[image: image1.png]Windows Hardware and Driver Central

Porting Miniport Drivers to NDIS 6.0 - 13

Porting Miniport Drivers to NDIS 6.0

October 23, 2003 – Microsoft Driver DevCon Draft

Abstract

NDIS 6.0 is the next major version of the Network Driver Interface Specification library. This document focuses on issues for NDIS 6.0 related to simplifying the NDIS driver model. This document describes the changes required to migrate a legacy miniport driver to NDIS 6.0. Key changes to the miniport driver are discussed and illustrated with code samples.

Code fragments used in this document have been derived from the E100BEX NIC miniport driver that is supplied with in the Microsoft® Windows® Driver Development Kit (DDK).`This document supplements the NDIS 6.0 documentation provided with the DDK.

Contents

3Introduction

3Backward Compatibility

3Summary of Changes Required to Port Legacy Miniport Drivers

4Miniport Driver Initialization

4DriverEntry Function

5NDIS_MINIPORT_DRIVER_CHARACTERISTICS Structure

7Registering Optional Handlers

7MiniportInitializeEx Function

7Setting Miniport Adapter Attributes

8Reading the Registry

8Allocating Memory

8Allocating NET_BUFFER Pools

9Registering Interrupt Handlers

10Allocating DMA Resources

10Reading and Writing Bus-Specific Configuration Space

11Handling Interrupts

11MiniportHaltEx Function

11ShutdownHandlerEx Function

12Deregistering and Unloading a Miniport Driver

12Data Transfer Code Paths

12Sending Data

13Receiving Data

13MiniportRequest Function

13Status Indication

14MiniportResetEx Function

14Pausing and Restarting a Miniport Adapter

15Resources

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2003 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

NDIS 6.0 is the next major version of the Network Driver Interface Specification library. The three major objectives that have guided the design and development of NDIS 6.0 are:

SYMBOL 183 \f "Symbol" \s 11 \h
Enhancing driver performance and scalability.

SYMBOL 183 \f "Symbol" \s 11 \h
Simplifying the NDIS driver model.

SYMBOL 183 \f "Symbol" \s 11 \h
Improving driver security.

This document focuses on the second design objective: simplifying the NDIS driver model. This document describes the changes required to migrate a legacy miniport driver to NDIS 6.0. Key changes to the miniport driver are discussed and illustrated with code samples.

Code fragments used in this document have been derived from the E100BEX NIC miniport driver that is supplied with in the Microsoft® Windows® Driver Development Kit (DDK). This document is intended to supplement—not replace—the NDIS 6.0 documentation that is supplied with the DDK.

Backward Compatibility

Although NDIS 6.0 still supports legacy miniport drivers, new drivers should be written as NDIS 6.0 drivers, whenever possible, for performance and longevity reasons. NDIS provides a translation layer to accommodate legacy drivers. This translation might reduce performance—particularly in data code paths.

The TCP/IP protocol driver that ships with the Microsoft Windows Codename “Longhorn” operating system is compatible with NDIS 6.0 drivers. Thus, NDIS does not need to use the translation layer.

Summary of Changes Required to Port Legacy Miniport Drivers
Legacy miniport drivers must be modified in the following ways to run in the NDIS 6.0 environment:

Build Environment

Replace the pre-processor definition NDIS51_MINIPORT_DRIVER with NDIS60_MINIPORT_DRIVER and change the pre-processor definition BINARY_COMPATIBLE to BINARY_COMPATIBLE=0.

Initialization and Cleanup

SYMBOL 183 \f "Symbol" \s 11 \h
In the DriverEntry function, replace calls to the NdisMInitializeWrapper, NdisMRegisterUnloadHandler, and NdisMRegisterMiniport functions with a call to the NdisMRegisterMiniportDriver function.

SYMBOL 183 \f "Symbol" \s 11 \h
Set the NDIS version to 6.0 in the NDIS_MINIPORT_CHARACTERISTICS structure that is passed to NdisMRegisterMiniportDriver.

· Set the miniport driver version in the NDIS_MINIPORT_CHARACTERISTICS structure that is passed to NdisMRegisterMiniportDriver.

SYMBOL 183 \f "Symbol" \s 11 \h
Define new, and replacing existing, entry points in the NDIS_MINIPORT_CHARACTERISTICS structure.

SYMBOL 183 \f "Symbol" \s 11 \h
If the miniport driver uses optional handlers then add the entry point for the MiniportSetOptions function to the NDIS_MINIPORT_CHARACTERISTICS structure. MiniportSetOptions registers optional handlers with the NdisSetOptionalHandlers function.

SYMBOL 183 \f "Symbol" \s 11 \h
Modify the miniport driver's MiniportDriverUnload function to allow miniport deregistration with the NdisMDeregisterMiniportDriver function.

SYMBOL 183 \f "Symbol" \s 11 \h
Rewrite the miniport driver’s MiniportInitialize function to support the new NDIS_MINIPORT_INIT_PARAMETERS structure. The new function name is MiniportInitializeEx.

SYMBOL 183 \f "Symbol" \s 11 \h
Modify the miniport driver's MiniportHalt function to supports the new HaltAction parameter. The new function name is MiniportHalteEx.

SYMBOL 183 \f "Symbol" \s 11 \h
Modify the miniport driver's MiniportShutdown function to support the new ShutdownAction parameter. The new function name is MiniportShutdownEx.

SYMBOL 183 \f "Symbol" \s 11 \h
Replace calls to the NdisMSetAttributes and NdisMSetAttributesEx functions with calls to the NdisMSetMiniportAttributes function.

Interrupt Registration

SYMBOL 183 \f "Symbol" \s 11 \h
Move the interrupt handling parameters into the NDIS_MINIPORT_INTERRUPT_EX structure and replace calls to the NdisMRegisterInterrupt function with calls to the NdisMRegisterInterruptEx function.

SYMBOL 183 \f "Symbol" \s 11 \h
Replace calls to the NdisMDeregisterInterrupt function with calls to the NdisMDeregisterInterruptEx function.

Request Handling

Consolidate the miniport driver's MiniportQueryInformation function and MiniportSetInformation functions into the MiniportRequest function. The MiniportRequest function uses NDIS_REQUEST_EX structures instead of NDIS_REQUEST structures.

Send and Receive Code Paths

Rewrite the send and receive code paths to use NET_BUFFER structures and NET_BUFFER_LIST structures instead of NDIS_PACKET structures.

Reset handling
Replace the MiniportReset function with the MiniportResetEx function.

Status Indication

Replace calls to the NdisMIndicateStatus function with calls to the NdisMIndicateStatusEx function and remove calls to the NdisMIndicateStatusComplete function.

New adapter states

Include new miniport pause and restart functionality.

Miniport Driver Initialization
DriverEntry Function

The NdisMInitializeWrapper and NdisMRegisterUnloadHandler functions have been eliminated, along with the NdisMRegisterMiniport function. Instead, call the NdisMRegisterMiniportDriver.

NDIS 6.0 miniport drivers do not call NdisMRegisterUnloadHandler to register an unload function. Instead, NDIS 6.0 miniport drivers specify an MiniportDriverUnload entry point in the NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure. Unlike legacy miniport drivers, NDIS 6.0 miniport drivers must register an unload handler.

Like NdisMRegisterMiniport, the input parameters to NdisMRegisterMiniportDriver include the driver object, registry path, and the NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure. In addition, NdisMRegisterMiniportDriver requires a pointer to an NDIS_HANDLE that uniquely identifies the driver. If the call to NdisMRegisterMiniportDriver fails, the driver is not registered and the miniport driver's DriverEntry function should clean up and exit.

If the call to NdisMRegisterMiniportDriver succeeds, the miniport driver must later call the NdisMDeRegisterMiniportDriver function in the context of the miniport driver’s MiniportShutdownEx function. NdisMDeRegisterMiniportDriver performs any necessary cleanup.
NDIS_MINIPORT_DRIVER_CHARACTERISTICS Structure

Many entry points in the legacy NDIS_MINIPORT_CHARACTERISTICS structure have been removed from the NDIS 6.0 version. The NDIS 6.0 version of the structure is named NDIS_MINIPORT_DRIVER_CHARACTERISTICS. Subsequent sections of this document outline the specifics for each entry point in the NDIS_MINIPORT_DRIVER_CHARACTERISTICS structure.

NDIS 6.0 data structures, both new and updated, support versioning. The versioning information is specified in the NDIS_OBJECT_HEADER structure. The object header is the first member in each structure.

The object header has three members: Type, Size and Revision. If the header information is incorrect, then function calls will fail. As an example, a header is defined is as follows:

MPChar.Header.Type = NDIS_OBJECT_TYPE_MINIPORT_DRIVER_CHARACTERISTICS,

MPChar.Header.Size = sizeof(NDIS_MINIPORT_DRIVER_CHARACTERISTICS);

MPChar.Header.Revision = NDIS_MINIPORT_DRIVER_CHARACTERISTICS_REVISION_1;

Set NDIS 6.0 miniport drivers' major and minor version numbers to 6 and 0 respectively.

 MPChar.MajorNdisVersion = 5;
 MPChar.MajorNdisVersion = 6;
 MPChar.MinorNdisVersion = 1;
 MPChar.MinorNdisVersion = 0;

NDIS 6.0 miniport drivers can specify a driver version. These values are independent of the NDIS major and minor version.

MPChar.MajorDriverVersion = NIC_MAJOR_DRIVER_VERSION;
MPChar.MinorDriverVersion = NIC_MINOR_DRIVER_VERSION;

Update the initialize handler and halt handler to use InitializeHandlerEx and HaltHandlerEx instead of InitializeHandler and HaltHandler respectively.

 MPChar.InitializeHandler = MPInitialize;
 MPChar.InitializeHandlerEx = MPInitializeEx;
 MPChar.HaltHandler = MPHalt;
 MPChar.HaltHandlerEx = MPHaltEx;

PnPEventNotifyHander has been replaced by PnPEventNotifyHandlerEx.

 MPChar.PnPEventNotifyHandler = MPPnPEventNotify;
 MPChar.PnPEventNotifyHandlerEx = MPPnPEventNotifyEx;

AdapterShutdownHandler has been replaced with ShutdownHandlerEx.

 MPChar.AdapterShutdownHandler = MPShutdown;
 MPChar.ShutdownHandlerEx = MPShutdownEx;

CheckForHangHandler has been replaced with CheckForHangHandlerEx.

 MPChar.CheckForHangHandler = MPCheckForHang;
 MPChar.CheckForHangHandlerEx = MPCheckForHangEx;

ResetHandler has been replaced with ResetHandlerEx.

 MPChar.ResetHandler = MPReset;
 MPChar.ResetHandlerEx = MPResetEx;

The QueryInformationHandler and SetInformationHandler have been consolidated into the RequestHandler, as shown below:

 MPChar.QueryInformationHandler = MPQueryInformation;
 MPChar.SetInformationHandler = MPSetInformation;

 MPChar.RequestHandler = MPRequest;

Optional handlers are registered via a callback to the SetOptionsHandler.

MPChar.SetOptionsHandler = MpSetOptions;

Interrupt handlers are no longer specified in the driver characteristics table. Register these with NDIS by calling the NdisMRegisterInterruptEx function. The interrupt handlers are specified in the NDIS_MINIPORT_INTERRUPT_EX structure, which is a parameter to the NdisMRegisterInterruptEx function. For more information about registering interrupts, see the Interrupt Registration section.

 MPChar.HandleInterruptHandler = MPHandleInterrupt;
 MPChar.ISRHandler = MPIsr;

Send and receive handlers that use the NET_BUFFER and NET_BUFFER_LIST structures replace handlers that use NDIS_PACKET structures:

 MPChar.ReturnPacketHandler = MPReturnPacket;
 MPChar.SendPacketsHandler = MpSendPacketsHandler;
 MPChar.CancelSendPacketsHandler = MPCancelSendPackets;

 MPChar.SendNetBufferListsHandler = MPSendNetBufferListsHandler;
 MPChar.CancelSendHandlerEx = MPCancelSendNetBufferLists;
 MPChar.ReturnNetBufferListsHandler = MPReturnNetBufferLists;

Form more information about the NET_BUFFER and NET_BUFFER_LIST structures, see the NDIS 6.0 DDK documentation.

Add new handlers to support unloading, pausing, and restarting a miniport driver.

 MPChar.UnloadHandler = MPUnload;
 MPChar.PauseHandler = MPPause;
 MPChar.RestartHandler = MPRestart;

For a description of the pause and restart handlers, see the Pause and Restart section.

Registering Optional Handlers

NDIS calls back the MiniportSetOptions handler , which is optional, during a miniport driver call to the NdisMRegisterMiniportDriver function. In MiniportSetOptions, the miniport driver overwrites the default entry points by calling the NdisSetOptionalHandlers function. These entry points vary depending to the type of driver.

For more information about optional handlers, see Configuring Optional Miniport Driver Services in the NDIS 6.0 DDK.

MiniportInitializeEx Function
The MiniportInitializeEx function replaces the MiniportIntialize function. MiniportInitializeEx initializes an adapter for network I/O operations. NDIS passes MiniportInitializeEx a NDIS_MINIPORT_INIT_PARAMETERS structure. For more information about MiniportInitializeEx and this structure, see the Initializing an Adapter section in the NDIS 6.0 DDK.

The MiniportInitializeEx function must:

SYMBOL 183 \f "Symbol" \s 11 \h
Set the miniport attributes.

SYMBOL 183 \f "Symbol" \s 11 \h
Read configuration parameters from the registry.

SYMBOL 183 \f "Symbol" \s 11 \h
Allocate memory.

SYMBOL 183 \f "Symbol" \s 11 \h
Allocate the NET_BUFFER_LIST and the NET_BUFFER pools.

SYMBOL 183 \f "Symbol" \s 11 \h
Register the interrupt handler.

SYMBOL 183 \f "Symbol" \s 11 \h
Allocate scatter/gather DMA resources.

SYMBOL 183 \f "Symbol" \s 11 \h
Read and write to the bus-specific configuration space.

Setting Miniport Adapter Attributes
The NdisMSetMiniportAttributes function replaces the NdisMSetAttributes and NdisMSetAttributesEx functions. The driver passes miniport adapter parameters, including the medium type, attribute flags, check-for-hang time, and interface type,. in NDIS_MINIPORT_ATTRIBUTES structure.

The miniport adapter attributes have been updated for NDIS 6.0. For more information about the attributes, see the NDIS_MINIPORT_ATTRIBUTES reference page in the NDIS 6.0 DDK.

The major difference is: all NDIS 6.0 miniport drivers are deserialized. Therefore, the NDIS_ATTRIBUTE_DESERIALIZE attribute has been removed.

The following code sample shows how the miniport driver initializes the miniport attributes structure:

MiniportAttributes.Header.Type = NDIS_OBJECT_TYPE_MINIPORT_ATTRIBUTES;
MiniportAttributes.Header.Revision = NDIS_MINIPORT_ATTRIBUTES_REVISION_1;
MiniportAttributes.Header.Size = sizeof(MiniportAttributes);
MiniportAttributes.AttributeFlags = NDIS_MINIPORT_ATTRIBUTES_HARDWARE_DEVICE | NDIS_ATTRIBUTE_BUS_MASTER;
MiniportAttributes.CheckForHangTimeInSeconds = 2;
MiniportAttributes.InterfaceType = NdisInterfacePci;

The miniport driver passes the NDIS_MINIPORT_ATTRIBUTES structure to NdisMSetMiniportAttributes, as follows:

 Status = NdisMSetMiniportAttributes(MiniportAdapterHandle,
 (NDIS_HANDLE)Adapter,
 &MiniportAttributes);

Reading the Registry
The NdisOpenConfigurationEx function replaces the NdisOpenConfiguration function. NdisOpenConfigurationEx takes the miniport driver handle, which is passed into InitializeHandlerEx and a pointer to a configuration handle as parameters. The miniport driver uses the configuration handle in subsequent calls to the NdisReadConfiguration and NdisWriteConfiguration functions. For more information, see the DDK “section entitled Reading Configuration Information”.

Allocating Memory

The NdisAllocateMemoryWithTagPriority function replaces the NdisAllocateMemory and NdisAllocateMemoryWithTag functions. In addition to specifying the miniport adapter handle, pool size, and tag, NdisAllocateMemoryWithTagPriority requires an allocation priority that indicates the importance of the request. The priority is the same as that defined for the ExAllocatePoolWithTagPriority function. For more information, see the DDK.

Allocating NET_BUFFER Pools

Before sending and receiving NET_BUFFER and NET_BUFFER_LIST structures, the miniport driver must allocate a NET_BUFFER pool and a NET_BUFFER_LIST pool. Instead of calling the NdisAllocatePacketPool function to allocate a pool, NDIS 6.0 miniport drivers call the NdisAllocateNetBufferListPool and NdisAllocateNetBufferPool functions. These functions now take the structure NET_BUFFER_LIST_POOL_PARAMETERS as the input parameter which describes the characteristics of the pool. For example:

NET_BUFFER_LIST_POOL_PARAMETERS PoolParameters;

PoolParameters.Header.Type = NDIS_OBJECT_TYPE_DEFAULT;

PoolParameters.Header.Revision = NET_BUFFER_LIST_POOL_PARAMETERS_REVISION_1

PoolParameters.Header.Size = sizeof(PoolParameters);

PoolParameters.ProtocolId = 0;

PoolParameters.ContextSize = 0;

PoolParameters.fAllocateNetBuffer = TRUE;

PoolParameters.PoolTag = NIC_TAG;

PoolParameters.NdisHandle = MP_GET_ADAPTER_HANDLE(Adapter);

Adapter->RecvNetBufferListPool = NdisAllocateNetBufferListPool(&PoolParameters);

Each NET_BUFFER_LIST structure, that the driver uses to indicate received network data, has at least one associated NET_BUFFER structure. A driver that indicates received data should therefore allocate a NET_BUFFER_LIST pool and a NET_BUFFER pool at the same time by calling the NdisAllocateNetBufferListPool function with the fAllocateNetBuffer field set to TRUE. If a driver requires only a NET_BUFFER pool for transmit data, the driver should call the NdisAllocateNetBufferPool function instead.

The miniport driver’s MiniportHaltEx function should call the NdisFreeNetBufferListPool and NetFreeNetBufferPool functions to free the NET_BUFFER_LIST and NET_BUFFER pools, respectively. These functions replace the NdisFreePacketPool function. The driver passes these functions the pool handle that the associated allocation functions returned.

Registering Interrupt Handlers

An NDIS 6.0 miniport driver supplies these interrupt-related functions; MiniportIsr, MiniportInterruptDpc, MiniportDisableInterrupt, and MiniportEnableInterrupt. The driver defines the entry points for these functions in a NDIS_MINIPORT_INTERRUPT_CHARACTERISTICS structure. The driver passes a pointer to this structure to the NdisMRegisterInterruptEx function. The following code example shows how a miniport driver initializes this structure:

 Interrupt.Header.Type = NDIS_OBJECT_TYPE_MINIPORT_INTERRUPT;
 Interrupt.Header.Revision = NDIS_MINIPORT_INTERRUPT_REVISION_1;
 Interrupt.Header.Size = sizeof(NDIS_MINIPORT_INTERRUPT_EX);

 Interrupt.MiniportInterruptContext = Adapter;
 Interrupt.InterruptHandler = MPIsr;
 Interrupt.InterruptDpcHandler = MPHandleInterrupt;
 Interrupt.DisableInterruptHandler = MPDisableInterrupt;
 Interrupt.EnableInterruptHandler = MPEnableInterrupt;
 Interrupt.InterruptVector = Adapter->InterruptLevel;
 Interrupt.InterruptLevel = Adapter->InterruptLevel;
 Interrupt.InterruptMode = NIC_INTERRUPT_MODE;
 Interrupt.SharedInterrupt = TRUE;

 Status = NdisMRegisterInterruptEx(Adapter->AdapterHandle,
 &Interrupt,
 &Adapter->NdisInterruptHandle);

The miniport driver passes an NdisInterruptHandle to NdisMRegisterInterruptEx. NDIS passes this handle to the driver’s interrupt-related functions.

To deregister an interrupt, a miniport driver calls the NdisMDeregisterInterruptEx function instead of the NdisMDeregisterInterrupt function.

Allocating DMA Resources

Miniport drivers that use scatter/gather DMA must initialize an NDIS_SG_DMA_DESCRIPTION structure and then pass this structure to the NdisMRegisterScatterGatherDma function in the context of the MiniportInitializeEx function. NdisMRegisterScatterGatherDma registers the miniport driver's MiniportSharedMemAllocateComplete function and returns a handle. The miniport driver subsequently supplies the handle to NDIS functions that allocate or free scatter/gather lists that are associated with NET_BUFFER structures.

After NdisMRegisterScatterGatherDma returns, a miniport driver can call NDIS functions to obtain a scatter/gather list for a NET_BUFFER structure. To release scatter/gather DMA resources that it allocated, a miniport driver calls, the NdisMDeregisterScatterGatherDma function and passes it the handle returned by NdisMRegisterScatterGatherDma. The driver should call NdisMDeregisterScatterGatherDma in the context of its MiniportHaltEx function.

Reading and Writing Bus-Specific Configuration Space
To read or write the bus configuration space, a miniport driver calls the NdisMGetBusData or NdisMSetBusData function, respectively. These functions replace the NdisReadPciSlotInformation and NdisWritePciSlotInformation functions.

The following code fragments show how both legacy miniport drivers and NDIS 6.0 miniport drivers read and write the PCI configuration space:

Legacy Miniports
Reading

 ulResult = NdisReadPciSlotInformation(
 Adapter->AdapterHandle,
 0,
 FIELD_OFFSET(PCI_COMMON_CONFIG, Command),
 &usPciCommand,
 sizeof(USHORT));

Writing

 ulResult = NdisWritePciSlotInformation(
 Adapter->AdapterHandle,
 0,
 FIELD_OFFSET(PCI_COMMON_CONFIG, Command),
 &usPciCommand,
 sizeof(USHORT));

NDIS 6.0 Miniports

Reading

 ulResult = NdisMGetBusData(
 Adapter->AdapterHandle,
 PCI_WHICHSPACE_CONFIG,
 FIELD_OFFSET(PCI_COMMON_CONFIG, Command),
 &usPciCommand,
 sizeof(USHORT));

Writing

 ulResult = NdisMSetBusData(
 Adapter->AdapterHandle,
 PCI_WHICHSPACE_CONFIG,
 FIELD_OFFSET(PCI_COMMON_CONFIG, Command),
 &usPciCommand,
 sizeof(USHORT));

Handling Interrupts

When a NIC asserts an interrupt line, NDIS calls the miniport driver's MiniportInterrupt function. MiniportInterrupt dismisses the interrupt, saves necessary interrupt state, and defers as much of the I/O processing as possible to the MiniportInterruptDpc function.

Unlike a legacy miniport driver, an NDIS 6.0 miniport driver can request one or more deferred procedure calls (DPCs) to distribute the processing of receive queues across one or more additional processors. This functionality is called receive side scaling (RSS). To request additional DPCs, the miniport driver sets the NdisMQueueDpc parameter of the MiniportInterrupt function.

If the miniport driver will request DPCs, the MiniportInterrupt function should first disable all interrupts from the NIC. The miniport driver should re-enable the interrupts after all the DPCs have finished.

MiniportHaltEx Function
The miniport driver’s halt function, MiniportHaltEx, differs from the legacy halt handler, MiniportHalt, in that it receives a HaltAction parameter in addition to the MiniportAdapterContext parameter. The HaltAction parameter specifies the reason for halting the miniport. More information can be found in the DDK under the section entitled Pausing an Adapter.

ShutdownHandlerEx Function
The NDIS 6.0 miniport driver’s shutdown function, ShutdownHandlerEx, differs from the legacy MiniportShutdown function in that it receives a ShutdownAction parameter in addition to the MiniportAdapterContext parameter. The ShutdownAction parameter specifies the reason for shutting down the miniport driver. More information can be found in the DDK under the section entitled MiniportShutdownEx.

Deregistering and Unloading a Miniport Driver

The NDIS 6.0 miniport driver’s UnloadHandler must deregister the miniport driver by calling the NdisMDeregisterMiniportDriver function. The driver passes NdisMDeregisterMiniportDriver the handle that it obtained at NdisMiniportDriverHandle when it called the NdisMRegisterMiniportDriver function.

Data Transfer Code Paths
Data transfer code paths in NDIS 6.0 have changed as follows:

SYMBOL 183 \f "Symbol" \s 11 \h
NET_BUFFER_LIST structures and NET_BUFFER structures replace the NDIS_PACKET structure.

SYMBOL 183 \f "Symbol" \s 11 \h
Drivers can send and receive multiple packets in the same function call without having to determine beforehand the number of packets as in the case of NdisSendPackets.

SYMBOL 183 \f "Symbol" \s 11 \h
The completion status of a send or receive operation is indicated by a member of the NET_BUFFER_LIST structure.

For more information on these changes, see the DDK.

Sending Data

The MiniportSendNetBufferLists function replaces the MiniportSendPackets function. MiniportSendNetBufferLists receives a pointer to a linked list of NET_BUFFER_LIST structures, each of which contains a linked list of NET_BUFFER structures. MiniportSendNetBufferLists does not return a completion status. A miniport driver should therefore always complete a send operation by calling the NdisMSendNetBufferListComplete function.

Legacy miniport drivers specify the completion status of a send operation as a parameter to NdisMSendNetBufferListComplete. NDIS 6.0 miniport drivers, however, specify the completion status in the NET_BUFFER_LIST structure by calling the NET_BUFFER_LIST_COMPLETION_STATUS(NetBufferList) macro, where NetBufferList is a pointer to a NET_BUFFER_LIST. For example:

NET_BUFFER_LIST_COMPLETION_STATUS(pNetBufferList) = NDIS_STATUS_RESOURCES

The completion status applies to all the NET_BUFFER structures associated with the NET_BUFFER_LIST structure. Therefore, a miniport driver should set the completion status to NDIS_STATUS_SUCCESS only if the data in all the NET_BUFFER structures associated with the NET_BUFFER_LIST structure was transmitted successfully.

If a miniport driver uses scatter/gather DMA, it must call the NdisMAllocateNetBufferSGList function once for each NET_BUFFER structure for which it must obtain a scatter/gather DMA list. When a miniport driver calls NdisMAllocateNetBufferSGList, NDIS calls HAL to build the scatter/gather DMA list. After HAL builds the scatter/gather DMA list, it calls the MiniportProcessSGList function that the miniport driver registered by calling the NdisMRegisterScatterGatherDma function. After MiniportProcessSGList returns, the driver can send the NET_BUFFER structure to the hardware.

Receiving Data

NDIS 6.0 Miniport drivers indicate a linked list of NET_BUFFER_LIST structures to NDIS instead of NDIS_PACKET structures. NDIS forwards the NET_BUFFER_LIST structures to the appropriate bound protocol drivers.

With the exception of indicating the completion status of a receive operation in a NET_BUFFER_LIST structure, the semantics of indicating data is very similar to that of legacy miniport drivers that call the NdisMIndicateReceivePacket function. An NDIS 6.0 miniport driver calls the NdisMIndicateNetBufferLists function to indicate a linked list of NET_BUFFER_LIST structures.

If the miniport driver specifies a completion status of NDIS_STATUS_RESOURCES, it can reclaim ownership of the NET_BUFFER_LIST structures as soon as NdisMIndicateNetBufferLists returns. If the miniport driver specifies a completion status of NDIS_STATUS_SUCCESS, NDIS returns ownership of the NET_BUFFER_LIST structure by calling the miniport driver's MiniportReturnNetBufferLists function. This is analogous to calling a legacy miniport driver's MiniportReturnPackets function.

MiniportRequest Function
The MiniportQueryInformation and MiniportSetInformation functions have been consolidated into the MiniportRequest function. Furthermore, the NDIS_REQUEST structure is replaced by NDIS_REQUEST_EX.

NDIS calls a miniport driver's MiniportRequest function to send an OID request to the driver. As is the case with legacy miniport drivers, NDIS serializes OID requests so it does not call MiniportRequest until any pending request is complete. In contrast with MiniportQueryInformation and MiniportSetInformation which can be called only at IRQL = DISPATCH_LEVEL, the MiniportRequest function can be called at IRQL = PASSIVE_LEVEL or IRQL <= DISPATCH_LEVEL.

If the MiniportRequest function returns NDIS_STATUS_PENDING, the miniport driver must subsequently call the NdisMRequestComplete function to complete the request.

The NDIS_REQUEST_EX structure is similar to NDIS_REQUEST in that it can specify a timeout and a request ID.

Status Indication

The NdisMIndicateStatusEx function replaces theNdisMIndicateStatus and NdisMIndicateStatusComplete functions. Status indication parameters are packaged within an NDIS_STATUS_INDICATION structure that contains the source handle, status code, buffer and size.

StatusIndication.Header.Type = NDIS_OBJECT_TYPE_STATUS_INDICATION;

StatusIndication.Header.Revision = NDIS_STATUS_INDICATION_REVISION_1;

StatusIndication.Header.Size = sizeof(NDIS_STATUS_INDICATION);

StatusIndication.SourceHandle = Adapter->AdapterHandle;

StatusIndication.StatusCode = NDIS_STATUS_LINK_STATE;

StatusIndication.StatusBuffer = (PVOID)&LinkState;

StatusIndication.StatusBufferSize = sizeof(LinkState);

MiniportResetEx Function
An NDIS 6.0 miniport driver's MiniportResetEx function differs from the legacy MiniportReset function as follows:

SYMBOL 183 \f "Symbol" \s 11 \h
NDIS 6.0 miniport drivers can cancel pending OID requests and send requests in the context of a reset. NDIS no longer performs such cancellations. Alternatively, the miniport driver can complete pending OID requests after the reset completes.

SYMBOL 183 \f "Symbol" \s 11 \h
Unlike the legacy MiniportReset function, which can be called only at IRQL = DISPATCH, the MiniportResetEx function can be called at IRQL <= DISPATCH_LEVEL

Pausing and Restarting a Miniport Adapter
Miniport adapter pause and restart are new features introduced in NDIS 6.0.

NDIS calls a miniport driver's MiniportPause function to stop data flow before a Plug and Play operation, such as adding or removing a filter driver or binding or unbinding a protocol driver, is performed. The adapter remains in the Pausing state until the pause operation has completed.

When in the Paused state, a miniport driver can indicate status by calling the NdisMIndicateStatusEx function. In addition, the miniport driver should do the following:

SYMBOL 183 \f "Symbol" \s 11 \h
Wait for all calls to the NdisMIndicateReceiveNetBufferLists function to return.

SYMBOL 183 \f "Symbol" \s 11 \h
Wait for NDIS to return the ownership of all NET_BUFFER_LIST structures from outstanding receive indications to the miniport driver's MiniportReturnNetBufferLists function.

SYMBOL 183 \f "Symbol" \s 11 \h
Reject all new send requests made to its MiniportSendNetBufferLists function by immediately calling the NdisMSendNetBufferListsComplete function. The driver should set the completion status in each NET_BUFFER_LIST structure to NDIS_STATUS_PAUSED.

SYMBOL 183 \f "Symbol" \s 11 \h
Handle OID requests in its MiniportRequest function.

SYMBOL 183 \f "Symbol" \s 11 \h
Not stop the adapter completely if doing so prevents the driver from handling OID requests or providing status indications.

SYMBOL 183 \f "Symbol" \s 11 \h
Not free the resources that the driver allocated during initialization.

NDIS calls the miniport driver's MiniportRestart function to cause the driver to return the adapter to the Running state. During the restart, the miniport driver:

SYMBOL 183 \f "Symbol" \s 11 \h
Must complete any tasks that are required to resume send and receive operations.

SYMBOL 183 \f "Symbol" \s 11 \h
Can provide status indications by calling the NdisMIndicateStatusEx function.
SYMBOL 183 \f "Symbol" \s 11 \h
Should handle OID requests in its MiniportRequest function.

Resources

Microsoft Hardware and Driver Developer Information

http://www.microsoft.com/whdc/hwdev/default.mspx

Microsoft Windows Driver Development Kit (DDK)

http://www.microsoft.com/whdc/ddk/winddk.mspx

© 2003 Microsoft Corporation. All rights reserved.

[image: image1.png]