHash(input[], n)

result = 0
For each bit b in input[] from left to right {

if (b == 1) result ^= (left-most 32 bits of K)
shift K left 1 bit position

}
return result

The p-code contains entries of the form @n-m. These entries identify the byte range of each element in the TCP packet, assuming an Ethernet DIX packet format is used. The result represents the final value of the hash (32 bits).

Example: Hash Calculation for IPv4 with the TCP Header

Concatenate the SourceAddress, DestinationAddress, SourcePort, and DestinationPort packet fields into a byte array, preserving the order in which they occurred in the packet:

Input[12] = @12-15, @16-19, @20-21, @22-23

Result = ComputeHash(Input, 12)

Example: Hash Calculation for IPv4 Only

Concatenate the SourceAddress and DestinationAddress packet fields into a byte array.

Input[8] = @12-15, @16-19

Result = ComputeHash(Input, 8)

Example: Hash Calculation for IPv6 with the TCP Header

Concatenate the SourceAddress, DestinationAddress, SourcePort, and DestinationPort packet fields into a byte array, preserving the order in which they occurred in the packet:

Input[36] = @8-23, @24-39, @40-41, @42-43

Result = ComputeHash(Input, 36)

Example: Hash Calculation for IPv6 Only

Concatenate the SourceAddress and DestinationAddress packet fields into a byte array.

Input[32] = @8-23, @24-39

Result = ComputeHash(Input, 32)

Mapping Packets to Processors

To generate a 32-bit signature, Receive-Side Scaling (RSS) requires the hash function to be calculated over a specific set of fields in the packet header. The set of fields over which the hash is computed is set by the configuration OID. If the hash type flags enable only one type of hash, then any packet that is received that does not match that hash type is not hashed. (For definitions of hash type flags, see “RSS Initialization” earlier in this paper.) For example, if the TCP/IPv4 4-tuple hash type is set and a packet that is not a TCP packet arrives (for example, an IP fragment, or a User Datagram Protocol (UDP) packet, or an IPsec-encrypted packet), a hash is not performed on the packet. If multiple flags are set—for example, if the TCP/IPv4 and IPv4 hash types are enabled—then if the packet is not a TCP/IPv4 packet but is an IPv4 packet (for example, an IPsec-encrypted packet), the hash is performed on just the IPv4 2-tuple. Further, for this setting of the hash type flags, if the incoming packet is not an IPv4 packet, then no hash is performed. Because a variety of hash types can be applied on a per-packet basis (including no hash), the hash type is indicated to the host protocol stack on a per‑packet basis. If no hash was performed, then none of the hash type flags are set.

As mentioned previously, the hash signature for each packet is masked and then used to index into the indirection table, and then added to BaseCPUNumber to determine the processor that the packet should be processed on (that is, the processor that runs the DPC). Figure 2 shows a specific example of the contents of the indirection table and how it can be changed, assuming that a four processor configuration is used and that the configuration OID set the number of least significant bits for the hash result mask to be 6 bits and the BaseCPUNumber to zero. This configuration implies that the indirection table contains 64 entries.

In Figure 2, Table A shows the values immediately after initialization. After some time has elapsed and as normal traffic load varies, the processor load will grow unbalanced. The host protocol stack will then detect the unbalanced condition and attempt to rebalance the load by calculating a new indirection table and passing it to the miniport driver using the configuration OID. Table B in Figure 2 shows the new indirection table, which moved some of the load off of CPU 2 and onto CPUs 1 and 3.

When the indirection table is changed, it is possible for a short period of time (while the current receive descriptor queues are being processed) for packets to be processed on the wrong CPU. This is a normal transient condition.

[image: image2]
Figure 2 Example: RSS indirection table
Because the host protocol stack needs to change the processing load on each of the processors by varying the contents of the table, the size of the table in Figure 2 will typically reach two to eight times the number of processors in the system.

RSS Data Reception

NDIS data reception is usually completed first by the interrupt service routine that is located in the MiniportInterrupt function handler, which queues a DPC and eventually calls the MiniportInterruptDPC function handler. When the DPC is ready to indicate the packet to the host protocol stack, it initializes the following fields in the NetBufferList data structure:

RSS hash function

RSS hash type (if no hash was calculated, then none of the hash type flags are set)

RSS hash value (including all 32 bits)

The data reception enables protocol layers above the miniport adapter to leverage the work that was done by the RSS-enabled network adapter. It also enables the host protocol stack to detect if the packet in question was hashed with a prior hash function or hash type.

When specific RSS algorithm processing is completed depends on the implementation. For more information about RSS algorithm processing, see "RSS Implementation" later in this paper.

RSS Implementation

This section defines three Receive-Side Scaling (RSS) implementation options. Options defined here are for illustration purposes and are not meant to define the only methods to implement support for RSS. This section examines the abstract data structures and sequence of operations, explains how interrupts and DPCs are scheduled, and contrasts the advantages and disadvantages of each approach.

RSS Implementation Options

Receive-Side Scaling (RSS) is cryptographically secure, so the hash algorithm can require significant resources if it is run on the host CPU. Ideally, RSS should not be implemented on top of a network adapter that cannot generate the RSS hash.

If a network adapter can support the RSS hash, many implementation options are possible. The RSS implementation options described below incorporate hardware-specific tradeoffs, host parallelization tradeoffs, and limitations imposed by the host system implementation (specifically, whether the Message Signaled Interrupt (MSI-X) Engineering Change Notice for Peripheral Component Interconnect (PCI) 2.3 is supported). Implementation options vary depending on price and performance tradeoffs. Some of the tradeoffs include:

Where the RSS load-balancing indirection table lookup occurs.

The number of receive descriptor queues that exist between the network adapter hardware and the miniport adapter.

The number of simultaneous outstanding message signaled interrupts that are supported by the network adapter. This enabled multiple interrupts on multiple CPUs at the same time.

The following RSS implementation options assume the presence of a queue between the network adapter and the miniport adapter. The queue contains “receive descriptors” and is referred to as the receive descriptor queue. Receive descriptors are implementation dependent, but presumably must contain a mechanism for the miniport adapter to find the received packets, as well as additional information necessary to pass the packets to NDIS. For RSS, an additional requirement is imposed: the receive descriptor must contain the 32-bit hash value so that the NDIS indicate can contain the 32-bit hash result for the packet.

Option 1a and option 2 assume that an atomic counter is maintained in the miniport adapter, which represents the number of launched deferred procedure calls (DPCs). One way to implement the atomic counter is to first initialize the variable according to the number of DPCs that are about to be launched. Then, when the DPCs are ready to exit, the parallel DPCs should decrement the value with the NdisInterlockedDecrement function. Finally, just before the last DPC returns (that is, when NdisInterlockedDecrement causes the atomic counter’s value to decrement to zero), the DPC reenables network adapter interrupts.
This may not be the most efficient way to manage interrupt moderation. More efficient mechanisms are left to vendor innovation.

Some implementations may include an additional concept, referred to as a CPU vector in this paper. A CPU vector might be needed in cases where there are multiple receive descriptor queues to be processed on multiple CPUs. The CPU vector is set by the network adapter to track which CPUs should have a DPC scheduled to process newly arrived receive descriptors. Before the network adapter fires an interrupt to cause the miniport adapter to process received packets, it uses a direct memory access (DMA) write to move the CPU vector from the network adapter into host memory. The interrupt service routine then reads from the host memory location and uses the CPU vector to schedule DPCs.

RSS Implementation options:

· Option 1—Multiple Receive Descriptor Queues. The network adapter computes the RSS hash and uses the indirection table to find the CPU for the packets. The network adapter supports a receive descriptor queue for each CPU. In Figure 1 earlier in this paper, "Line A," represents option 1.

Option 1a—Single Interrupt (using either line-based interrupts or message signaled interrupts). The network adapter can initiate only a single interrupt at a time. The miniport adapter uses the CPU vector concept defined above.

1. As packets arrive, the network adapter queues receive descriptors directly into the correct CPU’s receive descriptor queue.

2. The network adapter delays the interrupt according to its vendor-specific interrupt moderation scheme, but it maintains a local vector of CPUs that need a scheduled DPC to process their receive descriptor queue.

3. Just before the network adapter fires the interrupt, the network adapter uses a Direct Memory Access (DMA) write to move the vector of CPUs into host memory.

4. The network adapter fires the interrupt, which causes the ISR to run.

5. The ISR uses the CPU vector in host memory to set an atomic counter according to the number of DPCs it is going to launch.

6. The ISR launches a DPC for each CPU in the CPU vector.

7. Each DPC processes the receive descriptor queue assigned to the CPU it is currently running on.

8. When each DPC finishes processing its receive descriptor queue, it decrements the atomic counter.

9. The last DPC to decrement the counter reenables the interrupt.

Option 1b—Multiple Interrupts. As in option 1a, the network adapter computes the RSS hash, masks the result, locates the destination processor, adds the BaseCPUNumber, and uses a DMA write to move a receive descriptor to the correct queue. However, the network adapter uses message signaled interrupts (MSI-X, which enables support for multiple interrupts from a single I/O device to multiple CPUs) to directly interrupt the processors whose receive descriptor queues are not empty. The ISR that is triggered on each processor then initiates a single DPC on the associated processor to process the receive descriptors for that processor. Thus there is no need for an atomic counter. When a DPC exits, it reenables the interrupt for that processor. For more information about MSI-X, visit the PCI-SIG website at http://www.pcisig.com/home.

· Option 2—Single Receive Descriptor Queue. The network adapter computes only the RSS hash, and it has a single receive descriptor queue that is linked to the miniport adapter. The miniport adapter supports a primary DPC and a secondary DPC. The primary DPC maintains a receive descriptor queue for each secondary DPC. In Figure 1 earlier in this paper, "Line B" represents option 2. The following enumerated list matches the list shown in option 1a, but is edited to reflect the changes associated with option 2.

1. As packets arrive, the network adapter queues receive descriptors into the receive descriptor queue.

2. The network adapter delays the interrupt according to its vendor-specific interrupt moderation scheme.

3. Deleted. This step is not applicable to option 2.

4. The network adapter fires the interrupt, which causes the interrupt service routine to run, which causes the primary DPC to be scheduled.

5. This operation is now significantly more complex:

· The primary DPC performs the following operations for each receive descriptor:

· Retrieves the 32-bit hash value from the receive descriptor.

· Masks the hash value to the number of bits set in the configuration OID.

· Uses the masked hash value to index into the indirection table and locate the CPU for this packet.

· Copies the receive descriptor to the appropriate secondary DPC receive descriptor queue.

· Maintains a CPU vector of secondary DPCs to schedule.

· The primary DPC uses the CPU vector to set an atomic counter according to the number of DPCs it is going to launch.

6. The primary DPC launches a secondary DPC for each CPU in the vector (except for the CPU it is executing on), and it then processes the receive descriptor queue assigned to the CPU it is currently running on.

7. When each secondary DPC finishes processing its receive descriptor queue, it decrements the atomic counter.

8. The last secondary DPC to decrement the counter reenables the interrupt.

Option 1a assumes the costs of implementing the hash computation, processor mapping, and multiple receive descriptor queues in the network adapter are acceptable, but requires a single interrupt service routine to queue multiple DPCs on various processors (which in turn requires an interprocessor interrupt). If interrupts are not enabled until after all DPCs have finished processing, there is also additional overhead because of the atomic counter, and there is a potential for delayed receive processing if one receive descriptor queue is lightly loaded and another is heavily loaded.

Option 1b provides the highest level of parallelization. Because interrupts are enabled independently for each CPU, under some workloads it might also be more responsive because it avoids some head-of-queue blocking issues. However, since option 1b requires MSI-X functionality, a feature that is just starting to be supported by host systems, implementations that support option 1b and MSI-X should also support option 1a for systems that do not support MSI-X.

Option 2 is the most cost effective implementation in terms of network adapter costs, but it implements much of the RSS algorithm in software, thereby increasing the load on the processor that is hosting the primary DPC. The increased load is from software mapping the hash signature to the processor and then copying the receive descriptor into the appropriate processor queue. Option 2 also involves synchronization costs that are needed to ensure that the interrupt is reenabled when all DPCs have finished their packet processing. This is also true for option 1a.

Launching Interrupts and DPCs

During data transfer, Receive-Side Scaling (RSS) interactions between NDIS and the miniport adapter primarily involve two functions that the miniport adapter exports, MiniportInterrupt and MiniportInterruptDPC. MiniportInterrupt is the miniport adapter’s regular interrupt service routine entry point, and MiniportInterruptDPC refers to a separate function entry point for the miniport adapter’s DPC routine. Both functions are used for miniport adapters, regardless of whether they support RSS, but MiniportInterruptDPC can be executed in parallel if RSS is enabled. The operations performed by the MiniportInterrupt function depend on the RSS implementation; however, the per-packet processing is expected to be done within the MiniportInterruptDPC function, not within the MiniportInterrupt function.

Option 1a and option 1b do not have a primary DPC, so the MiniportInterruptDPC function simply finds the CPU number it is running on to discover which receive descriptor queue it should process. In general, the fewer shared resources that the parallel DPCs have to access exclusively (for example, the atomic counter), the better the RSS algorithm will scale.

Option 2 requires a primary DPC, so the MiniportInterruptDPC function must first discover if it is running as a primary or a secondary DPC. This is easily done by checking the atomic counter. If the count on the atomic counter is zero, meaning that the counter has not been set for the number of secondary DPCs, then the routine performs the function of the primary DPC. If it is a secondary DPC, it uses the CPU number it is running on to find the correct receive descriptor queue.

Examining Option 1a in More Detail

This section examines option 1a in more detail than was discussed earlier in the "RSS Implementation Options" section. This section shows the sequence of packet receive processing from the perspective of a network adapter.

The sequence of events shown here is intended to be a high-level example, and implementation issues may force different implementation options. All options presented in this paper are examples that can be used to help IHVs understand various RSS implementation issues. Additional implementation options are also possible.

1. At the network adapter, as packets arrive off the wire, the hash fields are selected according to the hash type, the RSS hash is calculated, the hash mask is applied to the result, the indirection table result is added to the BaseCPUNumber, and the result is used to find the CPU which should process the packet.

2. The packet contents are transferred into host memory using Direct Memory Access (DMA) writes (the packet contents could be transferred to a processor-specific pool of buffers), and a receive descriptor is transferred into the receive descriptor queue for the specific processor by means of a DMA write.

3. Depending on vendor innovation, a CPU vector might be transferred by means of a DMA into host memory when the network adapter is about to cause an interrupt.

4. An interrupt will eventually be posted to the host to indicate presence of new data. Exactly when the interrupt fires depends on the vendor’s interrupt moderation scheme. Depending on the system architecture supported by the system vendor, the interrupt will either be distributed to any host processor (based on a vendor-specific heuristic), or it will be routed to the processor that the system vendor has designated as the processor to handle the adapter’s interrupts. Normally, the network adapter will no longer interrupt the host until it is specifically enabled by one of the DPCs.

5. If additional packets arrive at the network adapter, data and descriptors are transferred by means of DMA to host memory. The network adapter must start tracking the CPU vector from the time the interrupt was sent, not from the time when the interrupt was reenabled. Otherwise, a race condition exists where a particular receive descriptor queue might not be processed for an indeterminate amount of time. The exact race condition exists if a packet arrives on a different receive descriptor queue, say queue 2, than that specified in the CPU vector (say, queues 0 and 1). The miniport driver DPCs for queues 0 and 1 finish processing and reenable the interrupt. The network adapter starts tracking receive descriptors again, but the received packets do not contain any additional packets that hash to receive descriptor queue 2. If the CPU vector updates began immediately after sending the interrupt, then the race condition is eliminated.

6. The interrupt service routine runs on the host processor that the interrupt was routed to. The interrupt service routine processes the CPU vector, initializes an atomic counter to the number of DPCs about to be scheduled, and then schedules a vector of DPCs to execute.

7. When the DPCs run, they process the receive descriptors on their receive descriptor queue. They each hand packets (preferably an array of packets) up to the NDIS interface, preserving the packet order in the receive descriptor queue. However, because multiple DPCs are running in parallel, the packet order between CPUs may not match the order in which the network adapter received the packets from the network.

8. Depending on vendor innovation, the device interrupt is enabled either just before all DPCs have exited or at some other time.

Handling Insufficient Hardware Resources

To avoid shared, interlocked data structures, each DPC should have adequate dedicated resources. For example, if a network adapter implements option 1a and supports only four receive descriptor queues, yet there were eight processors in the system, then insufficient resources will be present. The miniport driver does not have to support more than four parallel DPCs, because this type of support would require that a miniport driver support sharing of hardware resources between multiple DPCs. It is expected that the overhead associated with the sharing of resources will outweigh the benefits gained from RSS. Consequently, in some system configurations a miniport driver might support fewer DPCs than the number of CPUs. In this case, the following question must be answered: Which CPUs should the miniport driver use to schedule its DPCs?
A straightforward answer to the question that will provide good performance and localize cache-thrashing of host memory data structures to a small set of CPUs is to simply mask the output from the Indirection Table with the number of receive queues that are supported. For example, assume an implementation only supports four queues but the network adapter is installed on an eight processor system. In this case, masking the Indirection Table output means that the least-significant two bits are used. Thus all network traffic receive processing will be limited to CPUs zero through three if the BaseCPUNumber is set to zero. If the BaseCPUNumber was non-zero, then the resultant masked value is added to the BaseCPUNumber. Thus if the BaseCPUNumber was four, then CPUs four through seven would be used.

RSS Limitations

Receive-Side Scaling (RSS) requires a significant number of CPU cycles if the algorithm is implemented in software on the host CPU, because RSS is cryptographically secure. Thus a software implementation of RSS could make the system perform worse than if RSS were not enabled. As a result, implementations should not support RSS if the network adapter cannot generate the hash result.

The types of protocols that are received limit RSS load balancing. Load balancing on a per-connection basis is supported only for TCP. Depending on the hash type setting, other protocols such as the User Datagram Protocol (UDP), IPsec, IGMP, and ICMP are hashed on the source and destination IP address. For incoming packets that are not IP packets (for example, on Ethernet this would be a different EtherType than the one assigned to IPv4 or IPv6), the packets cannot be classified and will be handled in a fashion similar to the NDIS 5.1 method, where no hash value is set and all packets are indicated on a single CPU DPC.

If an application is not running on the CPU that RSS has scheduled the receive traffic to be processed on, some cache optimizations may not occur. To eliminate this issue, a mechanism will be provided to allow the application to query the current processor that it should run on for best performance. If the application is not modified in this fashion, application performance on RSS is still expected to be significantly better than performance on the current NDIS 5.1 infrastructure. However, in extremely rare conditions on nonuniform-memory-access (NUMA) systems, the system administrator may want to disable RSS.

Finally, RSS may need to be configured on systems where network processing is restricted to a subset of the processors in the system. Systems with large processor counts (for example 16- and 32-way processors) may not want all processors simultaneously processing network traffic. In such cases, RSS should be restricted to a small subset of the processors. To limit hardware and software complexity, the administrator can restrict only processors ranges that start at zero and are a power-of-two number of processors. The RSS hashing must also go to a power-of-two number of processors. So for example, if the system is a seven-processor system, where the administrator wants to forbid CPUs 0 through 2 from participating in RSS, the administrator must instead restrict CPUs 0 through 3. Because the number of RSS CPUs must be a power of two, only CPUs 4 and 5 can be used. (CPU 6 will not be used by RSS either.)
Next Steps and Resources

Next Steps
Network adapter developers who are considering ways to improve their network adapter performance should strongly consider implementing support for Receive-Side Scaling (RSS). This innovative architecture makes it possible for your customers to improve multiprocessor computer performance by dynamically load-balancing receive traffic across multiple processors.

System manufacturers should consider deploying RSS for multiprocessor computers because important customer applications such as HTTP traffic, file serving, and block storage can be accelerated with RSS.

Resources

Send an e-mail message to ndis6fb@microsoft.com for general questions about RSS and NDIS 6.0 and for access to the following items:

Microsoft NDIS 6.0 documentation.

Microsoft NDIS 6.0 beta program.

Microsoft NDIS 6.0 Tester, including RSS tests.

Microsoft NDIS 6.0 porting guidelines from an NDIS 5.1 miniport driver.

An early draft of the Microsoft Windows Logo Program System and Device Requirements for RSS.

A white paper for the IT manager or analyst called “Microsoft Windows Scalable Networking Initiative”. The paper provides an overview of Microsoft’s Scalable Networking initiative, including the problems to be solved and a broad overview of the technologies being developed.

A white paper on TCP Chimney titled “Scalable Networking: Network Protocol Offload—Introducing TCP Chimney”.
Additional information can be found at:

PCI SIG specifications (including MSI-X)

http://www.pcisig.com/home
Toeplitz hash reference

”LFSR-based Hashing and Authentication”, Hugo Krawczyk, IBM T.J. Watson Research Center. 1998

Hash�Type

32 bit hash result

B

A

Masked

Hash Result

<= 8 bits

Hash Mask

Indirection

Table

CPU Result

Hash Result

(32 bits)

Incoming

Packets

Table B

Table A

....

....

CPU #

Bucket #

CPU #

Bucket #

2	3	

0	1	1	3	0	1	3	3

2	3	

0	1	2	3	0	1	2	3

62	63	

62	63	

0	1	2	3	4	5	6	7

0	1	2	3	4	5	6	7

Hash Function

BaseCPUNumber

+

WinHEC 2004 Version – April 14, 2004
© 2004 Microsoft Corporation. All rights reserved.

[image: image3.png]